1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
|
open Cps
open InterpreterUtils
open InterpreterProjectors
open InterpreterBorrows
open InterpreterStatements
open LlbcAstUtils
open Types
open TypesUtils
open Values
open LlbcAst
open Contexts
open SynthesizeSymbolic
open Errors
module SA = SymbolicAst
(** The local logger *)
let log = Logging.interpreter_log
let compute_contexts (m : crate) : decls_ctx =
let type_decls_list, _, _, _, _ = split_declarations m.declarations in
let type_decls = m.type_decls in
let fun_decls = m.fun_decls in
let global_decls = m.global_decls in
let trait_decls = m.trait_decls in
let trait_impls = m.trait_impls in
let type_decls_groups, _, _, _, _ =
split_declarations_to_group_maps m.declarations
in
let type_infos =
TypesAnalysis.analyze_type_declarations type_decls type_decls_list
in
let type_ctx = { type_decls_groups; type_decls; type_infos } in
let fun_infos =
FunsAnalysis.analyze_module m fun_decls global_decls !Config.use_state
in
let regions_hierarchies =
RegionsHierarchy.compute_regions_hierarchies type_decls fun_decls
global_decls trait_decls trait_impls
in
let fun_ctx = { fun_decls; fun_infos; regions_hierarchies } in
let global_ctx = { global_decls } in
let trait_decls_ctx = { trait_decls } in
let trait_impls_ctx = { trait_impls } in
{ type_ctx; fun_ctx; global_ctx; trait_decls_ctx; trait_impls_ctx }
(** Small helper.
Normalize an instantiated function signature provided we used this signature
to compute a normalization map (for the associated types) and that we added
it in the context.
*)
let normalize_inst_fun_sig (meta : Meta.meta) (ctx : eval_ctx) (sg : inst_fun_sig) : inst_fun_sig =
let { regions_hierarchy = _; trait_type_constraints = _; inputs; output } =
sg
in
let norm = AssociatedTypes.ctx_normalize_ty meta ctx in
let inputs = List.map norm inputs in
let output = norm output in
{ sg with inputs; output }
(** Instantiate a function signature for a symbolic execution.
We return a new context because we compute and add the type normalization
map in the same step.
**WARNING**: this doesn't normalize the types. This step has to be done
separately. Remark: we need to normalize essentially because of the where
clauses (we are not considering a function call, so we don't need to
normalize because a trait clause was instantiated with a specific trait ref).
*)
let symbolic_instantiate_fun_sig (meta : Meta.meta) (ctx : eval_ctx) (sg : fun_sig)
(regions_hierarchy : region_var_groups) (kind : item_kind) :
eval_ctx * inst_fun_sig =
let tr_self =
match kind with
| RegularKind | TraitItemImpl _ -> UnknownTrait __FUNCTION__
| TraitItemDecl _ | TraitItemProvided _ -> Self
in
let generics =
let { regions; types; const_generics; trait_clauses } = sg.generics in
let regions = List.map (fun _ -> RErased) regions in
let types = List.map (fun (v : type_var) -> TVar v.index) types in
let const_generics =
List.map (fun (v : const_generic_var) -> CgVar v.index) const_generics
in
(* Annoying that we have to generate this substitution here *)
let r_subst _ = craise meta "Unexpected region" in
let ty_subst =
Substitute.make_type_subst_from_vars sg.generics.types types
in
let cg_subst =
Substitute.make_const_generic_subst_from_vars sg.generics.const_generics
const_generics
in
(* TODO: some clauses may use the types of other clauses, so we may have to
reorder them.
