1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
|
module T = Types
module PV = PrimitiveValues
module V = Values
module LA = LlbcAst
open Scalars
module E = Expressions
open Utils
module C = Contexts
module Subst = Substitute
module L = Logging
open TypesUtils
open ValuesUtils
module Inv = Invariants
module S = SynthesizeSymbolic
open Cps
open InterpreterUtils
open InterpreterExpansion
open InterpreterPaths
(** The local logger *)
let log = L.expressions_log
(** As long as there are symbolic values at a given place (potentially in subvalues)
which contain borrows and are primitively copyable, expand them.
We use this function before copying values.
Note that the place should have been prepared so that there are no remaining
loans.
*)
let expand_primitively_copyable_at_place (config : C.config)
(access : access_kind) (p : E.place) : cm_fun =
fun cf ctx ->
(* Small helper *)
let rec expand : cm_fun =
fun cf ctx ->
let v = read_place access p ctx in
match
find_first_primitively_copyable_sv_with_borrows
ctx.type_context.type_infos v
with
| None -> cf ctx
| Some sv ->
let cc =
expand_symbolic_value_no_branching config sv
(Some (S.mk_mplace p ctx))
in
comp cc expand cf ctx
in
(* Apply *)
expand cf ctx
(** Read a place (CPS-style function).
We also check that the value *doesn't contain bottoms or reserved
borrows*.
*)
let read_place (access : access_kind) (p : E.place)
(cf : V.typed_value -> m_fun) : m_fun =
fun ctx ->
let v = read_place access p ctx in
(* Check that there are no bottoms in the value *)
assert (not (bottom_in_value ctx.ended_regions v));
(* Check that there are no reserved borrows in the value *)
assert (not (reserved_in_value v));
(* Call the continuation *)
cf v ctx
let access_rplace_reorganize_and_read (config : C.config)
(expand_prim_copy : bool) (access : access_kind) (p : E.place)
(cf : V.typed_value -> m_fun) : m_fun =
fun ctx ->
(* Make sure we can evaluate the path *)
let cc = update_ctx_along_read_place config access p in
(* End the proper loans at the place itself *)
let cc = comp cc (end_loans_at_place config access p) in
(* Expand the copyable values which contain borrows (which are necessarily shared
* borrows) *)
let cc =
if expand_prim_copy then
comp cc (expand_primitively_copyable_at_place config access p)
else cc
in
(* Read the place - note that this checks that the value doesn't contain bottoms *)
let read_place = read_place access p in
(* Compose *)
comp cc read_place cf ctx
let access_rplace_reorganize (config : C.config) (expand_prim_copy : bool)
(access : access_kind) (p : E.place) : cm_fun =
fun cf ctx ->
access_rplace_reorganize_and_read config expand_prim_copy access p
(fun _v -> cf)
ctx
(** Convert an operand constant operand value to a typed value *)
let literal_to_typed_value (ty : PV.literal_type) (cv : V.literal) :
V.typed_value =
(* Check the type while converting - we actually need some information
* contained in the type *)
log#ldebug
(lazy
("literal_to_typed_value:" ^ "\n- cv: "
^ Print.PrimitiveValues.literal_to_string cv));
match (ty, cv) with
(* Scalar, boolean... *)
| PV.Bool, Bool v -> { V.value = V.Literal (Bool v); ty = T.Literal ty }
| Char, Char v -> { V.value = V.Literal (Char v); ty = T.Literal ty }
| Integer int_ty, PV.Scalar v ->
(* Check the type and the ranges *)
assert (int_ty = v.int_ty);
assert (check_scalar_value_in_range v);
{ V.value = V.Literal (PV.Scalar v); ty = T.Literal ty }
(* Remaining cases (invalid) *)
| _, _ -> raise (Failure "Improperly typed constant value")
(** Copy a value, and return the resulting value.
Note that copying values might update the context. For instance, when
copying shared borrows, we need to insert new shared borrows in the context.
