summaryrefslogtreecommitdiff
path: root/compiler/InterpreterBorrowsCore.ml
blob: 6db23cc423509c405879f55383bd34a29e6ac56e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
(** This file defines the basic blocks to implement the semantics of borrows.
    Note that those functions are not only used in InterpreterBorrows, but
    also in Invariants or InterpreterProjectors
 *)

module T = Types
module V = Values
module C = Contexts
module Subst = Substitute
module L = Logging
open Utils
open TypesUtils
open InterpreterUtils

(** The local logger *)
let log = L.borrows_log

(** TODO: cleanup this a bit, once we have a better understanding about
    what we need.
    TODO: I'm not sure in which file this should be moved... *)
type exploration_kind = {
  enter_shared_loans : bool;
  enter_mut_borrows : bool;
  enter_abs : bool;
      (** Note that if we allow to enter abs, we don't check whether we enter
          mutable/shared loans or borrows: there are no use cases requiring
          a finer control. *)
}
(** This record controls how some generic helper lookup/update
    functions behave, by restraining the kind of therms they can enter.
*)

let ek_all : exploration_kind =
  { enter_shared_loans = true; enter_mut_borrows = true; enter_abs = true }

type borrow_ids = Borrows of V.BorrowId.Set.t | Borrow of V.BorrowId.id
[@@deriving show]

type borrow_ids_or_symbolic_value =
  | BorrowIds of borrow_ids
  | SymbolicValue of V.symbolic_value
[@@deriving show]

exception FoundBorrowIds of borrow_ids

type priority_borrows_or_abs =
  | OuterBorrows of borrow_ids
  | OuterAbs of V.AbstractionId.id
  | InnerLoans of borrow_ids
[@@deriving show]

let update_if_none opt x = match opt with None -> Some x | _ -> opt

(** Utility exception *)
exception FoundPriority of priority_borrows_or_abs

type loan_or_borrow_content =
  | LoanContent of V.loan_content
  | BorrowContent of V.borrow_content
[@@deriving show]

type borrow_or_abs_id =
  | BorrowId of V.BorrowId.id
  | AbsId of V.AbstractionId.id

type borrow_or_abs_ids = borrow_or_abs_id list

let borrow_or_abs_id_to_string (id : borrow_or_abs_id) : string =
  match id with
  | AbsId id -> "abs@" ^ V.AbstractionId.to_string id
  | BorrowId id -> "l@" ^ V.BorrowId.to_string id

let borrow_or_abs_ids_chain_to_string (ids : borrow_or_abs_ids) : string =
  let ids = List.rev ids in
  let ids = List.map borrow_or_abs_id_to_string ids in
  String.concat " -> " ids

(** Add a borrow or abs id to a chain of ids, while checking that we don't loop *)
let add_borrow_or_abs_id_to_chain (msg : string) (id : borrow_or_abs_id)
    (ids : borrow_or_abs_ids) : borrow_or_abs_ids =
  if List.mem id ids then
    raise
      (Failure
         (msg ^ "detected a loop in the chain of ids: "
         ^ borrow_or_abs_ids_chain_to_string (id :: ids)))
  else id :: ids

(** Helper function.
  
    This function allows to define in a generic way a comparison of region types.
    See [projections_interesect] for instance.
    
    [default]: default boolean to return, when comparing types with no regions
    [combine]: how to combine booleans
    [compare_regions]: how to compare regions
 *)
let rec compare_rtys (default : bool) (combine : bool -> bool -> bool)
    (compare_regions : T.RegionId.id T.region -> T.RegionId.id T.region -> bool)
    (ty1 : T.rty) (ty2 : T.rty) : bool =
  let compare = compare_rtys default combine compare_regions in
  match (ty1, ty2) with
  | T.Bool, T.Bool | T.Char, T.Char | T.Str, T.Str -> default
  | T.Integer int_ty1, T.Integer int_ty2 ->
      assert (int_ty1 = int_ty2);
      default
  | T.Adt (id1, regions1, tys1), T.Adt (id2, regions2, tys2) ->
      assert (id1 = id2);

      (* The check for the ADTs is very crude: we simply compare the arguments
       * two by two.
       *
       * For instance, when checking if some projections intersect, we simply
       * check if some arguments intersect. As all the type and region
       * parameters should be used somewhere in the ADT (otherwise rustc
       * generates an error), it means that it should be equivalent to checking
       * whether two fields intersect (and anyway comparing the field types is
       * difficult in case of enumerations...).
       * If we didn't have the above property enforced by the rust compiler,
       * this check would still be a reasonable conservative approximation. *)

      (* Check the region parameters *)
      let regions = List.combine regions1 regions2 in
      let params_b =
        List.fold_left
          (fun b (r1, r2) -> combine b (compare_regions r1 r2))
          default regions
      in
      (* Check the type parameters *)
      let tys = List.combine tys1 tys2 in
      let tys_b =
        List.fold_left
          (fun b (ty1, ty2) -> combine b (compare ty1 ty2))
          default tys
      in
      (* Combine *)
      combine params_b tys_b
  | T.Array ty1, T.Array ty2 | T.Slice ty1, T.Slice ty2 -> compare ty1 ty2
  | T.Ref (r1, ty1, kind1), T.Ref (r2, ty2, kind2) ->
      (* Sanity check *)
      assert (kind1 = kind2);
      (* Explanation for the case where we check if projections intersect:
       * the projections intersect if the borrows intersect or their contents
       * intersect. *)
      let regions_b = compare_regions r1 r2 in
      let tys_b = compare ty1 ty2 in
      combine regions_b tys_b
  | T.TypeVar id1, T.TypeVar id2 ->
      assert (id1 = id2);
      default
  | _ ->
      log#lerror
        (lazy
          ("compare_rtys: unexpected inputs:" ^ "\n- ty1: " ^ T.show_rty ty1
         ^ "\n- ty2: " ^ T.show_rty ty2));
      raise (Failure "Unreachable")