Example:
If in Rust we write:
{[
pub fn use_get<'a, T: Get>(x: &'a mut T) -> u32
where
T::Item: ToU32,
{
x.get().to_u32()
}
]}
In LLBC we get:
{[
fn demo::use_get<'a, T>(@1: &'a mut (T)) -> u32
where
[@TraitClause0]: demo::Get<T>,
[@TraitClause1]: demo::ToU32<@TraitClause0::Item>, // HERE
{
... // Omitted
}
]}
*)
(* We will need to update the trait refs map while we perform the instantiations *)
let mk_tr_subst (tr_map : trait_instance_id TraitClauseId.Map.t) clause_id :
trait_instance_id =
match TraitClauseId.Map.find_opt clause_id tr_map with
| Some tr -> tr
| None -> craise meta "Local trait clause not found"
in
let mk_subst tr_map =
let tr_subst = mk_tr_subst tr_map in
{ Substitute.r_subst; ty_subst; cg_subst; tr_subst; tr_self }
in
let _, trait_refs =
List.fold_left_map
(fun tr_map (c : trait_clause) ->
let subst = mk_subst tr_map in
let { trait_id = trait_decl_id; clause_generics; _ } = c in
let generics =
Substitute.generic_args_substitute subst clause_generics
in
let trait_decl_ref = { trait_decl_id; decl_generics = generics } in
(* Note that because we directly refer to the clause, we give it
empty generics *)
let trait_id = Clause c.clause_id in
let trait_ref =
{ trait_id; generics = empty_generic_args; trait_decl_ref }
in
(* Update the traits map *)
let tr_map = TraitClauseId.Map.add c.clause_id trait_id tr_map in
(tr_map, trait_ref))
TraitClauseId.Map.empty trait_clauses
in
{ regions; types; const_generics; trait_refs }
in
let inst_sg = instantiate_fun_sig meta ctx generics tr_self sg regions_hierarchy in
(* Compute the normalization maps *)
let ctx =
AssociatedTypes.ctx_add_norm_trait_types_from_preds meta ctx
inst_sg.trait_type_constraints
in
(* Normalize the signature *)
let inst_sg = normalize_inst_fun_sig meta ctx inst_sg in
(* Return *)
(ctx, inst_sg)
(** Initialize an evaluation context to execute a function.
Introduces local variables initialized in the following manner:
- input arguments are initialized as symbolic values
- the remaining locals are initialized as [⊥]
Abstractions are introduced for the regions present in the function
signature.
We return:
- the initialized evaluation context
- the list of symbolic values introduced for the input values
- the instantiated function signature
*)
let initialize_symbolic_context_for_fun (ctx : decls_ctx) (fdef : fun_decl) :
eval_ctx * symbolic_value list * inst_fun_sig =
(* The abstractions are not initialized the same way as for function
* calls: they contain *loan* projectors, because they "provide" us
* with the input values (which behave as if they had been returned
* by some function calls...).
* Also, note that we properly set the set of parents of every abstraction:
* this should not be necessary, as those abstractions should never be
* *automatically* ended (because ending some borrows requires to end
* one of them), but rather selectively ended when generating code
* for each of the backward functions. We do it only because we can
* do it, and because it gives a bit of sanity.
* *)
let sg = fdef.signature in
(* Create the context *)
let regions_hierarchy =
FunIdMap.find (FRegular fdef.def_id) ctx.fun_ctx.regions_hierarchies
in
let region_groups =
List.map (fun (g : region_var_group) -> g.id) regions_hierarchy
in
let ctx =
initialize_eval_ctx fdef.meta ctx region_groups sg.generics.types
sg.generics.const_generics
in
(* Instantiate the signature. This updates the context because we compute
at the same time the normalization map for the associated types.