Also, this function is actually more general than it should be: it can be
used to copy concrete ADT values, while ADT copy should be done through the
Copy trait (i.e., by calling a dedicated function). This is why we added a
parameter to control this copy ([allow_adt_copy]). Note that here by ADT we
mean the user-defined ADTs (not tuples or assumed types).
*)
let rec copy_value (allow_adt_copy : bool) (config : C.config)
(ctx : C.eval_ctx) (v : V.typed_value) : C.eval_ctx * V.typed_value =
log#ldebug
(lazy
("copy_value: "
^ typed_value_to_string ctx v
^ "\n- context:\n" ^ eval_ctx_to_string ctx));
(* Remark: at some point we rewrote this function to use iterators, but then
* we reverted the changes: the result was less clear actually. In particular,
* the fact that we have exhaustive matches below makes very obvious the cases
* in which we need to fail *)
match v.V.value with
| V.Literal _ -> (ctx, v)
| V.Adt av ->
(* Sanity check *)
(match v.V.ty with
| T.Adt (T.Assumed (T.Box | Vec), _, _, _) ->
raise (Failure "Can't copy an assumed value other than Option")
| T.Adt (T.AdtId _, _, _, _) -> assert allow_adt_copy
| T.Adt ((T.Assumed Option | T.Tuple), _, _, _) -> () (* Ok *)
| T.Adt (T.Assumed (Slice | T.Array), [], [ ty ], []) ->
assert (ty_is_primitively_copyable ty)
| _ -> raise (Failure "Unreachable"));
let ctx, fields =
List.fold_left_map
(copy_value allow_adt_copy config)
ctx av.field_values
in
(ctx, { v with V.value = V.Adt { av with field_values = fields } })
| V.Bottom -> raise (Failure "Can't copy ⊥")
| V.Borrow bc -> (
(* We can only copy shared borrows *)
match bc with
| SharedBorrow bid ->
(* We need to create a new borrow id for the copied borrow, and
* update the context accordingly *)
let bid' = C.fresh_borrow_id () in
let ctx = InterpreterBorrows.reborrow_shared bid bid' ctx in
(ctx, { v with V.value = V.Borrow (SharedBorrow bid') })
| MutBorrow (_, _) -> raise (Failure "Can't copy a mutable borrow")
| V.ReservedMutBorrow _ ->
raise (Failure "Can't copy a reserved mut borrow"))
| V.Loan lc -> (
(* We can only copy shared loans *)
match lc with
| V.MutLoan _ -> raise (Failure "Can't copy a mutable loan")
| V.SharedLoan (_, sv) ->
(* We don't copy the shared loan: only the shared value inside *)
copy_value allow_adt_copy config ctx sv)
| V.Symbolic sp ->
(* We can copy only if the type is "primitively" copyable.
* Note that in the general case, copy is a trait: copying values
* thus requires calling the proper function. Here, we copy values
* for very simple types such as integers, shared borrows, etc. *)
assert (ty_is_primitively_copyable (Subst.erase_regions sp.V.sv_ty));
(* If the type is copyable, we simply return the current value. Side
* remark: what is important to look at when copying symbolic values
* is symbolic expansion. The important subcase is the expansion of shared
* borrows: when doing so, every occurrence of the same symbolic value
* must use a fresh borrow id. *)
(ctx, v)
(** Reorganize the environment in preparation for the evaluation of an operand.
Evaluating an operand requires reorganizing the environment to get access
to a given place (by ending borrows, expanding symbolic values...) then
applying the operand operation (move, copy, etc.).
Sometimes, we want to decouple the two operations.
Consider the following example:
{[
context = {
x -> shared_borrow l0
y -> shared_loan {l0} v
}
dest <- f(move x, move y);
...
]}
Because of the way {!end_borrow} is implemented, when giving back the borrow
[l0] upon evaluating [move y], we won't notice that [shared_borrow l0] has
disappeared from the environment (it has been moved and not assigned yet,
and so is hanging in "thin air").
By first "preparing" the operands evaluation, we make sure no such thing
happens. To be more precise, we make sure all the updates to borrows triggered
by access *and* move operations have already been applied.