(** Check if two different projections intersect. This is necessary when
    giving a symbolic value to an abstraction: we need to check that
    the regions which are already ended inside the abstraction don't
    intersect the regions over which we project in the new abstraction.
    Note that the two abstractions have different views (in terms of regions)
    of the symbolic value (hence the two region types).
*)
let projections_intersect (ty1 : T.rty) (rset1 : T.RegionId.Set.t) (ty2 : T.rty)
    (rset2 : T.RegionId.Set.t) : bool =
  let default = false in
  let combine b1 b2 = b1 || b2 in
  let compare_regions r1 r2 =
    region_in_set r1 rset1 && region_in_set r2 rset2
  in
  compare_rtys default combine compare_regions ty1 ty2

(** Check if the first projection contains the second projection.
    We use this function when checking invariants.
*)
let projection_contains (ty1 : T.rty) (rset1 : T.RegionId.Set.t) (ty2 : T.rty)
    (rset2 : T.RegionId.Set.t) : bool =
  let default = true in
  let combine b1 b2 = b1 && b2 in
  let compare_regions r1 r2 =
    region_in_set r1 rset1 || not (region_in_set r2 rset2)
  in
  compare_rtys default combine compare_regions ty1 ty2

(* TODO: there misses fields *)
type ctx_ids = {
  aids : V.AbstractionId.Set.t;
  bids : V.BorrowId.Set.t;
  dids : C.DummyVarId.Set.t;
}

(* TODO: move *)

(** Compute the sets of ids found in a list of contexts. *)
let compute_contexts_ids (ctxl : C.eval_ctx list) : ctx_ids =
  let bids = ref V.BorrowId.Set.empty in
  let aids = ref V.AbstractionId.Set.empty in
  let dids = ref C.DummyVarId.Set.empty in
  let obj =
    object
      inherit [_] C.iter_eval_ctx

      method! visit_binder _ bv =
        match bv with
        | VarBinder _ -> ()
        | DummyBinder bid -> dids := C.DummyVarId.Set.add bid !dids

      method! visit_borrow_id _ id = bids := V.BorrowId.Set.add id !bids

      method! visit_loan_id _ id =
        (* Actually, this is not necessary because all loans have a
           corresponding borrow *)
        bids := V.BorrowId.Set.add id !bids

      method! visit_abstraction_id _ id =
        aids := V.AbstractionId.Set.add id !aids
    end
  in
  List.iter (obj#visit_eval_ctx ()) ctxl;
  { aids = !aids; bids = !bids; dids = !dids }

(** Compute the sets of ids found in a context. *)
let compute_context_ids (ctx : C.eval_ctx) : ctx_ids =
  compute_contexts_ids [ ctx ]

(** Lookup a loan content.

    The loan is referred to by a borrow id.

    TODO: group abs_or_var_id and g_loan_content. 
 *)
let lookup_loan_opt (ek : exploration_kind) (l : V.BorrowId.id)
    (ctx : C.eval_ctx) : (abs_or_var_id * g_loan_content) option =
  (* We store here whether we are inside an abstraction or a value - note that we
   * could also track that with the environment, it would probably be more idiomatic
   * and cleaner *)
  let abs_or_var : abs_or_var_id option ref = ref None in

  let obj =
    object
      inherit [_] C.iter_eval_ctx as super

      method! visit_borrow_content env bc =
        match bc with
        | V.SharedBorrow (mv, bid) ->
            (* Nothing specific to do *)
            super#visit_SharedBorrow env mv bid
        | V.ReservedMutBorrow (mv, bid) ->
            (* Nothing specific to do *)
            super#visit_ReservedMutBorrow env mv bid
        | V.MutBorrow (bid, mv) ->
            (* Control the dive *)
            if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else ()

      (** We reimplement {!visit_Loan} (rather than the more precise functions
          {!visit_SharedLoan}, etc.) on purpose: as we have an exhaustive match
          below, we are more resilient to definition updates (the compiler
          is our friend).
      *)
      method! visit_loan_content env lc =
        match lc with
        | V.SharedLoan (bids, sv) ->
            (* Check if this is the loan we are looking for, and control the dive *)
            if V.BorrowId.Set.mem l bids then
              raise (FoundGLoanContent (Concrete lc))
            else if ek.enter_shared_loans then
              super#visit_SharedLoan env bids sv
            else ()
        | V.MutLoan bid ->
            (* Check if this is the loan we are looking for *)
            if bid = l then raise (FoundGLoanContent (Concrete lc))
            else super#visit_MutLoan env bid

