summaryrefslogtreecommitdiff
path: root/compiler/ExtractToFStar.ml
blob: b44b8f25a0bc0bfd5170ecaa84f3aaa5acfd2c07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
(** Extract to F* *)

open Errors
open Pure
open PureUtils
open TranslateCore
open PureToExtract
open StringUtils
module F = Format

(** A qualifier for a type definition.

    Controls whether we should use [type ...] or [and ...] (for mutually
    recursive datatypes).
 *)
type type_decl_qualif =
  | Type  (** [type t = ...] *)
  | And  (** [type t0 = ... and t1 = ...] *)
  | AssumeType  (** [assume type t] *)
  | TypeVal  (** In an fsti: [val t : Type0] *)

(** A qualifier for function definitions.

    Controls whether we should use [let ...], [let rec ...] or [and ...],
    or only generate a declaration with [val] or [assume val]
 *)
type fun_decl_qualif = Let | LetRec | And | Val | AssumeVal

let fun_decl_qualif_keyword (qualif : fun_decl_qualif) : string =
  match qualif with
  | Let -> "let"
  | LetRec -> "let rec"
  | And -> "and"
  | Val -> "val"
  | AssumeVal -> "assume val"

(** Small helper to compute the name of an int type *)
let fstar_int_name (int_ty : integer_type) =
  match int_ty with
  | Isize -> "isize"
  | I8 -> "i8"
  | I16 -> "i16"
  | I32 -> "i32"
  | I64 -> "i64"
  | I128 -> "i128"
  | Usize -> "usize"
  | U8 -> "u8"
  | U16 -> "u16"
  | U32 -> "u32"
  | U64 -> "u64"
  | U128 -> "u128"

(** Small helper to compute the name of a unary operation *)
let fstar_unop_name (unop : unop) : string =
  match unop with
  | Not -> "not"
  | Neg int_ty -> fstar_int_name int_ty ^ "_neg"
  | Cast _ -> raise (Failure "Unsupported")

(** Small helper to compute the name of a binary operation (note that many
    binary operations like "less than" are extracted to primitive operations,
    like [<].
 *)
let fstar_named_binop_name (binop : E.binop) (int_ty : integer_type) : string =
  let binop =
    match binop with
    | Div -> "div"
    | Rem -> "rem"
    | Add -> "add"
    | Sub -> "sub"
    | Mul -> "mul"
    | _ -> raise (Failure "Unreachable")
  in
  fstar_int_name int_ty ^ "_" ^ binop

(** A list of keywords/identifiers used in F* and with which we want to check
    collision. *)
let fstar_keywords =
  let named_unops =
    fstar_unop_name Not
    :: List.map (fun it -> fstar_unop_name (Neg it)) T.all_signed_int_types
  in
  let named_binops = [ E.Div; Rem; Add; Sub; Mul ] in
  let named_binops =
    List.concat
      (List.map
         (fun bn ->
           List.map (fun it -> fstar_named_binop_name bn it) T.all_int_types)
         named_binops)
  in
  let misc =
    [
      "let";
      "rec";
      "in";
      "fn";
      "val";
      "int";
      "nat";
      "list";
      "FStar";
      "FStar.Mul";
      "type";
      "match";
      "with";
      "assert";
      "assert_norm";
      "Type0";
      "unit";
      "not";
      "scalar_cast";
    ]
  in
  List.concat [ named_unops; named_binops; misc ]

let fstar_assumed_adts : (assumed_ty * string) list =
  [ (State, "state"); (Result, "result"); (Option, "option"); (Vec, "vec") ]

let fstar_assumed_structs : (assumed_ty * string) list = []

let fstar_assumed_variants : (assumed_ty * VariantId.id * string) list =
  [
    (Result, result_return_id, "Return");
    (Result, result_fail_id, "Fail");
    (Option, option_some_id, "Some");
    (Option, option_none_id, "None");
  ]

let fstar_assumed_functions :
    (A.assumed_fun_id * T.RegionGroupId.id option * string) list =
  let rg0 = Some T.RegionGroupId.zero in
  [
    (Replace, None, "mem_replace_fwd");
    (Replace, rg0, "mem_replace_back");
    (VecNew, None, "vec_new");
    (VecPush, None, "vec_push_fwd") (* Shouldn't be used *);
    (VecPush, rg0, "vec_push_back");
    (VecInsert, None, "vec_insert_fwd") (* Shouldn't be used *);
    (VecInsert, rg0, "vec_insert_back");
    (VecLen, None, "vec_len");
    (VecIndex, None, "vec_index_fwd");
    (VecIndex, rg0, "vec_index_back") (* shouldn't be used *);
    (VecIndexMut, None, "vec_index_mut_fwd");
    (VecIndexMut, rg0, "vec_index_mut_back");
  ]

let fstar_names_map_init =
  {
    keywords = fstar_keywords;
    assumed_adts = fstar_assumed_adts;
    assumed_structs = fstar_assumed_structs;
    assumed_variants = fstar_assumed_variants;
    assumed_functions = fstar_assumed_functions;
  }

let fstar_extract_unop (extract_expr : bool -> texpression -> unit)
    (fmt : F.formatter) (inside : bool) (unop : unop) (arg : texpression) : unit
    =
  match unop with
  | Not | Neg _ ->
      let unop = fstar_unop_name unop in
      if inside then F.pp_print_string fmt "(";
      F.pp_print_string fmt unop;
      F.pp_print_space fmt ();
      extract_expr true arg;
      if inside then F.pp_print_string fmt ")"
  | Cast (src, tgt) ->
      (* The source type is an implicit parameter *)
      if inside then F.pp_print_string fmt "(";
      F.pp_print_string fmt "scalar_cast";
      F.pp_print_space fmt ();
      F.pp_print_string fmt
        (StringUtils.capitalize_first_letter
           (PrintPure.integer_type_to_string src));
      F.pp_print_space fmt ();
      F.pp_print_string fmt
        (StringUtils.capitalize_first_letter
           (PrintPure.integer_type_to_string tgt));
      F.pp_print_space fmt ();
      extract_expr true arg;
      if inside then F.pp_print_string fmt ")"