*)
let ctx, inst_sg =
symbolic_instantiate_fun_sig fdef.meta ctx fdef.signature regions_hierarchy fdef.kind
in
(* Create fresh symbolic values for the inputs *)
let input_svs =
List.map (fun ty -> mk_fresh_symbolic_value fdef.meta ty) inst_sg.inputs
in
(* Initialize the abstractions as empty (i.e., with no avalues) abstractions *)
let call_id = fresh_fun_call_id () in
sanity_check (call_id = FunCallId.zero) fdef.meta;
let compute_abs_avalues (abs : abs) (ctx : eval_ctx) :
eval_ctx * typed_avalue list =
(* Project over the values - we use *loan* projectors, as explained above *)
let avalues =
List.map (mk_aproj_loans_value_from_symbolic_value abs.regions) input_svs
in
(ctx, avalues)
in
let region_can_end _ = false in
let ctx =
create_push_abstractions_from_abs_region_groups
(fun rg_id -> SynthInput rg_id)
inst_sg.regions_hierarchy region_can_end compute_abs_avalues ctx
in
(* Split the variables between return var, inputs and remaining locals *)
let body = Option.get fdef.body in
let ret_var = List.hd body.locals in
let input_vars, local_vars =
Collections.List.split_at (List.tl body.locals) body.arg_count
in
(* Push the return variable (initialized with ⊥) *)
let ctx = ctx_push_uninitialized_var fdef.meta ctx ret_var in
(* Push the input variables (initialized with symbolic values) *)
let input_values = List.map mk_typed_value_from_symbolic_value input_svs in
let ctx = ctx_push_vars fdef.meta ctx (List.combine input_vars input_values) in
(* Push the remaining local variables (initialized with ⊥) *)
let ctx = ctx_push_uninitialized_vars fdef.meta ctx local_vars in
(* Return *)
(ctx, input_svs, inst_sg)
(** Small helper.
This is a continuation function called by the symbolic interpreter upon
reaching the [return] instruction when synthesizing a *backward* function:
this continuation takes care of doing the proper manipulations to finish
the synthesis (mostly by ending abstractions).
[is_regular_return]: [true] if we reached a [Return] instruction (i.e., the
result is {!constructor:Cps.statement_eval_res.Return} or {!constructor:Cps.statement_eval_res.LoopReturn}).
[inside_loop]: [true] if we are *inside* a loop (result [EndContinue]).
*)
let evaluate_function_symbolic_synthesize_backward_from_return (config : config)
(fdef : fun_decl) (inst_sg : inst_fun_sig) (back_id : RegionGroupId.id)
(loop_id : LoopId.id option) (is_regular_return : bool) (inside_loop : bool)
(ctx : eval_ctx) : SA.expression option =
log#ldebug
(lazy
("evaluate_function_symbolic_synthesize_backward_from_return:"
^ "\n- fname: "
^ Print.EvalCtx.name_to_string ctx fdef.name
^ "\n- back_id: "
^ RegionGroupId.to_string back_id
^ "\n- loop_id: "
^ Print.option_to_string LoopId.to_string loop_id
^ "\n- is_regular_return: "
^ Print.bool_to_string is_regular_return
^ "\n- inside_loop: "
^ Print.bool_to_string inside_loop
^ "\n- ctx:\n"
^ Print.Contexts.eval_ctx_to_string ~meta:(Some fdef.meta) ctx));
(* We need to instantiate the function signature - to retrieve
* the return type. Note that it is important to re-generate
* an instantiation of the signature, so that we use fresh
* region ids for the return abstractions. *)
let regions_hierarchy =
FunIdMap.find (FRegular fdef.def_id) ctx.fun_ctx.regions_hierarchies
in
let _, ret_inst_sg =
symbolic_instantiate_fun_sig fdef.meta ctx fdef.signature regions_hierarchy fdef.kind
in
let ret_rty = ret_inst_sg.output in
(* Move the return value out of the return variable *)
let pop_return_value = is_regular_return in
let cf_pop_frame = pop_frame config fdef.meta pop_return_value in
(* We need to find the parents regions/abstractions of the region we
* will end - this will allow us to, first, mark the other return
* regions as non-endable, and, second, end those parent regions in
* proper order. *)
let parent_rgs = list_ancestor_region_groups regions_hierarchy back_id in
let parent_input_abs_ids =
RegionGroupId.mapi
(fun rg_id rg ->
if RegionGroupId.Set.mem rg_id parent_rgs then Some rg.id else None)
inst_sg.regions_hierarchy
in
let parent_input_abs_ids =
List.filter_map (fun x -> x) parent_input_abs_ids
in
(* TODO: need to be careful for loops *)
assert (parent_input_abs_ids = []);
(* Insert the return value in the return abstractions (by applying
* borrow projections) *)
let cf_consume_ret (ret_value : typed_value option) ctx =
let ctx =
if is_regular_return then (
let ret_value = Option.get ret_value in
let compute_abs_avalues (abs : abs) (ctx : eval_ctx) :
eval_ctx * typed_avalue list =
let ctx, avalue =
apply_proj_borrows_on_input_value config fdef.meta ctx abs.regions
abs.ancestors_regions ret_value ret_rty
in
(ctx, [ avalue ])
in
(* Initialize and insert the abstractions in the context.