      (** Note that we don't control diving inside the abstractions: if we
          allow to dive inside abstractions, we allow to go anywhere
          (because there are no use cases requiring finer control) *)
      method! visit_aloan_content env lc =
        match lc with
        | V.AMutLoan (bid, av) ->
            if bid = l then raise (FoundGLoanContent (Abstract lc))
            else super#visit_AMutLoan env bid av
        | V.ASharedLoan (bids, v, av) ->
            if V.BorrowId.Set.mem l bids then
              raise (FoundGLoanContent (Abstract lc))
            else super#visit_ASharedLoan env bids v av
        | V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ }
        | V.AEndedSharedLoan (_, _)
        | V.AIgnoredMutLoan (_, _)
        | V.AEndedIgnoredMutLoan
            { given_back = _; child = _; given_back_meta = _ }
        | V.AIgnoredSharedLoan _ ->
            super#visit_aloan_content env lc

      method! visit_Var env bv v =
        assert (Option.is_none !abs_or_var);
        abs_or_var :=
          Some
            (match bv with
            | VarBinder b -> VarId b.C.index
            | DummyBinder id -> DummyVarId id);
        super#visit_Var env bv v;
        abs_or_var := None

      method! visit_Abs env abs =
        assert (Option.is_none !abs_or_var);
        if ek.enter_abs then (
          abs_or_var := Some (AbsId abs.V.abs_id);
          super#visit_Abs env abs;
          abs_or_var := None)
        else ()
    end
  in
  (* We use exceptions *)
  try
    obj#visit_eval_ctx () ctx;
    None
  with FoundGLoanContent lc -> (
    match !abs_or_var with
    | Some abs_or_var -> Some (abs_or_var, lc)
    | None -> raise (Failure "Inconsistent state"))

(** Lookup a loan content.

    The loan is referred to by a borrow id.
    Raises an exception if no loan was found.
 *)
let lookup_loan (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) :
    abs_or_var_id * g_loan_content =
  match lookup_loan_opt ek l ctx with
  | None -> raise (Failure "Unreachable")
  | Some res -> res

(** Update a loan content.

    The loan is referred to by a borrow id.

    This is a helper function: it might break invariants.
 *)
let update_loan (ek : exploration_kind) (l : V.BorrowId.id)
    (nlc : V.loan_content) (ctx : C.eval_ctx) : C.eval_ctx =
  (* We use a reference to check that we update exactly one loan: when updating
   * inside values, we check we don't update more than one loan. Then, upon
   * returning we check that we updated at least once. *)
  let r = ref false in
  let update () : V.loan_content =
    assert (not !r);
    r := true;
    nlc
  in

  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_borrow_content env bc =
        match bc with
        | V.SharedBorrow (_, _) | V.ReservedMutBorrow _ ->
            (* Nothing specific to do *)
            super#visit_borrow_content env bc
        | V.MutBorrow (bid, mv) ->
            (* Control the dive into mutable borrows *)
            if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else V.MutBorrow (bid, mv)

      (** We reimplement {!visit_loan_content} (rather than one of the sub-
          functions) on purpose: exhaustive matches are good for maintenance *)
      method! visit_loan_content env lc =
        match lc with
        | V.SharedLoan (bids, sv) ->
            (* Shared loan: check if this is the loan we are looking for, and
               control the dive. *)
            if V.BorrowId.Set.mem l bids then update ()
            else if ek.enter_shared_loans then
              super#visit_SharedLoan env bids sv
            else V.SharedLoan (bids, sv)
        | V.MutLoan bid ->
            (* Mut loan: checks if this is the loan we are looking for *)
            if bid = l then update () else super#visit_MutLoan env bid

      (** Note that once inside the abstractions, we don't control diving
          (there are no use cases requiring finer control).
          Also, as we give back a {!loan_content} (and not an {!aloan_content})
          we don't need to do reimplement the visit functions for the values
          inside the abstractions (rk.: there may be "concrete" values inside
          abstractions, so there is a utility in diving inside). *)
      method! visit_abs env abs =
        if ek.enter_abs then super#visit_abs env abs else abs
    end
  in

  let ctx = obj#visit_eval_ctx () ctx in
  (* Check that we updated at least one loan *)
  assert !r;
  ctx

(** Update a abstraction loan content.

    The loan is referred to by a borrow id.

    This is a helper function: it might break invariants.
 *)
let update_aloan (ek : exploration_kind) (l : V.BorrowId.id)
    (nlc : V.aloan_content) (ctx : C.eval_ctx) : C.eval_ctx =
  (* We use a reference to check that we update exactly one loan: when updating
   * inside values, we check we don't update more than one loan. Then, upon
   * returning we check that we updated at least once. *)
  let r = ref false in
  let update () : V.aloan_content =
    assert (not !r);
    r := true;
    nlc
  in

  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_aloan_content env lc =
        match lc with
        | V.AMutLoan (bid, av) ->
            if bid = l then update () else super#visit_AMutLoan env bid av
        | V.ASharedLoan (bids, v, av) ->
            if V.BorrowId.Set.mem l bids then update ()
            else super#visit_ASharedLoan env bids v av
        | V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ }
        | V.AEndedSharedLoan (_, _)
        | V.AIgnoredMutLoan (_, _)
        | V.AEndedIgnoredMutLoan
            { given_back = _; child = _; given_back_meta = _ }
        | V.AIgnoredSharedLoan _ ->
            super#visit_aloan_content env lc

      (** Note that once inside the abstractions, we don't control diving
          (there are no use cases requiring finer control). *)
      method! visit_abs env abs =
        if ek.enter_abs then super#visit_abs env abs else abs
    end
  in

  let ctx = obj#visit_eval_ctx () ctx in
  (* Check that we updated at least one loan *)
  assert !r;
  ctx