let fstar_extract_binop (extract_expr : bool -> texpression -> unit)
    (fmt : F.formatter) (inside : bool) (binop : E.binop)
    (int_ty : integer_type) (arg0 : texpression) (arg1 : texpression) : unit =
  if inside then F.pp_print_string fmt "(";
  (* Some binary operations have a special treatment *)
  (match binop with
  | Eq | Lt | Le | Ne | Ge | Gt ->
      let binop =
        match binop with
        | Eq -> "="
        | Lt -> "<"
        | Le -> "<="
        | Ne -> "<>"
        | Ge -> ">="
        | Gt -> ">"
        | _ -> raise (Failure "Unreachable")
      in
      extract_expr false arg0;
      F.pp_print_space fmt ();
      F.pp_print_string fmt binop;
      F.pp_print_space fmt ();
      extract_expr false arg1
  | Div | Rem | Add | Sub | Mul ->
      let binop = fstar_named_binop_name binop int_ty in
      F.pp_print_string fmt binop;
      F.pp_print_space fmt ();
      extract_expr false arg0;
      F.pp_print_space fmt ();
      extract_expr false arg1
  | BitXor | BitAnd | BitOr | Shl | Shr -> raise Unimplemented);
  if inside then F.pp_print_string fmt ")"

(**
   [ctx]: we use the context to lookup type definitions, to retrieve type names.
   This is used to compute variable names, when they have no basenames: in this
   case we use the first letter of the type name.
  
   [variant_concatenate_type_name]: if true, add the type name as a prefix
   to the variant names.
   Ex.:
   In Rust:
     {[
       enum List = {
         Cons(u32, Box<List>),x
         Nil,
       }
     ]}
  
   F*, if option activated:
     {[
       type list =
       | ListCons : u32 -> list -> list
       | ListNil : list
     ]}
  
   F*, if option not activated:
     {[
       type list =
       | Cons : u32 -> list -> list
       | Nil : list
     ]}
  
   Rk.: this should be true by default, because in Rust all the variant names
   are actively uniquely identifier by the type name [List::Cons(...)], while
   in other languages it is not necessarily the case, and thus clashes can mess
   up type checking. Note that some languages actually forbids the name clashes
   (it is the case of F* ).
 *)
let mk_formatter (ctx : trans_ctx) (crate_name : string)
    (variant_concatenate_type_name : bool) : formatter =
  let int_name = fstar_int_name in

  (* Prepare a name.
   * The first id elem is always the crate: if it is the local crate,
   * we remove it.
   * We also remove all the disambiguators, then convert everything to strings.
   * **Rmk:** because we remove the disambiguators, there may be name collisions
   * (which is ok, because we check for name collisions and fail if there is any).
   *)
  let get_name (name : name) : string list =
    (* Rmk.: initially we only filtered the disambiguators equal to 0 *)
    let name = Names.filter_disambiguators name in
    match name with
    | Ident crate :: name ->
        let name = if crate = crate_name then name else Ident crate :: name in
        let name =
          List.map
            (function
              | Names.Ident s -> s
              | Disambiguator d -> Names.Disambiguator.to_string d)
            name
        in
        name
    | _ ->
        raise (Failure ("Unexpected name shape: " ^ Print.name_to_string name))
  in
  let get_type_name = get_name in
  let type_name_to_camel_case name =
    let name = get_type_name name in
    let name = List.map to_camel_case name in
    String.concat "" name
  in
  let type_name_to_snake_case name =
    let name = get_type_name name in
    let name = List.map to_snake_case name in
    String.concat "_" name
  in
  let type_name name = type_name_to_snake_case name ^ "_t" in
  let field_name (def_name : name) (field_id : FieldId.id)
      (field_name : string option) : string =
    let def_name = type_name_to_snake_case def_name ^ "_" in
    match field_name with
    | Some field_name -> def_name ^ field_name
    | None -> def_name ^ FieldId.to_string field_id
  in
  let variant_name (def_name : name) (variant : string) : string =
    let variant = to_camel_case variant in
    if variant_concatenate_type_name then
      type_name_to_camel_case def_name ^ variant
    else variant
  in
  let struct_constructor (basename : name) : string =
    let tname = type_name basename in
    "Mk" ^ tname
  in
  let get_fun_name = get_name in
  let fun_name_to_snake_case (fname : fun_name) : string =
    let fname = get_fun_name fname in
    (* Converting to snake case should be a no-op, but it doesn't cost much *)
    let fname = List.map to_snake_case fname in
    (* Concatenate the elements *)
    String.concat "_" fname
  in
  let global_name (name : global_name) : string =
    (* Converting to snake case also lowercases the letters (in Rust, global
     * names are written in capital letters). *)
    let parts = List.map to_snake_case (get_name name) in
    String.concat "_" parts
  in
  let fun_name (_fid : A.fun_id) (fname : fun_name) (num_rgs : int)
      (rg : region_group_info option) (filter_info : bool * int) : string =
    let fname = fun_name_to_snake_case fname in
    (* Compute the suffix *)
    let suffix = default_fun_suffix num_rgs rg filter_info in
    (* Concatenate *)
    fname ^ suffix
  in

  let decreases_clause_name (_fid : A.FunDeclId.id) (fname : fun_name) : string
      =
    let fname = fun_name_to_snake_case fname in
    (* Compute the suffix *)
    let suffix = "_decreases" in
    (* Concatenate *)
    fname ^ suffix
  in

  let var_basename (_varset : StringSet.t) (basename : string option) (ty : ty)
      : string =
    (* If there is a basename, we use it *)
    match basename with
    | Some basename ->
        (* This should be a no-op *)
        to_snake_case basename
    | None -> (
        (* No basename: we use the first letter of the type *)
        match ty with
        | Adt (type_id, tys) -> (
            match type_id with
            | Tuple ->
                (* The "pair" case is frequent enough to have its special treatment *)
                if List.length tys = 2 then "p" else "t"
            | Assumed Result -> "r"
            | Assumed Option -> "opt"
            | Assumed Vec -> "v"
            | Assumed State -> "st"
            | AdtId adt_id ->
                let def =
                  TypeDeclId.Map.find adt_id ctx.type_context.type_decls
                in
                (* We do the following:
                 * - compute the type name, and retrieve the last ident
                 * - convert this to snake case
                 * - take the first letter of every "letter group"
                 * Ex.: ["hashmap"; "HashMap"] ~~> "HashMap" -> "hash_map" -> "hm"
                 *)
                (* Thename shouldn't be empty, and its last element should
                 * be an ident *)
                let cl = List.nth def.name (List.length def.name - 1) in
                let cl = to_snake_case (Names.as_ident cl) in
                let cl = String.split_on_char '_' cl in
                let cl = List.filter (fun s -> String.length s > 0) cl in
                assert (List.length cl > 0);
                let cl = List.map (fun s -> s.[0]) cl in
                StringUtils.string_of_chars cl)
        | TypeVar _ -> "x" (* lacking imagination here... *)
        | Bool -> "b"
        | Char -> "c"
        | Integer _ -> "i"
        | Str -> "s"
        | Arrow _ -> "f"
        | Array _ | Slice _ -> raise Unimplemented)
  in
  let type_var_basename (_varset : StringSet.t) (basename : string) : string =
    (* This is *not* a no-op: type variables in Rust often start with
     * a capital letter *)
    to_snake_case basename
  in
  let append_index (basename : string) (i : int) : string =
    basename ^ string_of_int i
  in