*
* We take care of allowing to end only the regions which should end (note
* that this is important for soundness: this is part of the borrow checking).
* Also see the documentation of the [can_end] field of [abs] for more
* information. *)
let parent_and_current_rgs = RegionGroupId.Set.add back_id parent_rgs in
let region_can_end rid =
RegionGroupId.Set.mem rid parent_and_current_rgs
in
sanity_check (region_can_end back_id) fdef.meta;
let ctx =
create_push_abstractions_from_abs_region_groups
(fun rg_id -> SynthRet rg_id)
ret_inst_sg.regions_hierarchy region_can_end compute_abs_avalues ctx
in
ctx)
else ctx
in
(* We now need to end the proper *input* abstractions - pay attention
* to the fact that we end the *input* abstractions, not the *return*
* abstractions (of course, the corresponding return abstractions will
* automatically be ended, because they consumed values coming from the
* input abstractions...) *)
(* End the parent abstractions and the current abstraction - note that we
* end them in an order which follows the regions hierarchy: it should lead
* to generated code which has a better consistency between the parent
* and children backward functions.
*
* Note that we don't end the same abstraction if we are *inside* a loop (i.e.,
* we are evaluating an [EndContinue]) or not.
*)
let current_abs_id, end_fun_synth_input =
let fun_abs_id =
(RegionGroupId.nth inst_sg.regions_hierarchy back_id).id
in
if not inside_loop then (Some fun_abs_id, true)
else
(* We are inside a loop *)
let pred (abs : abs) =
match abs.kind with
| Loop (_, rg_id', kind) ->
let rg_id' = Option.get rg_id' in
let is_ret =
match kind with LoopSynthInput -> true | LoopCall -> false
in
rg_id' = back_id && is_ret
| _ -> false
in
(* There is not necessarily an input synthesis abstraction specifically
for the loop.
If there is none, the input synthesis abstraction is actually the
function input synthesis abstraction.
Example:
========
{[
fn clear(v: &mut Vec<u32>) {
let mut i = 0;
while i < v.len() {
v[i] = 0;
i += 1;
}
}
]}
*)
match ctx_find_abs ctx pred with
| None ->
(* The loop gives back nothing for this region group.
Ex.:
{[
pub fn ignore_input_mut_borrow(_a: &mut u32) {
loop {}
}
]}
*)
(None, false)
| Some abs -> (Some abs.abs_id, false)
in
log#ldebug
(lazy
("evaluate_function_symbolic_synthesize_backward_from_return: ending \
input abstraction: "
^ Print.option_to_string AbstractionId.to_string current_abs_id));
(* Set the proper abstractions as endable *)
let ctx =
let visit_loop_abs =
object
inherit [_] map_eval_ctx
method! visit_abs _ abs =
match abs.kind with
| Loop (loop_id', rg_id', LoopSynthInput) ->
(* We only allow to end the loop synth input abs for the region
group [rg_id] *)
sanity_check (
if Option.is_some loop_id then loop_id = Some loop_id'
else true) fdef.meta;
(* Loop abstractions *)
let rg_id' = Option.get rg_id' in
if rg_id' = back_id && inside_loop then
{ abs with can_end = true }
else abs
| Loop (loop_id', _, LoopCall) ->
(* We can end all the loop call abstractions *)
sanity_check (loop_id = Some loop_id') fdef.meta;
{ abs with can_end = true }
| SynthInput rg_id' ->
if rg_id' = back_id && end_fun_synth_input then
{ abs with can_end = true }
else abs
| _ ->
(* Other abstractions *)
abs
end
in
visit_loop_abs#visit_eval_ctx () ctx
in
let current_abs_id =
match current_abs_id with None -> [] | Some id -> [ id ]
in
let target_abs_ids = List.append parent_input_abs_ids current_abs_id in
let cf_end_target_abs cf =
List.fold_left
(fun cf id -> end_abstraction config fdef.meta id cf)
cf target_abs_ids
in
(* Generate the Return node *)
let cf_return : m_fun =
fun ctx ->
match loop_id with
| None -> Some (SA.Return (ctx, None))
| Some loop_id -> Some (SA.ReturnWithLoop (loop_id, inside_loop))
in
(* Apply *)
cf_end_target_abs cf_return ctx
in
cf_pop_frame cf_consume_ret ctx
(** Evaluate a function with the symbolic interpreter.