Rk.: in the formalization, we always have an explicit "reorganization" step
in the rule premises, before the actual operand evaluation, that allows to
reorganize the environment so that it satisfies the proper conditions. This
function's role is to do the reorganization.
Rk.: doing this is actually not completely necessary because when
generating MIR, rustc introduces intermediate assignments for all the function
parameters. Still, it is better for soundness purposes, and corresponds to
what we do in the formalization (because we don't enforce the same constraints
as MIR in the formalization).
*)
let prepare_eval_operand_reorganize (config : C.config) (op : E.operand) :
cm_fun =
fun cf ctx ->
let prepare : cm_fun =
fun cf ctx ->
match op with
| E.Constant _ ->
(* No need to reorganize the context *)
cf ctx
| E.Copy p ->
(* Access the value *)
let access = Read in
(* Expand the symbolic values, if necessary *)
let expand_prim_copy = true in
access_rplace_reorganize config expand_prim_copy access p cf ctx
| E.Move p ->
(* Access the value *)
let access = Move in
let expand_prim_copy = false in
access_rplace_reorganize config expand_prim_copy access p cf ctx
in
(* Apply *)
prepare cf ctx
(** Evaluate an operand, without reorganizing the context before *)
let eval_operand_no_reorganize (config : C.config) (op : E.operand)
(cf : V.typed_value -> m_fun) : m_fun =
fun ctx ->
(* Debug *)
log#ldebug
(lazy
("eval_operand_no_reorganize: op: " ^ operand_to_string ctx op
^ "\n- ctx:\n" ^ eval_ctx_to_string ctx ^ "\n"));
(* Evaluate *)
match op with
| E.Constant cv -> (
match cv.value with
| E.CLiteral lit ->
cf (literal_to_typed_value (TypesUtils.ty_as_literal cv.ty) lit) ctx
| E.CVar vid -> (
let ctx0 = ctx in
(* Lookup the const generic value *)
let cv = C.ctx_lookup_const_generic_value ctx vid in
(* Copy the value *)
let allow_adt_copy = false in
let ctx, v = copy_value allow_adt_copy config ctx cv in
(* Continue *)
let e = cf v ctx in
(* We have to wrap the expression to introduce *)
match e with
| None -> None
| Some e ->
(* If we are synthesizing a symbolic AST, it means that we are in symbolic
mode: the value of the const generic is necessarily symbolic. *)
assert (is_symbolic cv.V.value);
(* *)
Some
(SymbolicAst.IntroSymbolic
( ctx0,
None,
value_as_symbolic v.value,
SymbolicAst.ConstGenericValue vid,
e ))))
| E.Copy p ->
(* Access the value *)
let access = Read in
let cc = read_place access p in
(* Copy the value *)
let copy cf v : m_fun =
fun ctx ->
(* Sanity checks *)
assert (not (bottom_in_value ctx.ended_regions v));
assert (
Option.is_none
(find_first_primitively_copyable_sv_with_borrows
ctx.type_context.type_infos v));
(* Actually perform the copy *)
let allow_adt_copy = false in
let ctx, v = copy_value allow_adt_copy config ctx v in
(* Continue *)
cf v ctx
in
(* Compose and apply *)
comp cc copy cf ctx
| E.Move p ->
(* Access the value *)
let access = Move in
let cc = read_place access p in
(* Move the value *)
let move cf v : m_fun =
fun ctx ->
(* Check that there are no bottoms in the value we are about to move *)
assert (not (bottom_in_value ctx.ended_regions v));
let bottom : V.typed_value = { V.value = Bottom; ty = v.ty } in
let ctx = write_place access p bottom ctx in
cf v ctx
in
(* Compose and apply *)
comp cc move cf ctx
let eval_operand (config : C.config) (op : E.operand)
(cf : V.typed_value -> m_fun) : m_fun =
fun ctx ->
(* Debug *)
log#ldebug
(lazy
("eval_operand: op: " ^ operand_to_string ctx op ^ "\n- ctx:\n"
^ eval_ctx_to_string ctx ^ "\n"));
(* We reorganize the context, then evaluate the operand *)
comp
(prepare_eval_operand_reorganize config op)
(eval_operand_no_reorganize config op)
cf ctx
(** Small utility.