  let extract_primitive_value (fmt : F.formatter) (_inside : bool)
      (cv : primitive_value) : unit =
    match cv with
    | Scalar sv -> F.pp_print_string fmt (Z.to_string sv.PV.value)
    | Bool b ->
        let b = if b then "true" else "false" in
        F.pp_print_string fmt b
    | Char c -> F.pp_print_string fmt ("'" ^ String.make 1 c ^ "'")
    | String s ->
        (* We need to replace all the line breaks *)
        let s =
          StringUtils.map
            (fun c -> if c = '\n' then "\n" else String.make 1 c)
            s
        in
        F.pp_print_string fmt ("\"" ^ s ^ "\"")
  in
  {
    bool_name = "bool";
    char_name = "char";
    int_name;
    str_name = "string";
    field_name;
    variant_name;
    struct_constructor;
    type_name;
    global_name;
    fun_name;
    decreases_clause_name;
    var_basename;
    type_var_basename;
    append_index;
    extract_primitive_value;
    extract_unop = fstar_extract_unop;
    extract_binop = fstar_extract_binop;
  }

(** [inside] constrols whether we should add parentheses or not around type
    application (if [true] we add parentheses).
 *)
let rec extract_ty (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
    (ty : ty) : unit =
  match ty with
  | Adt (type_id, tys) -> (
      match type_id with
      | Tuple ->
          (* This is a bit annoying, but in F* [()] is not the unit type:
           * we have to write [unit]... *)
          if tys = [] then F.pp_print_string fmt "unit"
          else (
            F.pp_print_string fmt "(";
            Collections.List.iter_link
              (fun () ->
                F.pp_print_space fmt ();
                F.pp_print_string fmt "&";
                F.pp_print_space fmt ())
              (extract_ty ctx fmt true) tys;
            F.pp_print_string fmt ")")
      | AdtId _ | Assumed _ ->
          let print_paren = inside && tys <> [] in
          if print_paren then F.pp_print_string fmt "(";
          F.pp_print_string fmt (ctx_get_type type_id ctx);
          if tys <> [] then F.pp_print_space fmt ();
          Collections.List.iter_link (F.pp_print_space fmt)
            (extract_ty ctx fmt true) tys;
          if print_paren then F.pp_print_string fmt ")")
  | TypeVar vid -> F.pp_print_string fmt (ctx_get_type_var vid ctx)
  | Bool -> F.pp_print_string fmt ctx.fmt.bool_name
  | Char -> F.pp_print_string fmt ctx.fmt.char_name
  | Integer int_ty -> F.pp_print_string fmt (ctx.fmt.int_name int_ty)
  | Str -> F.pp_print_string fmt ctx.fmt.str_name
  | Arrow (arg_ty, ret_ty) ->
      if inside then F.pp_print_string fmt "(";
      extract_ty ctx fmt false arg_ty;
      F.pp_print_space fmt ();
      F.pp_print_string fmt "->";
      F.pp_print_space fmt ();
      extract_ty ctx fmt false ret_ty;
      if inside then F.pp_print_string fmt ")"
  | Array _ | Slice _ -> raise Unimplemented

(** Compute the names for all the top-level identifiers used in a type
    definition (type name, variant names, field names, etc. but not type
    parameters).
    
    We need to do this preemptively, beforce extracting any definition,
    because of recursive definitions.
 *)
let extract_type_decl_register_names (ctx : extraction_ctx) (def : type_decl) :
    extraction_ctx =
  (* Compute and register the type def name *)
  let ctx = ctx_add_type_decl def ctx in
  (* Compute and register:
   * - the variant names, if this is an enumeration
   * - the field names, if this is a structure
   *)
  let ctx =
    match def.kind with
    | Struct fields ->
        (* Add the fields *)
        let ctx =
          fst
            (ctx_add_fields def (FieldId.mapi (fun id f -> (id, f)) fields) ctx)
        in
        (* Add the constructor name *)
        fst (ctx_add_struct def ctx)
    | Enum variants ->
        fst
          (ctx_add_variants def
             (VariantId.mapi (fun id v -> (id, v)) variants)
             ctx)
    | Opaque ->
        (* Nothing to do *)
        ctx
  in
  (* Return *)
  ctx

let extract_type_decl_struct_body (ctx : extraction_ctx) (fmt : F.formatter)
    (def : type_decl) (fields : field list) : unit =
  (* We want to generate a definition which looks like this:
     {[
       type t = { x : int; y : bool; }
     ]}

     If there isn't enough space on one line:
     {[
       type t =
       {
         x : int; y : bool;
       }
     ]}

     And if there is even less space:
     {[
       type t =
       {
         x : int;
         y : bool;
       }
     ]}