We return:
- the list of symbolic values introduced for the input values (this is useful
for the synthesis)
- the symbolic AST generated by the symbolic execution
*)
let evaluate_function_symbolic (synthesize : bool) (ctx : decls_ctx)
(fdef : fun_decl) : symbolic_value list * SA.expression option =
(* Debug *)
let name_to_string () =
Print.Types.name_to_string
(Print.Contexts.decls_ctx_to_fmt_env ctx)
fdef.name
in
log#ldebug (lazy ("evaluate_function_symbolic: " ^ name_to_string ()));
(* Create the evaluation context *)
let ctx, input_svs, inst_sg = initialize_symbolic_context_for_fun ctx fdef in
let regions_hierarchy =
FunIdMap.find (FRegular fdef.def_id) ctx.fun_ctx.regions_hierarchies
in
(* Create the continuation to finish the evaluation *)
let config = mk_config SymbolicMode in
let cf_finish (res : statement_eval_res) (ctx : eval_ctx) =
let ctx0 = ctx in
log#ldebug
(lazy
("evaluate_function_symbolic: cf_finish: "
^ Cps.show_statement_eval_res res));
match res with
| Return | LoopReturn _ ->
if synthesize then
(* We have to "play different endings":
* - one execution for the forward function
* - one execution per backward function
* We then group everything together.
*)
(* There are two cases:
* - if this is a forward translation, we retrieve the returned value.
* - if this is a backward translation, we introduce "return"
* abstractions to consume the return value, then end all the
* abstractions up to the one in which we are interested.
*)
(* Forward translation: retrieve the returned value *)
let fwd_e =
(* Pop the frame and retrieve the returned value at the same time*)
let pop_return_value = true in
let cf_pop = pop_frame config fdef.meta pop_return_value in
(* Generate the Return node *)
let cf_return ret_value : m_fun =
fun ctx -> Some (SA.Return (ctx, ret_value))
in
(* Apply *)
cf_pop cf_return ctx
in
let fwd_e = Option.get fwd_e in
(* Backward translation: introduce "return"
abstractions to consume the return value, then end all the
abstractions up to the one in which we are interested.
*)
let loop_id =
match res with
| Return -> None
| LoopReturn loop_id -> Some loop_id
| _ -> craise fdef.meta "Unreachable"
in
let is_regular_return = true in
let inside_loop = Option.is_some loop_id in
let finish_back_eval back_id =
Option.get
(evaluate_function_symbolic_synthesize_backward_from_return config
fdef inst_sg back_id loop_id is_regular_return inside_loop ctx)
in
let back_el =
RegionGroupId.mapi
(fun gid _ -> (gid, finish_back_eval gid))
regions_hierarchy
in
let back_el = RegionGroupId.Map.of_list back_el in
(* Put everything together *)
synthesize_forward_end ctx0 None fwd_e back_el
else None
| EndEnterLoop (loop_id, loop_input_values)
| EndContinue (loop_id, loop_input_values) ->
(* Similar to [Return]: we have to play different endings *)
if synthesize then
let inside_loop =
match res with
| EndEnterLoop _ -> false
| EndContinue _ -> true
| _ -> craise fdef.meta "Unreachable"
in
(* Forward translation *)
let fwd_e =
(* Pop the frame - there is no returned value to pop: in the
translation we will simply call the loop function *)
let pop_return_value = false in
let cf_pop = pop_frame config fdef.meta pop_return_value in
(* Generate the Return node *)
let cf_return _ret_value : m_fun =
fun _ctx -> Some (SA.ReturnWithLoop (loop_id, inside_loop))
in
(* Apply *)
cf_pop cf_return ctx
in
let fwd_e = Option.get fwd_e in
(* Backward translation: introduce "return"
abstractions to consume the return value, then end all the
abstractions up to the one in which we are interested.