See [prepare_eval_operand_reorganize].
*)
let prepare_eval_operands_reorganize (config : C.config) (ops : E.operand list)
: cm_fun =
fold_left_apply_continuation (prepare_eval_operand_reorganize config) ops
(** Evaluate several operands. *)
let eval_operands (config : C.config) (ops : E.operand list)
(cf : V.typed_value list -> m_fun) : m_fun =
fun ctx ->
(* Prepare the operands *)
let prepare = prepare_eval_operands_reorganize config ops in
(* Evaluate the operands *)
let eval =
fold_left_list_apply_continuation (eval_operand_no_reorganize config) ops
in
(* Compose and apply *)
comp prepare eval cf ctx
let eval_two_operands (config : C.config) (op1 : E.operand) (op2 : E.operand)
(cf : V.typed_value * V.typed_value -> m_fun) : m_fun =
let eval_op = eval_operands config [ op1; op2 ] in
let use_res cf res =
match res with
| [ v1; v2 ] -> cf (v1, v2)
| _ -> raise (Failure "Unreachable")
in
comp eval_op use_res cf
let eval_unary_op_concrete (config : C.config) (unop : E.unop) (op : E.operand)
(cf : (V.typed_value, eval_error) result -> m_fun) : m_fun =
(* Evaluate the operand *)
let eval_op = eval_operand config op in
(* Apply the unop *)
let apply cf (v : V.typed_value) : m_fun =
match (unop, v.V.value) with
| E.Not, V.Literal (Bool b) ->
cf (Ok { v with V.value = V.Literal (Bool (not b)) })
| E.Neg, V.Literal (PV.Scalar sv) -> (
let i = Z.neg sv.PV.value in
match mk_scalar sv.int_ty i with
| Error _ -> cf (Error EPanic)
| Ok sv -> cf (Ok { v with V.value = V.Literal (PV.Scalar sv) }))
| E.Cast (src_ty, tgt_ty), V.Literal (PV.Scalar sv) -> (
assert (src_ty = sv.int_ty);
let i = sv.PV.value in
match mk_scalar tgt_ty i with
| Error _ -> cf (Error EPanic)
| Ok sv ->
let ty = T.Literal (Integer tgt_ty) in
let value = V.Literal (PV.Scalar sv) in
cf (Ok { V.ty; value }))
| _ -> raise (Failure "Invalid input for unop")
in
comp eval_op apply cf
let eval_unary_op_symbolic (config : C.config) (unop : E.unop) (op : E.operand)
(cf : (V.typed_value, eval_error) result -> m_fun) : m_fun =
fun ctx ->
(* Evaluate the operand *)
let eval_op = eval_operand config op in
(* Generate a fresh symbolic value to store the result *)
let apply cf (v : V.typed_value) : m_fun =
fun ctx ->
let res_sv_id = C.fresh_symbolic_value_id () in
let res_sv_ty =
match (unop, v.V.ty) with
| E.Not, (T.Literal Bool as lty) -> lty
| E.Neg, (T.Literal (Integer _) as lty) -> lty
| E.Cast (_, tgt_ty), _ -> T.Literal (Integer tgt_ty)
| _ -> raise (Failure "Invalid input for unop")
in
let res_sv =
{ V.sv_kind = V.FunCallRet; V.sv_id = res_sv_id; sv_ty = res_sv_ty }
in
(* Call the continuation *)
let expr = cf (Ok (mk_typed_value_from_symbolic_value res_sv)) ctx in
(* Synthesize the symbolic AST *)
S.synthesize_unary_op ctx unop v
(S.mk_opt_place_from_op op ctx)
res_sv None expr
in
(* Compose and apply *)
comp eval_op apply cf ctx
let eval_unary_op (config : C.config) (unop : E.unop) (op : E.operand)
(cf : (V.typed_value, eval_error) result -> m_fun) : m_fun =
match config.mode with
| C.ConcreteMode -> eval_unary_op_concrete config unop op cf
| C.SymbolicMode -> eval_unary_op_symbolic config unop op cf
(** Small helper for [eval_binary_op_concrete]: computes the result of applying
the binop *after* the operands have been successfully evaluated
*)
let eval_binary_op_concrete_compute (binop : E.binop) (v1 : V.typed_value)
(v2 : V.typed_value) : (V.typed_value, eval_error) result =
(* Equality check binops (Eq, Ne) accept values from a wide variety of types.