     Also, in case there are no fields, we need to define the type as [unit]
     ([type t = {}] doesn't work in F* ).
  *)
  (* Note that we already printed: [type t =] *)
  if fields = [] then (
    F.pp_print_space fmt ();
    F.pp_print_string fmt "unit")
  else (
    F.pp_print_space fmt ();
    F.pp_print_string fmt "{";
    F.pp_print_break fmt 1 ctx.indent_incr;
    (* The body itself *)
    F.pp_open_hvbox fmt 0;
    (* Print the fields *)
    let print_field (field_id : FieldId.id) (f : field) : unit =
      let field_name = ctx_get_field (AdtId def.def_id) field_id ctx in
      F.pp_open_box fmt ctx.indent_incr;
      F.pp_print_string fmt field_name;
      F.pp_print_space fmt ();
      F.pp_print_string fmt ":";
      F.pp_print_space fmt ();
      extract_ty ctx fmt false f.field_ty;
      F.pp_print_string fmt ";";
      F.pp_close_box fmt ()
    in
    let fields = FieldId.mapi (fun fid f -> (fid, f)) fields in
    Collections.List.iter_link (F.pp_print_space fmt)
      (fun (fid, f) -> print_field fid f)
      fields;
    (* Close *)
    F.pp_close_box fmt ();
    F.pp_print_space fmt ();
    F.pp_print_string fmt "}")

let extract_type_decl_enum_body (ctx : extraction_ctx) (fmt : F.formatter)
    (def : type_decl) (def_name : string) (type_params : string list)
    (variants : variant list) : unit =
  (* We want to generate a definition which looks like this:
     {[
       type list a = | Cons : a -> list a -> list a | Nil : list a
     ]}

     If there isn't enough space on one line:
     {[
       type s =
       | Cons : a -> list a -> list a
       | Nil : list a
     ]}

     And if we need to write the type of a variant on several lines:
     {[
       type s =
       | Cons :
         a ->
         list a ->
         list a
       | Nil : list a
     ]}

     Finally, it is possible to give names to the variant fields in Rust.
     In this situation, we generate a definition like this:
     {[
       type s =
       | Cons : hd:a -> tl:list a -> list a
       | Nil : list a
     ]}

     Note that we already printed: [type s =]
  *)
  (* Print the variants *)
  let print_variant (variant_id : VariantId.id) (variant : variant) : unit =
    let variant_name = ctx_get_variant (AdtId def.def_id) variant_id ctx in
    F.pp_print_space fmt ();
    F.pp_open_hvbox fmt ctx.indent_incr;
    (* variant box *)
    (* [| Cons :]
     * Note that we really don't want any break above so we print everything
     * at once. *)
    F.pp_print_string fmt ("| " ^ variant_name ^ " :");
    F.pp_print_space fmt ();
    let print_field (fid : FieldId.id) (f : field) (ctx : extraction_ctx) :
        extraction_ctx =
      (* Open the field box *)
      F.pp_open_box fmt ctx.indent_incr;
      (* Print the field names
       * [  x :]
       * Note that when printing fields, we register the field names as
       * *variables*: they don't need to be unique at the top level. *)
      let ctx =
        match f.field_name with
        | None -> ctx
        | Some field_name ->
            let var_id = VarId.of_int (FieldId.to_int fid) in
            let field_name =
              ctx.fmt.var_basename ctx.names_map.names_set (Some field_name)
                f.field_ty
            in
            let ctx, field_name = ctx_add_var field_name var_id ctx in
            F.pp_print_string fmt (field_name ^ " :");
            F.pp_print_space fmt ();
            ctx
      in
      (* Print the field type *)
      extract_ty ctx fmt false f.field_ty;
      (* Print the arrow [->]*)
      F.pp_print_space fmt ();
      F.pp_print_string fmt "->";
      (* Close the field box *)
      F.pp_close_box fmt ();
      F.pp_print_space fmt ();
      (* Return *)
      ctx
    in
    (* Print the fields *)
    let fields = FieldId.mapi (fun fid f -> (fid, f)) variant.fields in
    let _ =
      List.fold_left (fun ctx (fid, f) -> print_field fid f ctx) ctx fields
    in
    (* Print the final type *)
    F.pp_open_hovbox fmt 0;
    F.pp_print_string fmt def_name;
    List.iter
      (fun type_param ->
        F.pp_print_space fmt ();
        F.pp_print_string fmt type_param)
      type_params;
    F.pp_close_box fmt ();
    (* Close the variant box *)
    F.pp_close_box fmt ()
  in
  (* Print the variants *)
  let variants = VariantId.mapi (fun vid v -> (vid, v)) variants in
  List.iter (fun (vid, v) -> print_variant vid v) variants

(** Extract a type declaration.

    Note that all the names used for extraction should already have been
    registered.
 *)
let extract_type_decl (ctx : extraction_ctx) (fmt : F.formatter)
    (qualif : type_decl_qualif) (def : type_decl) : unit =
  (* Retrieve the definition name *)
  let def_name = ctx_get_local_type def.def_id ctx in
  (* Add the type params - note that we need those bindings only for the
   * body translation (they are not top-level) *)
  let ctx_body, type_params = ctx_add_type_params def.type_params ctx in
  (* Add a break before *)
  F.pp_print_break fmt 0 0;
  (* Print a comment to link the extracted type to its original rust definition *)
  F.pp_print_string fmt ("(** [" ^ Print.name_to_string def.name ^ "] *)");
  F.pp_print_space fmt ();
  (* Open a box for the definition, so that whenever possible it gets printed on
   * one line *)
  F.pp_open_hvbox fmt 0;
  (* Open a box for "type TYPE_NAME (TYPE_PARAMS) =" *)
  F.pp_open_hovbox fmt ctx.indent_incr;
  (* > "type TYPE_NAME" *)
  let extract_body, qualif =
    match qualif with
    | Type -> (true, "type")
    | And -> (true, "and")
    | AssumeType -> (false, "assume type")
    | TypeVal -> (false, "val")
  in
  F.pp_print_string fmt (qualif ^ " " ^ def_name);
  (* Print the type parameters *)
  if def.type_params <> [] then (
    F.pp_print_space fmt ();
    F.pp_print_string fmt "(";
    List.iter
      (fun (p : type_var) ->
        let pname = ctx_get_type_var p.index ctx_body in
        F.pp_print_string fmt pname;
        F.pp_print_space fmt ())
      def.type_params;
    F.pp_print_string fmt ":";
    F.pp_print_space fmt ();
    F.pp_print_string fmt "Type0)");
  (* Print the "=" if we extract the body*)
  if extract_body then (
    F.pp_print_space fmt ();
    F.pp_print_string fmt "=")
  else (
    (* Otherwise print ": Type0" *)
    F.pp_print_space fmt ();
    F.pp_print_string fmt ":";
    F.pp_print_space fmt ();
    F.pp_print_string fmt "Type0");
  (* Close the box for "type TYPE_NAME (TYPE_PARAMS) =" *)
  F.pp_close_box fmt ();
  (if extract_body then
   match def.kind with
   | Struct fields -> extract_type_decl_struct_body ctx_body fmt def fields
   | Enum variants ->
       extract_type_decl_enum_body ctx_body fmt def def_name type_params
         variants
   | Opaque -> raise (Failure "Unreachable"));
  (* Close the box for the definition *)
  F.pp_close_box fmt ();
  (* Add breaks to insert new lines between definitions *)
  F.pp_print_break fmt 0 0