(** Lookup a borrow content from a borrow id. *)
let lookup_borrow_opt (ek : exploration_kind) (l : V.BorrowId.id)
    (ctx : C.eval_ctx) : g_borrow_content option =
  let obj =
    object
      inherit [_] C.iter_eval_ctx as super

      method! visit_borrow_content env bc =
        match bc with
        | V.MutBorrow (bid, mv) ->
            (* Check the borrow id and control the dive *)
            if bid = l then raise (FoundGBorrowContent (Concrete bc))
            else if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else ()
        | V.SharedBorrow (_, bid) ->
            (* Check the borrow id *)
            if bid = l then raise (FoundGBorrowContent (Concrete bc)) else ()
        | V.ReservedMutBorrow (_, bid) ->
            (* Check the borrow id *)
            if bid = l then raise (FoundGBorrowContent (Concrete bc)) else ()

      method! visit_loan_content env lc =
        match lc with
        | V.MutLoan bid ->
            (* Nothing special to do *) super#visit_MutLoan env bid
        | V.SharedLoan (bids, sv) ->
            (* Control the dive *)
            if ek.enter_shared_loans then super#visit_SharedLoan env bids sv
            else ()

      method! visit_aborrow_content env bc =
        match bc with
        | V.AMutBorrow (mv, bid, av) ->
            if bid = l then raise (FoundGBorrowContent (Abstract bc))
            else super#visit_AMutBorrow env mv bid av
        | V.ASharedBorrow bid ->
            if bid = l then raise (FoundGBorrowContent (Abstract bc))
            else super#visit_ASharedBorrow env bid
        | V.AIgnoredMutBorrow (_, _)
        | V.AEndedMutBorrow _
        | V.AEndedIgnoredMutBorrow
            { given_back_loans_proj = _; child = _; given_back_meta = _ }
        | V.AEndedSharedBorrow ->
            super#visit_aborrow_content env bc
        | V.AProjSharedBorrow asb ->
            if borrow_in_asb l asb then
              raise (FoundGBorrowContent (Abstract bc))
            else ()

      method! visit_abs env abs =
        if ek.enter_abs then super#visit_abs env abs else ()
    end
  in
  (* We use exceptions *)
  try
    obj#visit_eval_ctx () ctx;
    None
  with FoundGBorrowContent lc -> Some lc

(** Lookup a borrow content from a borrow id.

    Raise an exception if no loan was found
*)
let lookup_borrow (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx)
    : g_borrow_content =
  match lookup_borrow_opt ek l ctx with
  | None -> raise (Failure "Unreachable")
  | Some lc -> lc

(** Update a borrow content.

    The borrow is referred to by a borrow id.

    This is a helper function: it might break invariants.   
 *)
let update_borrow (ek : exploration_kind) (l : V.BorrowId.id)
    (nbc : V.borrow_content) (ctx : C.eval_ctx) : C.eval_ctx =
  (* We use a reference to check that we update exactly one borrow: when updating
   * inside values, we check we don't update more than one borrow. Then, upon
   * returning we check that we updated at least once. *)
  let r = ref false in
  let update () : V.borrow_content =
    assert (not !r);
    r := true;
    nbc
  in

  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_borrow_content env bc =
        match bc with
        | V.MutBorrow (bid, mv) ->
            (* Check the id and control dive *)
            if bid = l then update ()
            else if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else V.MutBorrow (bid, mv)
        | V.SharedBorrow (mv, bid) ->
            (* Check the id *)
            if bid = l then update () else super#visit_SharedBorrow env mv bid
        | V.ReservedMutBorrow (mv, bid) ->
            (* Check the id *)
            if bid = l then update ()
            else super#visit_ReservedMutBorrow env mv bid

      method! visit_loan_content env lc =
        match lc with
        | V.SharedLoan (bids, sv) ->
            (* Control the dive *)
            if ek.enter_shared_loans then super#visit_SharedLoan env bids sv
            else V.SharedLoan (bids, sv)
        | V.MutLoan bid ->
            (* Nothing specific to do *)
            super#visit_MutLoan env bid

      method! visit_abs env abs =
        if ek.enter_abs then super#visit_abs env abs else abs
    end
  in

  let ctx = obj#visit_eval_ctx () ctx in
  (* Check that we updated at least one borrow *)
  assert !r;
  ctx

(** Update an abstraction borrow content.

    The borrow is referred to by a borrow id.

    This is a helper function: it might break invariants.     
 *)
let update_aborrow (ek : exploration_kind) (l : V.BorrowId.id) (nv : V.avalue)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* We use a reference to check that we update exactly one borrow: when updating
   * inside values, we check we don't update more than one borrow. Then, upon
   * returning we check that we updated at least once. *)
  let r = ref false in
  let update () : V.avalue =
    assert (not !r);
    r := true;
    nv
  in

  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_ABorrow env bc =
        match bc with
        | V.AMutBorrow (mv, bid, av) ->
            if bid = l then update ()
            else V.ABorrow (super#visit_AMutBorrow env mv bid av)
        | V.ASharedBorrow bid ->
            if bid = l then update ()
            else V.ABorrow (super#visit_ASharedBorrow env bid)
        | V.AIgnoredMutBorrow _ | V.AEndedMutBorrow _ | V.AEndedSharedBorrow
        | V.AEndedIgnoredMutBorrow _ ->
            super#visit_ABorrow env bc
        | V.AProjSharedBorrow asb ->
            if borrow_in_asb l asb then update ()
            else V.ABorrow (super#visit_AProjSharedBorrow env asb)

      method! visit_abs env abs =
        if ek.enter_abs then super#visit_abs env abs else abs
    end
  in

  let ctx = obj#visit_eval_ctx () ctx in
  (* Check that we updated at least one borrow *)
  assert !r;
  ctx