* The remaining binops only operate on scalars. *)
if binop = Eq || binop = Ne then (
(* Equality operations *)
assert (v1.ty = v2.ty);
(* Equality/inequality check is primitive only for a subset of types *)
assert (ty_is_primitively_copyable v1.ty);
let b = v1 = v2 in
Ok { V.value = V.Literal (Bool b); ty = T.Literal Bool })
else
(* For the non-equality operations, the input values are necessarily scalars *)
match (v1.V.value, v2.V.value) with
| V.Literal (PV.Scalar sv1), V.Literal (PV.Scalar sv2) -> (
(* There are binops which require the two operands to have the same
type, and binops for which it is not the case.
There are also binops which return booleans, and binops which
return integers.
*)
match binop with
| E.Lt | E.Le | E.Ge | E.Gt ->
(* The two operands must have the same type and the result is a boolean *)
assert (sv1.int_ty = sv2.int_ty);
let b =
match binop with
| E.Lt -> Z.lt sv1.PV.value sv2.PV.value
| E.Le -> Z.leq sv1.PV.value sv2.PV.value
| E.Ge -> Z.geq sv1.PV.value sv2.PV.value
| E.Gt -> Z.gt sv1.PV.value sv2.PV.value
| E.Div | E.Rem | E.Add | E.Sub | E.Mul | E.BitXor | E.BitAnd
| E.BitOr | E.Shl | E.Shr | E.Ne | E.Eq ->
raise (Failure "Unreachable")
in
Ok
({ V.value = V.Literal (Bool b); ty = T.Literal Bool }
: V.typed_value)
| E.Div | E.Rem | E.Add | E.Sub | E.Mul | E.BitXor | E.BitAnd | E.BitOr
-> (
(* The two operands must have the same type and the result is an integer *)
assert (sv1.int_ty = sv2.int_ty);
let res =
match binop with
| E.Div ->
if sv2.PV.value = Z.zero then Error ()
else mk_scalar sv1.int_ty (Z.div sv1.PV.value sv2.PV.value)
| E.Rem ->
(* See [https://github.com/ocaml/Zarith/blob/master/z.mli] *)
if sv2.PV.value = Z.zero then Error ()
else mk_scalar sv1.int_ty (Z.rem sv1.PV.value sv2.PV.value)
| E.Add -> mk_scalar sv1.int_ty (Z.add sv1.PV.value sv2.PV.value)
| E.Sub -> mk_scalar sv1.int_ty (Z.sub sv1.PV.value sv2.PV.value)
| E.Mul -> mk_scalar sv1.int_ty (Z.mul sv1.PV.value sv2.PV.value)
| E.BitXor -> raise Unimplemented
| E.BitAnd -> raise Unimplemented
| E.BitOr -> raise Unimplemented
| E.Lt | E.Le | E.Ge | E.Gt | E.Shl | E.Shr | E.Ne | E.Eq ->
raise (Failure "Unreachable")
in
match res with
| Error _ -> Error EPanic
| Ok sv ->
Ok
{
V.value = V.Literal (PV.Scalar sv);
ty = T.Literal (Integer sv1.int_ty);
})
| E.Shl | E.Shr -> raise Unimplemented
| E.Ne | E.Eq -> raise (Failure "Unreachable"))
| _ -> raise (Failure "Invalid inputs for binop")
let eval_binary_op_concrete (config : C.config) (binop : E.binop)
(op1 : E.operand) (op2 : E.operand)
(cf : (V.typed_value, eval_error) result -> m_fun) : m_fun =
(* Evaluate the operands *)
let eval_ops = eval_two_operands config op1 op2 in
(* Compute the result of the binop *)
let compute cf (res : V.typed_value * V.typed_value) =
let v1, v2 = res in
cf (eval_binary_op_concrete_compute binop v1 v2)
in
(* Compose and apply *)
comp eval_ops compute cf
let eval_binary_op_symbolic (config : C.config) (binop : E.binop)
(op1 : E.operand) (op2 : E.operand)
(cf : (V.typed_value, eval_error) result -> m_fun) : m_fun =
fun ctx ->
(* Evaluate the operands *)
let eval_ops = eval_two_operands config op1 op2 in