(** Extract the state type declaration. *)
let extract_state_type (fmt : F.formatter) (ctx : extraction_ctx)
    (qualif : type_decl_qualif) : unit =
  (* Add a break before *)
  F.pp_print_break fmt 0 0;
  (* Print a comment  *)
  F.pp_print_string fmt "(** The state type used in the state-error monad *)";
  F.pp_print_space fmt ();
  (* Open a box for the definition, so that whenever possible it gets printed on
   * one line *)
  F.pp_open_hvbox fmt 0;
  (* Retrieve the name *)
  let state_name = ctx_get_assumed_type State ctx in
  (* The qualif should be [AssumeType] or [TypeVal] *)
  (match qualif with
  | Type | And -> raise (Failure "Unexpected")
  | AssumeType ->
      F.pp_print_string fmt "assume";
      F.pp_print_space fmt ();
      F.pp_print_string fmt "type";
      F.pp_print_space fmt ();
      F.pp_print_string fmt state_name;
      F.pp_print_space fmt ();
      F.pp_print_string fmt ":";
      F.pp_print_space fmt ();
      F.pp_print_string fmt "Type0"
  | TypeVal ->
      F.pp_print_string fmt "val";
      F.pp_print_space fmt ();
      F.pp_print_string fmt state_name;
      F.pp_print_space fmt ();
      F.pp_print_string fmt ":";
      F.pp_print_space fmt ();
      F.pp_print_string fmt "Type0");
  (* Close the box for the definition *)
  F.pp_close_box fmt ();
  (* Add breaks to insert new lines between definitions *)
  F.pp_print_break fmt 0 0

(** Compute the names for all the pure functions generated from a rust function
    (forward function and backward functions).
 *)
let extract_fun_decl_register_names (ctx : extraction_ctx) (keep_fwd : bool)
    (has_decreases_clause : bool) (def : pure_fun_translation) : extraction_ctx
    =
  let fwd, back_ls = def in
  (* Register the decrease clause, if necessary *)
  let ctx =
    if has_decreases_clause then ctx_add_decrases_clause fwd ctx else ctx
  in
  (* Register the forward function name *)
  let ctx = ctx_add_fun_decl (keep_fwd, def) fwd ctx in
  (* Register the backward functions' names *)
  let ctx =
    List.fold_left
      (fun ctx back -> ctx_add_fun_decl (keep_fwd, def) back ctx)
      ctx back_ls
  in
  (* Return *)
  ctx

(** Simply add the global name to the context. *)
let extract_global_decl_register_names (ctx : extraction_ctx)
    (def : A.global_decl) : extraction_ctx =
  ctx_add_global_decl_and_body def ctx

(** The following function factorizes the extraction of ADT values.

    Note that patterns can introduce new variables: we thus return an extraction
    context updated with new bindings.
    
    TODO: we don't need something very generic anymore
 *)
let extract_adt_g_value
    (extract_value : extraction_ctx -> bool -> 'v -> extraction_ctx)
    (fmt : F.formatter) (ctx : extraction_ctx) (inside : bool)
    (variant_id : VariantId.id option) (field_values : 'v list) (ty : ty) :
    extraction_ctx =
  match ty with
  | Adt (Tuple, _) ->
      (* Tuple *)
      F.pp_print_string fmt "(";
      let ctx =
        Collections.List.fold_left_link
          (fun () ->
            F.pp_print_string fmt ",";
            F.pp_print_space fmt ())
          (fun ctx v -> extract_value ctx false v)
          ctx field_values
      in
      F.pp_print_string fmt ")";
      ctx
  | Adt (adt_id, _) ->
      (* "Regular" ADT *)
      (* We print something of the form: [Cons field0 ... fieldn].
       * We could update the code to print something of the form:
       * [{ field0=...; ...; fieldn=...; }] in case of structures.
       *)
      let cons =
        match variant_id with
        | Some vid -> ctx_get_variant adt_id vid ctx
        | None -> ctx_get_struct adt_id ctx
      in
      if inside && field_values <> [] then F.pp_print_string fmt "(";
      F.pp_print_string fmt cons;
      let ctx =
        Collections.List.fold_left
          (fun ctx v ->
            F.pp_print_space fmt ();
            extract_value ctx true v)
          ctx field_values
      in
      if inside && field_values <> [] then F.pp_print_string fmt ")";
      ctx
  | _ -> raise (Failure "Inconsistent typed value")

(* Extract globals in the same way as variables *)
let extract_global (ctx : extraction_ctx) (fmt : F.formatter)
    (id : A.GlobalDeclId.id) : unit =
  F.pp_print_string fmt (ctx_get_global id ctx)

(** [inside]: see {!extract_ty}.

    As a pattern can introduce new variables, we return an extraction context
    updated with new bindings.
 *)
let rec extract_typed_pattern (ctx : extraction_ctx) (fmt : F.formatter)
    (inside : bool) (v : typed_pattern) : extraction_ctx =
  match v.value with
  | PatConstant cv ->
      ctx.fmt.extract_primitive_value fmt inside cv;
      ctx
  | PatVar (v, _) ->
      let vname =
        ctx.fmt.var_basename ctx.names_map.names_set v.basename v.ty
      in
      let ctx, vname = ctx_add_var vname v.id ctx in
      F.pp_print_string fmt vname;
      ctx
  | PatDummy ->
      F.pp_print_string fmt "_";
      ctx
  | PatAdt av ->
      let extract_value ctx inside v = extract_typed_pattern ctx fmt inside v in
      extract_adt_g_value extract_value fmt ctx inside av.variant_id
        av.field_values v.ty

(** [inside]: controls the introduction of parentheses. See [extract_ty]
    