(** Auxiliary function: see its usage in [end_borrow_get_borrow_in_value] *)
let update_outer_borrows (outer : V.AbstractionId.id option * borrow_ids option)
    (x : borrow_ids) : V.AbstractionId.id option * borrow_ids option =
  let abs, opt = outer in
  (abs, update_if_none opt x)

(** Return the first loan we find in a value *)
let get_first_loan_in_value (v : V.typed_value) : V.loan_content option =
  let obj =
    object
      inherit [_] V.iter_typed_value
      method! visit_loan_content _ lc = raise (FoundLoanContent lc)
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    None
  with FoundLoanContent lc -> Some lc

(** Return the first loan we find in a list of values *)
let get_first_loan_in_values (vs : V.typed_value list) : V.loan_content option =
  let obj =
    object
      inherit [_] V.iter_typed_value
      method! visit_loan_content _ lc = raise (FoundLoanContent lc)
    end
  in
  (* We use exceptions *)
  try
    List.iter (obj#visit_typed_value ()) vs;
    None
  with FoundLoanContent lc -> Some lc

(** Return the first borrow we find in a value *)
let get_first_borrow_in_value (v : V.typed_value) : V.borrow_content option =
  let obj =
    object
      inherit [_] V.iter_typed_value
      method! visit_borrow_content _ bc = raise (FoundBorrowContent bc)
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    None
  with FoundBorrowContent bc -> Some bc

(** Return the first loan or borrow content we find in a value (starting with
    the outer ones).
    
    [with_borrows]:
    - if [true]: return the first loan or borrow we find
    - if [false]: return the first loan we find, do not dive into borrowed values
 *)
let get_first_outer_loan_or_borrow_in_value (with_borrows : bool)
    (v : V.typed_value) : loan_or_borrow_content option =
  let obj =
    object
      inherit [_] V.iter_typed_value

      method! visit_borrow_content _ bc =
        if with_borrows then raise (FoundBorrowContent bc) else ()

      method! visit_loan_content _ lc = raise (FoundLoanContent lc)
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    None
  with
  | FoundLoanContent lc -> Some (LoanContent lc)
  | FoundBorrowContent bc -> Some (BorrowContent bc)

type gproj_borrows =
  | AProjBorrows of V.AbstractionId.id * V.symbolic_value
  | ProjBorrows of V.symbolic_value

let proj_borrows_intersects_proj_loans
    (proj_borrows : T.RegionId.Set.t * V.symbolic_value * T.rty)
    (proj_loans : T.RegionId.Set.t * V.symbolic_value) : bool =
  let b_regions, b_sv, b_ty = proj_borrows in
  let l_regions, l_sv = proj_loans in
  if same_symbolic_id b_sv l_sv then
    projections_intersect l_sv.V.sv_ty l_regions b_ty b_regions
  else false

(** Result of looking up aproj_borrows which intersect a given aproj_loans in
    the context.

    Note that because we we force the expansion of primitively copyable values
    before giving them to abstractions, we only have the following possibilities:
    - no aproj_borrows, in which case the symbolic value was either dropped
      or is in the context
    - exactly one aproj_borrows over a non-shared value
    - potentially several aproj_borrows over shared values
    
    The result contains the ids of the abstractions in which the projectors were
    found, as well as the projection types used in those abstractions.
*)
type looked_up_aproj_borrows =
  | NonSharedProj of V.AbstractionId.id * T.rty
  | SharedProjs of (V.AbstractionId.id * T.rty) list

(** Lookup the aproj_borrows (including aproj_shared_borrows) over a
    symbolic value which intersect a given set of regions.
        
    [lookup_shared]: if [true] also explore projectors over shared values,
    otherwise ignore.
    
    This is a helper function.
*)
let lookup_intersecting_aproj_borrows_opt (lookup_shared : bool)
    (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) :
    looked_up_aproj_borrows option =
  let found : looked_up_aproj_borrows option ref = ref None in
  let set_non_shared ((id, ty) : V.AbstractionId.id * T.rty) : unit =
    match !found with
    | None -> found := Some (NonSharedProj (id, ty))
    | Some _ -> raise (Failure "Unreachable")
  in
  let add_shared (x : V.AbstractionId.id * T.rty) : unit =
    match !found with
    | None -> found := Some (SharedProjs [ x ])
    | Some (SharedProjs pl) -> found := Some (SharedProjs (x :: pl))
    | Some (NonSharedProj _) -> raise (Failure "Unreachable")
  in
  let check_add_proj_borrows (is_shared : bool) abs sv' proj_ty =
    if
      proj_borrows_intersects_proj_loans
        (abs.V.regions, sv', proj_ty)
        (regions, sv)
    then
      let x = (abs.abs_id, proj_ty) in
      if is_shared then add_shared x else set_non_shared x
    else ()
  in
  let obj =
    object
      inherit [_] C.iter_eval_ctx as super
      method! visit_abs _ abs = super#visit_abs (Some abs) abs