(* Compute the result of applying the binop *)
let compute cf ((v1, v2) : V.typed_value * V.typed_value) : m_fun =
fun ctx ->
(* Generate a fresh symbolic value to store the result *)
let res_sv_id = C.fresh_symbolic_value_id () in
let res_sv_ty =
if binop = Eq || binop = Ne then (
(* Equality operations *)
assert (v1.ty = v2.ty);
(* Equality/inequality check is primitive only for a subset of types *)
assert (ty_is_primitively_copyable v1.ty);
T.Literal Bool)
else
(* Other operations: input types are integers *)
match (v1.V.ty, v2.V.ty) with
| T.Literal (Integer int_ty1), T.Literal (Integer int_ty2) -> (
match binop with
| E.Lt | E.Le | E.Ge | E.Gt ->
assert (int_ty1 = int_ty2);
T.Literal Bool
| E.Div | E.Rem | E.Add | E.Sub | E.Mul | E.BitXor | E.BitAnd
| E.BitOr ->
assert (int_ty1 = int_ty2);
T.Literal (Integer int_ty1)
| E.Shl | E.Shr -> raise Unimplemented
| E.Ne | E.Eq -> raise (Failure "Unreachable"))
| _ -> raise (Failure "Invalid inputs for binop")
in
let res_sv =
{ V.sv_kind = V.FunCallRet; V.sv_id = res_sv_id; sv_ty = res_sv_ty }
in
(* Call the continuattion *)
let v = mk_typed_value_from_symbolic_value res_sv in
let expr = cf (Ok v) ctx in
(* Synthesize the symbolic AST *)
let p1 = S.mk_opt_place_from_op op1 ctx in
let p2 = S.mk_opt_place_from_op op2 ctx in
S.synthesize_binary_op ctx binop v1 p1 v2 p2 res_sv None expr
in
(* Compose and apply *)
comp eval_ops compute cf ctx
let eval_binary_op (config : C.config) (binop : E.binop) (op1 : E.operand)
(op2 : E.operand) (cf : (V.typed_value, eval_error) result -> m_fun) : m_fun
=
match config.mode with
| C.ConcreteMode -> eval_binary_op_concrete config binop op1 op2 cf
| C.SymbolicMode -> eval_binary_op_symbolic config binop op1 op2 cf
let eval_rvalue_ref (config : C.config) (p : E.place) (bkind : E.borrow_kind)
(cf : V.typed_value -> m_fun) : m_fun =
fun ctx ->
match bkind with
| E.Shared | E.TwoPhaseMut | E.Shallow ->
(* **REMARK**: we initially treated shallow borrows like shared borrows.
In practice this restricted the behaviour too much, so for now we
forbid them.
*)
assert (bkind <> E.Shallow);
(* Access the value *)
let access =
match bkind with
| E.Shared | E.Shallow -> Read
| E.TwoPhaseMut -> Write
| _ -> raise (Failure "Unreachable")
in
let expand_prim_copy = false in
let prepare =
access_rplace_reorganize_and_read config expand_prim_copy access p
in
(* Evaluate the borrowing operation *)
let eval (cf : V.typed_value -> m_fun) (v : V.typed_value) : m_fun =
fun ctx ->
(* Generate the fresh borrow id *)
let bid = C.fresh_borrow_id () in
(* Compute the loan value, with which to replace the value at place p *)
let nv =
match v.V.value with
| V.Loan (V.SharedLoan (bids, sv)) ->
(* Shared loan: insert the new borrow id *)
let bids1 = V.BorrowId.Set.add bid bids in
{ v with V.value = V.Loan (V.SharedLoan (bids1, sv)) }
| _ ->
(* Not a shared loan: add a wrapper *)
let v' =
V.Loan (V.SharedLoan (V.BorrowId.Set.singleton bid, v))
in
{ v with V.value = v' }
in
(* Update the borrowed value in the context *)
let ctx = write_place access p nv ctx in
(* Compute the rvalue - simply a shared borrow with a the fresh id.