    TODO: replace the formatting boolean [inside] with something more general?
    Also, it seems we don't really use it...
    Cases to consider:
    - right-expression in a let: [let x = re in _] (never parentheses?)
    - next expression in a let:  [let x = _ in next_e] (never parentheses?)
    - application argument: [f (exp)]
    - match/if scrutinee: [if exp then _ else _]/[match exp | _ -> _]
 *)
let rec extract_texpression (ctx : extraction_ctx) (fmt : F.formatter)
    (inside : bool) (e : texpression) : unit =
  match e.e with
  | Var var_id ->
      let var_name = ctx_get_var var_id ctx in
      F.pp_print_string fmt var_name
  | Const cv -> ctx.fmt.extract_primitive_value fmt inside cv
  | App _ ->
      let app, args = destruct_apps e in
      extract_App ctx fmt inside app args
  | Abs _ ->
      let xl, e = destruct_abs_list e in
      extract_Abs ctx fmt inside xl e
  | Qualif _ ->
      (* We use the app case *)
      extract_App ctx fmt inside e []
  | Let (monadic, lv, re, next_e) ->
      extract_Let ctx fmt inside monadic lv re next_e
  | Switch (scrut, body) -> extract_Switch ctx fmt inside scrut body
  | Meta (_, e) -> extract_texpression ctx fmt inside e

(* Extract an application *or* a top-level qualif (function extraction has
 * to handle top-level qualifiers, so it seemed more natural to merge the
 * two cases) *)
and extract_App (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
    (app : texpression) (args : texpression list) : unit =
  (* We don't do the same thing if the app is a top-level identifier (function,
   * ADT constructor...) or a "regular" expression *)
  match app.e with
  | Qualif qualif -> (
      (* Top-level qualifier *)
      match qualif.id with
      | Func fun_id ->
          extract_function_call ctx fmt inside fun_id qualif.type_args args
      | Global global_id -> extract_global ctx fmt global_id
      | AdtCons adt_cons_id ->
          extract_adt_cons ctx fmt inside adt_cons_id qualif.type_args args
      | Proj proj ->
          extract_field_projector ctx fmt inside app proj qualif.type_args args)
  | _ ->
      (* "Regular" expression *)
      (* Open parentheses *)
      if inside then F.pp_print_string fmt "(";
      (* Open a box for the application *)
      F.pp_open_hovbox fmt ctx.indent_incr;
      (* Print the app expression *)
      let app_inside = (inside && args = []) || args <> [] in
      extract_texpression ctx fmt app_inside app;
      (* Print the arguments *)
      List.iter
        (fun ve ->
          F.pp_print_space fmt ();
          extract_texpression ctx fmt true ve)
        args;
      (* Close the box for the application *)
      F.pp_close_box fmt ();
      (* Close parentheses *)
      if inside then F.pp_print_string fmt ")"

(** Subcase of the app case: function call *)
and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter)
    (inside : bool) (fid : fun_id) (type_args : ty list)
    (args : texpression list) : unit =
  match (fid, args) with
  | Unop unop, [ arg ] ->
      (* A unop can have *at most* one argument (the result can't be a function!).
       * Note that the way we generate the translation, we shouldn't get the
       * case where we have no argument (all functions are fully instantiated,
       * and no AST transformation introduces partial calls). *)
      ctx.fmt.extract_unop (extract_texpression ctx fmt) fmt inside unop arg
  | Binop (binop, int_ty), [ arg0; arg1 ] ->
      (* Number of arguments: similar to unop *)
      ctx.fmt.extract_binop
        (extract_texpression ctx fmt)
        fmt inside binop int_ty arg0 arg1
  | Regular (fun_id, rg_id), _ ->
      if inside then F.pp_print_string fmt "(";
      (* Open a box for the function call *)
      F.pp_open_hovbox fmt ctx.indent_incr;
      (* Print the function name *)
      let fun_name = ctx_get_function fun_id rg_id ctx in
      F.pp_print_string fmt fun_name;
      (* Print the type parameters *)
      List.iter
        (fun ty ->
          F.pp_print_space fmt ();
          extract_ty ctx fmt true ty)
        type_args;
      (* Print the arguments *)
      List.iter
        (fun ve ->
          F.pp_print_space fmt ();
          extract_texpression ctx fmt true ve)
        args;
      (* Close the box for the function call *)
      F.pp_close_box fmt ();
      (* Return *)
      if inside then F.pp_print_string fmt ")"
  | _ ->
      raise
        (Failure
           ("Unreachable:\n" ^ "Function: " ^ show_fun_id fid
          ^ ",\nNumber of arguments: "
           ^ string_of_int (List.length args)
           ^ ",\nArguments: "
           ^ String.concat " " (List.map show_texpression args)))

(** Subcase of the app case: ADT constructor *)
and extract_adt_cons (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
    (adt_cons : adt_cons_id) (type_args : ty list) (args : texpression list) :
    unit =
  match adt_cons.adt_id with
  | Tuple ->
      (* Tuple *)
      (* For now, we only support fully applied tuple constructors *)
      assert (List.length type_args = List.length args);
      F.pp_print_string fmt "(";
      Collections.List.iter_link
        (fun () ->
          F.pp_print_string fmt ",";
          F.pp_print_space fmt ())
        (fun v -> extract_texpression ctx fmt false v)
        args;
      F.pp_print_string fmt ")"
  | _ ->
      (* "Regular" ADT *)
      (* We print something of the form: [Cons field0 ... fieldn].
       * We could update the code to print something of the form:
       * [{ field0=...; ...; fieldn=...; }] in case of fully
       * applied structure constructors.
       *)
      let cons =
        match adt_cons.variant_id with
        | Some vid -> ctx_get_variant adt_cons.adt_id vid ctx
        | None -> ctx_get_struct adt_cons.adt_id ctx
      in
      let use_parentheses = inside && args <> [] in
      if use_parentheses then F.pp_print_string fmt "(";
      F.pp_print_string fmt cons;
      Collections.List.iter
        (fun v ->
          F.pp_print_space fmt ();
          extract_texpression ctx fmt true v)
        args;
      if use_parentheses then F.pp_print_string fmt ")"