*)
let is_regular_return = false in
let finish_back_eval back_id =
Option.get
(evaluate_function_symbolic_synthesize_backward_from_return config
fdef inst_sg back_id (Some loop_id) is_regular_return
inside_loop ctx)
in
let back_el =
RegionGroupId.mapi
(fun gid _ -> (gid, finish_back_eval gid))
regions_hierarchy
in
let back_el = RegionGroupId.Map.of_list back_el in
(* Put everything together *)
synthesize_forward_end ctx0 (Some loop_input_values) fwd_e back_el
else None
| Panic ->
(* Note that as we explore all the execution branches, one of
* the executions can lead to a panic *)
if synthesize then Some SA.Panic else None
| Unit | Break _ | Continue _ ->
craise
fdef.meta ("evaluate_function_symbolic failed on: " ^ name_to_string ())
in
(* Evaluate the function *)
let symbolic =
eval_function_body config (Option.get fdef.body).body cf_finish ctx
in
(* Return *)
(input_svs, symbolic)
module Test = struct
(** Test a unit function (taking no arguments) by evaluating it in an empty
environment.
*)
let test_unit_function (crate : crate) (decls_ctx : decls_ctx)
(fid : FunDeclId.id) : unit =
(* Retrieve the function declaration *)
let fdef = FunDeclId.Map.find fid crate.fun_decls in
let body = Option.get fdef.body in
(* Debug *)
log#ldebug
(lazy
("test_unit_function: "
^ Print.Types.name_to_string
(Print.Contexts.decls_ctx_to_fmt_env decls_ctx)
fdef.name));
(* Sanity check - *)
sanity_check (fdef.signature.generics = empty_generic_params) fdef.meta;
sanity_check (body.arg_count = 0) fdef.meta;
(* Create the evaluation context *)
let ctx = initialize_eval_ctx fdef.meta decls_ctx [] [] [] in
(* Insert the (uninitialized) local variables *)
let ctx = ctx_push_uninitialized_vars fdef.meta ctx body.locals in
(* Create the continuation to check the function's result *)
let config = mk_config ConcreteMode in
let cf_check (res : statement_eval_res) (ctx : eval_ctx) =
match res with
| Return ->
(* Ok: drop the local variables and finish *)
let pop_return_value = true in
pop_frame config fdef.meta pop_return_value (fun _ _ -> None) ctx
| _ ->
craise
fdef.meta
("Unit test failed (concrete execution) on: "
^ Print.Types.name_to_string
(Print.Contexts.decls_ctx_to_fmt_env decls_ctx)
fdef.name)
in
(* Evaluate the function *)
let _ = eval_function_body config body.body cf_check ctx in
()
(** Small helper: return true if the function is a *transparent* unit function
(no parameters, no arguments) - TODO: move *)
let fun_decl_is_transparent_unit (def : fun_decl) : bool =
Option.is_some def.body
&& def.signature.generics = empty_generic_params
&& def.signature.inputs = []
(** Test all the unit functions in a list of function definitions *)
let test_unit_functions (crate : crate) : unit =
let unit_funs =
FunDeclId.Map.filter
(fun _ -> fun_decl_is_transparent_unit)
crate.fun_decls
in
let decls_ctx = compute_contexts crate in
let test_unit_fun _ (def : fun_decl) : unit =
test_unit_function crate decls_ctx def.def_id
in
FunDeclId.Map.iter test_unit_fun unit_funs
end
|