      method! visit_abstract_shared_borrow abs asb =
        (* Sanity check *)
        (match !found with
        | Some (NonSharedProj _) -> raise (Failure "Unreachable")
        | _ -> ());
        (* Explore *)
        if lookup_shared then
          let abs = Option.get abs in
          match asb with
          | V.AsbBorrow _ -> ()
          | V.AsbProjReborrows (sv', proj_ty) ->
              let is_shared = true in
              check_add_proj_borrows is_shared abs sv' proj_ty
        else ()

      method! visit_aproj abs sproj =
        (let abs = Option.get abs in
         match sproj with
         | AProjLoans _ | AEndedProjLoans _ | AEndedProjBorrows _
         | AIgnoredProjBorrows ->
             ()
         | AProjBorrows (sv', proj_rty) ->
             let is_shared = false in
             check_add_proj_borrows is_shared abs sv' proj_rty);
        super#visit_aproj abs sproj
    end
  in
  (* Visit *)
  obj#visit_eval_ctx None ctx;
  (* Return *)
  !found

(** Lookup the aproj_borrows (not aproj_borrows_shared!) over a symbolic
    value which intersects a given set of regions.
    
    Note that there should be **at most one** (one reason is that we force
    the expansion of primitively copyable values before giving them to
    abstractions).
    
    Returns the id of the owning abstraction, and the projection type used in
    this abstraction.
*)
let lookup_intersecting_aproj_borrows_not_shared_opt
    (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) :
    (V.AbstractionId.id * T.rty) option =
  let lookup_shared = false in
  match lookup_intersecting_aproj_borrows_opt lookup_shared regions sv ctx with
  | None -> None
  | Some (NonSharedProj (abs_id, rty)) -> Some (abs_id, rty)
  | _ -> raise (Failure "Unexpected")

(** Similar to {!lookup_intersecting_aproj_borrows_opt}, but updates the
    values.

    This is a helper function: it might break invariants.
 *)
let update_intersecting_aproj_borrows (can_update_shared : bool)
    (update_shared : V.AbstractionId.id -> T.rty -> V.abstract_shared_borrows)
    (update_non_shared : V.AbstractionId.id -> T.rty -> V.aproj)
    (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) :
    C.eval_ctx =
  (* Small helpers for sanity checks *)
  let shared = ref None in
  let add_shared () =
    match !shared with None -> shared := Some true | Some b -> assert b
  in
  let set_non_shared () =
    match !shared with
    | None -> shared := Some false
    | Some _ -> raise (Failure "Found unexpected intersecting proj_borrows")
  in
  let check_proj_borrows is_shared abs sv' proj_ty =
    if
      proj_borrows_intersects_proj_loans
        (abs.V.regions, sv', proj_ty)
        (regions, sv)
    then (
      if is_shared then add_shared () else set_non_shared ();
      true)
    else false
  in
  (* The visitor *)
  let obj =
    object
      inherit [_] C.map_eval_ctx as super
      method! visit_abs _ abs = super#visit_abs (Some abs) abs

      method! visit_abstract_shared_borrows abs asb =
        (* Sanity check *)
        (match !shared with Some b -> assert b | _ -> ());
        (* Explore *)
        if can_update_shared then
          let abs = Option.get abs in
          let update (asb : V.abstract_shared_borrow) :
              V.abstract_shared_borrows =
            match asb with
            | V.AsbBorrow _ -> [ asb ]
            | V.AsbProjReborrows (sv', proj_ty) ->
                let is_shared = true in
                if check_proj_borrows is_shared abs sv' proj_ty then
                  update_shared abs.abs_id proj_ty
                else [ asb ]
          in
          List.concat (List.map update asb)
        else asb

      method! visit_aproj abs sproj =
        match sproj with
        | AProjLoans _ | AEndedProjLoans _ | AEndedProjBorrows _
        | AIgnoredProjBorrows ->
            super#visit_aproj abs sproj
        | AProjBorrows (sv', proj_rty) ->
            let abs = Option.get abs in
            let is_shared = true in
            if check_proj_borrows is_shared abs sv' proj_rty then
              update_non_shared abs.abs_id proj_rty
            else super#visit_aproj (Some abs) sproj
    end
  in
  (* Apply *)
  let ctx = obj#visit_eval_ctx None ctx in
  (* Check that we updated the context at least once *)
  assert (Option.is_some !shared);
  (* Return *)
  ctx

(** Simply calls {!update_intersecting_aproj_borrows} to update a
    proj_borrows over a non-shared value.
    
    We check that we update *at least* one proj_borrows.

    This is a helper function: it might break invariants.
 *)
let update_intersecting_aproj_borrows_non_shared (regions : T.RegionId.Set.t)
    (sv : V.symbolic_value) (nv : V.aproj) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Small helpers *)
  let can_update_shared = false in
  let update_shared _ _ = raise (Failure "Unexpected") in
  let updated = ref false in
  let update_non_shared _ _ =
    (* We can update more than one borrow! *)
    updated := true;
    nv
  in
  (* Update *)
  let ctx =
    update_intersecting_aproj_borrows can_update_shared update_shared
      update_non_shared regions sv ctx
  in
  (* Check that we updated at least once *)
  assert !updated;
  (* Return *)
  ctx

(** Simply calls {!update_intersecting_aproj_borrows} to remove the
    proj_borrows over shared values.