(** Subcase of the app case: ADT field projector.  *)
and extract_field_projector (ctx : extraction_ctx) (fmt : F.formatter)
    (inside : bool) (original_app : texpression) (proj : projection)
    (_proj_type_params : ty list) (args : texpression list) : unit =
  (* We isolate the first argument (if there is), in order to pretty print the
   * projection ([x.field] instead of [MkAdt?.field x] *)
  match args with
  | [ arg ] ->
      (* Exactly one argument: pretty-print *)
      let field_name = ctx_get_field proj.adt_id proj.field_id ctx in
      (* Open a box *)
      F.pp_open_hovbox fmt ctx.indent_incr;
      (* Extract the expression *)
      extract_texpression ctx fmt true arg;
      (* We allow to break where the "." appears *)
      F.pp_print_break fmt 0 0;
      F.pp_print_string fmt ".";
      F.pp_print_string fmt field_name;
      (* Close the box *)
      F.pp_close_box fmt ()
  | arg :: args ->
      (* Call extract_App again, but in such a way that the first argument is
       * isolated *)
      extract_App ctx fmt inside (mk_app original_app arg) args
  | [] ->
      (* No argument: shouldn't happen *)
      raise (Failure "Unreachable")

and extract_Abs (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
    (xl : typed_pattern list) (e : texpression) : unit =
  (* Open a box for the abs expression *)
  F.pp_open_hovbox fmt ctx.indent_incr;
  (* Open parentheses *)
  if inside then F.pp_print_string fmt "(";
  (* Print the lambda - note that there should always be at least one variable *)
  assert (xl <> []);
  F.pp_print_string fmt "fun";
  let ctx =
    List.fold_left
      (fun ctx x ->
        F.pp_print_space fmt ();
        extract_typed_pattern ctx fmt true x)
      ctx xl
  in
  F.pp_print_space fmt ();
  F.pp_print_string fmt "->";
  F.pp_print_space fmt ();
  (* Print the body *)
  extract_texpression ctx fmt false e;
  (* Close parentheses *)
  if inside then F.pp_print_string fmt ")";
  (* Close the box for the abs expression *)
  F.pp_close_box fmt ()

and extract_Let (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
    (monadic : bool) (lv : typed_pattern) (re : texpression)
    (next_e : texpression) : unit =
  (* Open a box for the whole expression *)
  F.pp_open_hvbox fmt 0;
  (* Open parentheses *)
  if inside then F.pp_print_string fmt "(";
  (* Open a box for the let-binding *)
  F.pp_open_hovbox fmt ctx.indent_incr;
  let ctx =
    if monadic then (
      (* Note that in F*, the left value of a monadic let-binding can only be
       * a variable *)
      let ctx = extract_typed_pattern ctx fmt true lv in
      F.pp_print_space fmt ();
      F.pp_print_string fmt "<--";
      F.pp_print_space fmt ();
      extract_texpression ctx fmt false re;
      F.pp_print_string fmt ";";
      ctx)
    else (
      F.pp_print_string fmt "let";
      F.pp_print_space fmt ();
      let ctx = extract_typed_pattern ctx fmt true lv in
      F.pp_print_space fmt ();
      F.pp_print_string fmt "=";
      F.pp_print_space fmt ();
      extract_texpression ctx fmt false re;
      F.pp_print_space fmt ();
      F.pp_print_string fmt "in";
      ctx)
  in
  (* Close the box for the let-binding *)
  F.pp_close_box fmt ();
  (* Print the next expression *)
  F.pp_print_space fmt ();
  extract_texpression ctx fmt false next_e;
  (* Close parentheses *)
  if inside then F.pp_print_string fmt ")";
  (* Close the box for the whole expression *)
  F.pp_close_box fmt ()

and extract_Switch (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
    (scrut : texpression) (body : switch_body) : unit =
  (* Open a box for the whole expression *)
  F.pp_open_hvbox fmt 0;
  (* Open parentheses *)
  if inside then F.pp_print_string fmt "(";
  (* Extract the switch *)
  (match body with
  | If (e_then, e_else) ->
      (* Open a box for the [if] *)
      F.pp_open_hovbox fmt ctx.indent_incr;
      F.pp_print_string fmt "if";
      F.pp_print_space fmt ();
      let scrut_inside = PureUtils.let_group_requires_parentheses scrut in
      extract_texpression ctx fmt scrut_inside scrut;
      (* Close the box for the [if] *)
      F.pp_close_box fmt ();
      (* Extract the branches *)
      let extract_branch (is_then : bool) (e_branch : texpression) : unit =
        F.pp_print_space fmt ();
        (* Open a box for the then/else+branch *)
        F.pp_open_hovbox fmt ctx.indent_incr;
        let then_or_else = if is_then then "then" else "else" in
        F.pp_print_string fmt then_or_else;
        F.pp_print_space fmt ();
        (* Open a box for the branch *)
        F.pp_open_hovbox fmt ctx.indent_incr;
        (* Print the [begin] if necessary *)
        let parenth = PureUtils.let_group_requires_parentheses e_branch in
        if parenth then (
          F.pp_print_string fmt "begin";
          F.pp_print_space fmt ());
        (* Print the branch expression *)
        extract_texpression ctx fmt false e_branch;
        (* Close the [begin ... end ] *)
        if parenth then (
          F.pp_print_space fmt ();
          F.pp_print_string fmt "end");
        (* Close the box for the branch *)
        F.pp_close_box fmt ();
        (* Close the box for the then/else+branch *)
        F.pp_close_box fmt ()
      in

      extract_branch true e_then;
      extract_branch false e_else
  | Match branches ->
      (* Open a box for the [match ... with] *)
      F.pp_open_hovbox fmt ctx.indent_incr;
      (* Print the [match ... with] *)
      F.pp_print_string fmt "begin match";
      F.pp_print_space fmt ();
      let scrut_inside = PureUtils.let_group_requires_parentheses scrut in
      extract_texpression ctx fmt scrut_inside scrut;
      F.pp_print_space fmt ();
      F.pp_print_string fmt "with";
      (* Close the box for the [match ... with] *)
      F.pp_close_box fmt ();

      (* Extract the branches *)
      let extract_branch (br : match_branch) : unit =
        F.pp_print_space fmt ();
        (* Open a box for the pattern+branch *)
        F.pp_open_hovbox fmt ctx.indent_incr;
        F.pp_print_string fmt "|";
        (* Print the pattern *)
        F.pp_print_space fmt ();
        let ctx = extract_typed_pattern ctx fmt false br.pat in
        F.pp_print_space fmt ();
        F.pp_print_string fmt "->";
        F.pp_print_space fmt ();
        (* Open a box for the branch *)
        F.pp_open_hovbox fmt ctx.indent_incr;
        (* Print the branch itself *)
        extract_texpression ctx fmt false br.branch;
        (* Close the box for the branch *)
        F.pp_close_box fmt ();
        (* Close the box for the pattern+branch *)
        F.pp_close_box fmt ()
      in

      List.iter extract_branch branches;

      (* End the match *)
      F.pp_print_space fmt ();
      F.pp_print_string fmt "end");
  (* Close parentheses *)
  if inside then F.pp_print_string fmt ")";
  (* Close the box for the whole expression *)
  F.pp_close_box fmt ()

(** A small utility to print the parameters of a function signature.