* Note that the reference is *mutable* if we do a two-phase borrow *)
let ref_kind =
match bkind with
| E.Shared | E.Shallow -> T.Shared
| E.TwoPhaseMut -> T.Mut
| _ -> raise (Failure "Unreachable")
in
let rv_ty = T.Ref (T.Erased, v.ty, ref_kind) in
let bc =
match bkind with
| E.Shared | E.Shallow ->
(* See the remark at the beginning of the match branch: we
handle shallow borrows like shared borrows *)
V.SharedBorrow bid
| E.TwoPhaseMut -> V.ReservedMutBorrow bid
| _ -> raise (Failure "Unreachable")
in
let rv : V.typed_value = { V.value = V.Borrow bc; ty = rv_ty } in
(* Continue *)
cf rv ctx
in
(* Compose and apply *)
comp prepare eval cf ctx
| E.Mut ->
(* Access the value *)
let access = Write in
let expand_prim_copy = false in
let prepare =
access_rplace_reorganize_and_read config expand_prim_copy access p
in
(* Evaluate the borrowing operation *)
let eval (cf : V.typed_value -> m_fun) (v : V.typed_value) : m_fun =
fun ctx ->
(* Compute the rvalue - wrap the value in a mutable borrow with a fresh id *)
let bid = C.fresh_borrow_id () in
let rv_ty = T.Ref (T.Erased, v.ty, Mut) in
let rv : V.typed_value =
{ V.value = V.Borrow (V.MutBorrow (bid, v)); ty = rv_ty }
in
(* Compute the value with which to replace the value at place p *)
let nv = { v with V.value = V.Loan (V.MutLoan bid) } in
(* Update the value in the context *)
let ctx = write_place access p nv ctx in
(* Continue *)
cf rv ctx
in
(* Compose and apply *)
comp prepare eval cf ctx
let eval_rvalue_aggregate (config : C.config)
(aggregate_kind : E.aggregate_kind) (ops : E.operand list)
(cf : V.typed_value -> m_fun) : m_fun =
(* Evaluate the operands *)
let eval_ops = eval_operands config ops in
(* Compute the value *)
let compute (cf : V.typed_value -> m_fun) (values : V.typed_value list) :
m_fun =
fun ctx ->
(* Match on the aggregate kind *)
match aggregate_kind with
| E.AggregatedTuple ->
let tys = List.map (fun (v : V.typed_value) -> v.V.ty) values in
let v = V.Adt { variant_id = None; field_values = values } in
let ty = T.Adt (T.Tuple, [], tys, []) in
let aggregated : V.typed_value = { V.value = v; ty } in
(* Call the continuation *)
cf aggregated ctx
| E.AggregatedOption (variant_id, ty) ->
(* Sanity check *)
if variant_id = T.option_none_id then assert (values = [])
else if variant_id = T.option_some_id then
assert (List.length values = 1)
else raise (Failure "Unreachable");
(* Construt the value *)
let aty = T.Adt (T.Assumed T.Option, [], [ ty ], []) in
let av : V.adt_value =
{ V.variant_id = Some variant_id; V.field_values = values }
in
let aggregated : V.typed_value = { V.value = Adt av; ty = aty } in
(* Call the continuation *)
cf aggregated ctx
| E.AggregatedAdt (def_id, opt_variant_id, regions, types, cgs) ->
(* Sanity checks *)
let type_decl = C.ctx_lookup_type_decl ctx def_id in
assert (List.length type_decl.region_params = List.length regions);
let expected_field_types =
Subst.ctx_adt_get_instantiated_field_etypes ctx def_id opt_variant_id
types cgs
in
assert (
expected_field_types
= List.map (fun (v : V.typed_value) -> v.V.ty) values);
(* Construct the value *)
let av : V.adt_value =
{ V.variant_id = opt_variant_id; V.field_values = values }