    This is a helper function: it might break invariants.
 *)
let remove_intersecting_aproj_borrows_shared (regions : T.RegionId.Set.t)
    (sv : V.symbolic_value) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Small helpers *)
  let can_update_shared = true in
  let update_shared _ _ = [] in
  let update_non_shared _ _ = raise (Failure "Unexpected") in
  (* Update *)
  update_intersecting_aproj_borrows can_update_shared update_shared
    update_non_shared regions sv ctx

(** Updates the proj_loans intersecting some projection.

    This is a helper function: it might break invariants.
    
    Note that we can update more than one projector of loans! Consider the
    following example:
    {[
      fn f<'a, 'b>(...) -> (&'a mut u32, &'b mut u32));
      fn g<'c>(&'c mut u32, &'c mut u32);

      let p = f(...);
      g(move p);

      // Symbolic context after the call to g:
      // abs'a {'a} { [s@0 <: (&'a mut u32, &'b mut u32)] }
      // abs'b {'b} { [s@0 <: (&'a mut u32, &'b mut u32)] }
      //
      // abs'c {'c} { (s@0 <: (&'c mut u32, &'c mut u32)) }
    ]}
    
    Note that for sanity, this function checks that we update *at least* one
    projector of loans.
        
    [subst]: takes as parameters the abstraction in which we perform the
    substitution and the list of given back values at the projector of
    loans where we perform the substitution (see the fields in {!V.AProjLoans}).
    Note that the symbolic value at this place is necessarily equal to [sv],
    which is why we don't give it as parameters.
 *)
let update_intersecting_aproj_loans (proj_regions : T.RegionId.Set.t)
    (proj_ty : T.rty) (sv : V.symbolic_value)
    (subst : V.abs -> (V.msymbolic_value * V.aproj) list -> V.aproj)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* Small helpers for sanity checks *)
  let updated = ref false in
  let update abs local_given_back : V.aproj =
    (* Note that we can update more than once! *)
    updated := true;
    subst abs local_given_back
  in
  (* The visitor *)
  let obj =
    object
      inherit [_] C.map_eval_ctx as super
      method! visit_abs _ abs = super#visit_abs (Some abs) abs

      method! visit_aproj abs sproj =
        match sproj with
        | AProjBorrows _ | AEndedProjLoans _ | AEndedProjBorrows _
        | AIgnoredProjBorrows ->
            super#visit_aproj abs sproj
        | AProjLoans (sv', given_back) ->
            let abs = Option.get abs in
            if same_symbolic_id sv sv' then (
              assert (sv.sv_ty = sv'.sv_ty);
              if
                projections_intersect proj_ty proj_regions sv'.V.sv_ty
                  abs.regions
              then update abs given_back
              else super#visit_aproj (Some abs) sproj)
            else super#visit_aproj (Some abs) sproj
    end
  in
  (* Apply *)
  let ctx = obj#visit_eval_ctx None ctx in
  (* Check that we updated the context at least once *)
  assert !updated;
  (* Return *)
  ctx

(** Helper function: lookup an {!V.AProjLoans} by using an abstraction id and a
    symbolic value.
    
    We return the information from the looked up projector of loans. See the
    fields in {!V.AProjLoans} (we don't return the symbolic value, because it
    is equal to [sv]).
    
    Sanity check: we check that there is exactly one projector which corresponds
    to the couple (abstraction id, symbolic value).
 *)
let lookup_aproj_loans (abs_id : V.AbstractionId.id) (sv : V.symbolic_value)
    (ctx : C.eval_ctx) : (V.msymbolic_value * V.aproj) list =
  (* Small helpers for sanity checks *)
  let found = ref None in
  let set_found x =
    (* There is at most one projector which corresponds to the description *)
    assert (Option.is_none !found);
    found := Some x
  in
  (* The visitor *)
  let obj =
    object
      inherit [_] C.iter_eval_ctx as super

      method! visit_abs _ abs =
        if abs.abs_id = abs_id then super#visit_abs (Some abs) abs else ()

      method! visit_aproj (abs : V.abs option) sproj =
        (match sproj with
        | AProjBorrows _ | AEndedProjLoans _ | AEndedProjBorrows _
        | AIgnoredProjBorrows ->
            super#visit_aproj abs sproj
        | AProjLoans (sv', given_back) ->
            let abs = Option.get abs in
            assert (abs.abs_id = abs_id);
            if sv'.sv_id = sv.sv_id then (
              assert (sv' = sv);
              set_found given_back)
            else ());
        super#visit_aproj abs sproj
    end
  in
  (* Apply *)
  obj#visit_eval_ctx None ctx;
  (* Return *)
  Option.get !found

(** Helper function: might break invariants.

    Update a projector over loans. The projector is identified by a symbolic
    value and an abstraction id.

    Sanity check: we check that there is exactly one projector which corresponds
    to the couple (abstraction id, symbolic value).
 *)
let update_aproj_loans (abs_id : V.AbstractionId.id) (sv : V.symbolic_value)
    (nproj : V.aproj) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Small helpers for sanity checks *)
  let found = ref false in
  let update () =
    (* We update at most once *)
    assert (not !found);
    found := true;
    nproj
  in
  (* The visitor *)
  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_abs _ abs =
        if abs.abs_id = abs_id then super#visit_abs (Some abs) abs else abs

      method! visit_aproj (abs : V.abs option) sproj =
        match sproj with
        | AProjBorrows _ | AEndedProjLoans _ | AEndedProjBorrows _
        | AIgnoredProjBorrows ->
            super#visit_aproj abs sproj
        | AProjLoans (sv', _) ->
            let abs = Option.get abs in
            assert (abs.abs_id = abs_id);
            if sv'.sv_id = sv.sv_id then (
              assert (sv' = sv);
              update ())
            else super#visit_aproj (Some abs) sproj
    end
  in
  (* Apply *)
  let ctx = obj#visit_eval_ctx None ctx in
  (* Sanity check *)
  assert !found;
  (* Return *)
  ctx

(** Helper function: might break invariants.