in
let aty = T.Adt (T.AdtId def_id, regions, types, cgs) in
let aggregated : V.typed_value = { V.value = Adt av; ty = aty } in
(* Call the continuation *)
cf aggregated ctx
| E.AggregatedRange ety ->
(* There should be two fields exactly *)
let v0, v1 =
match values with
| [ v0; v1 ] -> (v0, v1)
| _ -> raise (Failure "Unreachable")
in
(* Ranges are parametric over the type of indices. For now we only
support scalars, which can be of any type *)
assert (literal_type_is_integer (ty_as_literal ety));
assert (v0.ty = ety);
assert (v1.ty = ety);
(* Construct the value *)
let av : V.adt_value =
{ V.variant_id = None; V.field_values = values }
in
let aty = T.Adt (T.Assumed T.Range, [], [ ety ], []) in
let aggregated : V.typed_value = { V.value = Adt av; ty = aty } in
(* Call the continuation *)
cf aggregated ctx
| E.AggregatedArray (ety, cg) -> (
(* Sanity check: all the values have the proper type *)
assert (List.for_all (fun (v : V.typed_value) -> v.V.ty = ety) values);
(* Sanity check: the number of values is consistent with the length *)
let len = (literal_as_scalar (const_generic_as_literal cg)).value in
assert (len = Z.of_int (List.length values));
let ty = T.Adt (T.Assumed T.Array, [], [ ety ], [ cg ]) in
(* In order to generate a better AST, we introduce a symbolic
value equal to the array. The reason is that otherwise, the
array we introduce here might be duplicated in the generated
code: by introducing a symbolic value we introduce a let-binding
in the generated code. *)
let saggregated =
mk_fresh_symbolic_typed_value_from_ety V.Aggregate ty
in
(* Call the continuation *)
match cf saggregated ctx with
| None -> None
| Some e ->
(* Introduce the symbolic value in the AST *)
let sv = ValuesUtils.value_as_symbolic saggregated.value in
Some (SymbolicAst.IntroSymbolic (ctx, None, sv, Array values, e)))
in
(* Compose and apply *)
comp eval_ops compute cf
let eval_rvalue_not_global (config : C.config) (rvalue : E.rvalue)
(cf : (V.typed_value, eval_error) result -> m_fun) : m_fun =
fun ctx ->
log#ldebug (lazy "eval_rvalue");
(* Small helpers *)
let wrap_in_result (cf : (V.typed_value, eval_error) result -> m_fun)
(v : V.typed_value) : m_fun =
cf (Ok v)
in
let comp_wrap f = comp f wrap_in_result cf in
(* Delegate to the proper auxiliary function *)
match rvalue with
| E.Use op -> comp_wrap (eval_operand config op) ctx
| E.Ref (p, bkind) -> comp_wrap (eval_rvalue_ref config p bkind) ctx
| E.UnaryOp (unop, op) -> eval_unary_op config unop op cf ctx
| E.BinaryOp (binop, op1, op2) -> eval_binary_op config binop op1 op2 cf ctx
| E.Aggregate (aggregate_kind, ops) ->
comp_wrap (eval_rvalue_aggregate config aggregate_kind ops) ctx
| E.Discriminant _ ->
raise
(Failure
"Unreachable: discriminant reads should have been eliminated from \
the AST")
| E.Global _ -> raise (Failure "Unreachable")
let eval_fake_read (config : C.config) (p : E.place) : cm_fun =
fun cf ctx ->
let expand_prim_copy = false in
let cf_prepare cf =
access_rplace_reorganize_and_read config expand_prim_copy Read p cf
in
let cf_continue cf v : m_fun =
fun ctx ->
assert (not (bottom_in_value ctx.ended_regions v));
cf ctx
in
comp cf_prepare cf_continue cf ctx
|