    Update a projector over borrows. The projector is identified by a symbolic
    value and an abstraction id.

    Sanity check: we check that there is exactly one projector which corresponds
    to the couple (abstraction id, symbolic value).
    
    TODO: factorize with {!update_aproj_loans}?
 *)
let update_aproj_borrows (abs_id : V.AbstractionId.id) (sv : V.symbolic_value)
    (nproj : V.aproj) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Small helpers for sanity checks *)
  let found = ref false in
  let update () =
    (* We update at most once *)
    assert (not !found);
    found := true;
    nproj
  in
  (* The visitor *)
  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_abs _ abs =
        if abs.abs_id = abs_id then super#visit_abs (Some abs) abs else abs

      method! visit_aproj (abs : V.abs option) sproj =
        match sproj with
        | AProjLoans _ | AEndedProjLoans _ | AEndedProjBorrows _
        | AIgnoredProjBorrows ->
            super#visit_aproj abs sproj
        | AProjBorrows (sv', _proj_ty) ->
            let abs = Option.get abs in
            assert (abs.abs_id = abs_id);
            if sv'.sv_id = sv.sv_id then (
              assert (sv' = sv);
              update ())
            else super#visit_aproj (Some abs) sproj
    end
  in
  (* Apply *)
  let ctx = obj#visit_eval_ctx None ctx in
  (* Sanity check *)
  assert !found;
  (* Return *)
  ctx

(** Helper function: might break invariants.

    Converts an {!V.AProjLoans} to an {!V.AEndedProjLoans}. The projector is identified
    by a symbolic value and an abstraction id.
 *)
let update_aproj_loans_to_ended (abs_id : V.AbstractionId.id)
    (sv : V.symbolic_value) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Lookup the projector of loans *)
  let given_back = lookup_aproj_loans abs_id sv ctx in
  (* Create the new value for the projector *)
  let nproj = V.AEndedProjLoans (sv, given_back) in
  (* Insert it *)
  let ctx = update_aproj_loans abs_id sv nproj ctx in
  (* Return *)
  ctx

let no_aproj_over_symbolic_in_context (sv : V.symbolic_value) (ctx : C.eval_ctx)
    : unit =
  (* The visitor *)
  let obj =
    object
      inherit [_] C.iter_eval_ctx as super

      method! visit_aproj env sproj =
        (match sproj with
        | AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> ()
        | AProjLoans (sv', _) | AProjBorrows (sv', _) ->
            if sv'.sv_id = sv.sv_id then raise Found else ());
        super#visit_aproj env sproj
    end
  in
  (* Apply *)
  try obj#visit_eval_ctx () ctx
  with Found -> raise (Failure "update_aproj_loans_to_ended: failed")

(** Helper function

    Return the loan (aloan, loan, proj_loans over a symbolic value) we find
    in an abstraction, if there is.
    
    **Remark:** we don't take the *ignored* mut/shared loans into account.
 *)
let get_first_non_ignored_aloan_in_abstraction (abs : V.abs) :
    borrow_ids_or_symbolic_value option =
  (* Explore to find a loan *)
  let obj =
    object
      inherit [_] V.iter_abs as super

      method! visit_aloan_content env lc =
        match lc with
        | V.AMutLoan (bid, _) -> raise (FoundBorrowIds (Borrow bid))
        | V.ASharedLoan (bids, _, _) -> raise (FoundBorrowIds (Borrows bids))
        | V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ }
        | V.AEndedSharedLoan (_, _) ->
            super#visit_aloan_content env lc
        | V.AIgnoredMutLoan (_, _) ->
            (* Ignore *)
            super#visit_aloan_content env lc
        | V.AEndedIgnoredMutLoan
            { given_back = _; child = _; given_back_meta = _ }
        | V.AIgnoredSharedLoan _ ->
            (* Ignore *)
            super#visit_aloan_content env lc

      (** We may need to visit loan contents because of shared values *)
      method! visit_loan_content _ lc =
        match lc with
        | V.MutLoan _ ->
            (* The mut loan linked to the mutable borrow present in a shared
             * value in an abstraction should be in an AProjBorrows *)
            raise (Failure "Unreachable")
        | V.SharedLoan (bids, _) -> raise (FoundBorrowIds (Borrows bids))

      method! visit_aproj env sproj =
        (match sproj with
        | V.AProjBorrows (_, _)
        | V.AEndedProjLoans _ | V.AEndedProjBorrows _ | V.AIgnoredProjBorrows ->
            ()
        | V.AProjLoans (sv, _) -> raise (ValuesUtils.FoundSymbolicValue sv));
        super#visit_aproj env sproj
    end
  in
  try
    (* Check if there are loans *)
    obj#visit_abs () abs;
    (* No loans *)
    None
  with
  (* There are loans *)
  | FoundBorrowIds bids -> Some (BorrowIds bids)
  | ValuesUtils.FoundSymbolicValue sv ->
      (* There are loan projections over symbolic values *)
      Some (SymbolicValue sv)