    We return two contexts:
    - the context augmented with bindings for the type parameters
    - the previous context augmented with bindings for the input values
 *)
let extract_fun_parameters (ctx : extraction_ctx) (fmt : F.formatter)
    (def : fun_decl) : extraction_ctx * extraction_ctx =
  (* Add the type parameters - note that we need those bindings only for the
   * body translation (they are not top-level) *)
  let ctx, _ = ctx_add_type_params def.signature.type_params ctx in
  (* Print the parameters - rk.: we should have filtered the functions
   * with no input parameters *)
  (* The type parameters *)
  if def.signature.type_params <> [] then (
    (* Open a box for the type parameters *)
    F.pp_open_hovbox fmt 0;
    F.pp_print_string fmt "(";
    List.iter
      (fun (p : type_var) ->
        let pname = ctx_get_type_var p.index ctx in
        F.pp_print_string fmt pname;
        F.pp_print_space fmt ())
      def.signature.type_params;
    F.pp_print_string fmt ":";
    F.pp_print_space fmt ();
    F.pp_print_string fmt "Type0)";
    (* Close the box for the type parameters *)
    F.pp_close_box fmt ();
    F.pp_print_space fmt ());
  (* The input parameters - note that doing this adds bindings to the context *)
  let ctx_body =
    match def.body with
    | None -> ctx
    | Some body ->
        List.fold_left
          (fun ctx (lv : typed_pattern) ->
            (* Open a box for the input parameter *)
            F.pp_open_hovbox fmt 0;
            F.pp_print_string fmt "(";
            let ctx = extract_typed_pattern ctx fmt false lv in
            F.pp_print_space fmt ();
            F.pp_print_string fmt ":";
            F.pp_print_space fmt ();
            extract_ty ctx fmt false lv.ty;
            F.pp_print_string fmt ")";
            (* Close the box for the input parameters *)
            F.pp_close_box fmt ();
            F.pp_print_space fmt ();
            ctx)
          ctx body.inputs_lvs
  in
  (ctx, ctx_body)

(** A small utility to print the types of the input parameters in the form:
    [u32 -> list u32 -> ...]
    (we don't print the return type of the function)
    
    This is used for opaque function declarations, in particular.
 *)
let extract_fun_input_parameters_types (ctx : extraction_ctx)
    (fmt : F.formatter) (def : fun_decl) : unit =
  let extract_param (ty : ty) : unit =
    let inside = false in
    extract_ty ctx fmt inside ty;
    F.pp_print_space fmt ();
    F.pp_print_string fmt "->";
    F.pp_print_space fmt ()
  in
  List.iter extract_param def.signature.inputs

(** Extract a decrease clause function template body.

    In order to help the user, we can generate a template for the functions
    required by the decreases clauses. We simply generate definitions of
    the following form in a separate file:
    {[
      let f_decrease (t : Type0) (x : t) : nat = admit()
    ]}
    
    Where the translated functions for [f] look like this:
    {[
      let f_fwd (t : Type0) (x : t) : Tot ... (decreases (f_decrease t x)) = ...
    ]}
 *)
let extract_template_decreases_clause (ctx : extraction_ctx) (fmt : F.formatter)
    (def : fun_decl) : unit =
  (* Retrieve the function name *)
  let def_name = ctx_get_decreases_clause def.def_id ctx in
  (* Add a break before *)
  F.pp_print_break fmt 0 0;
  (* Print a comment to link the extracted type to its original rust definition *)
  F.pp_print_string fmt
    ("(** [" ^ Print.fun_name_to_string def.basename ^ "]: decreases clause *)");
  F.pp_print_space fmt ();
  (* Open a box for the definition, so that whenever possible it gets printed on
   * one line *)
  F.pp_open_hvbox fmt 0;
  (* Add the [unfold] keyword *)
  F.pp_print_string fmt "unfold";
  F.pp_print_space fmt ();
  (* Open a box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *)
  F.pp_open_hvbox fmt ctx.indent_incr;
  (* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *)
  F.pp_open_hovbox fmt ctx.indent_incr;
  (* > "let FUN_NAME" *)
  F.pp_print_string fmt ("let " ^ def_name);
  F.pp_print_space fmt ();
  (* Extract the parameters *)
  let _, _ = extract_fun_parameters ctx fmt def in
  F.pp_print_string fmt ":";
  (* Print the signature *)
  F.pp_print_space fmt ();
  F.pp_print_string fmt "nat";
  (* Print the "=" *)
  F.pp_print_space fmt ();
  F.pp_print_string fmt "=";
  (* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *)
  F.pp_close_box fmt ();
  F.pp_print_space fmt ();
  (* Print the "admit ()" *)
  F.pp_print_string fmt "admit ()";
  (* Close the box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *)
  F.pp_close_box fmt ();
  (* Close the box for the whole definition *)
  F.pp_close_box fmt ();
  (* Add breaks to insert new lines between definitions *)
  F.pp_print_break fmt 0 0

(** Extract a function declaration.

    Note that all the names used for extraction should already have been
    registered.
    
    We take the definition of the forward translation as parameter (which is
    equal to the definition to extract, if we extract a forward function) because
    it is useful for the decrease clause.
 *)
let extract_fun_decl (ctx : extraction_ctx) (fmt : F.formatter)
    (qualif : fun_decl_qualif) (has_decreases_clause : bool) (def : fun_decl) :
    unit =
  assert (not def.is_global_decl_body);
  (* Retrieve the function name *)
  let def_name = ctx_get_local_function def.def_id def.back_id ctx in
  (* (* Add the type parameters - note that we need those bindings only for the
     * body translation (they are not top-level) *)
      let ctx, _ = ctx_add_type_params def.signature.type_params ctx in *)
  (* Add a break before *)
  F.pp_print_break fmt 0 0;
  (* Print a comment to link the extracted type to its original rust definition *)
  F.pp_print_string fmt
    ("(** [" ^ Print.fun_name_to_string def.basename ^ "] *)");
  F.pp_print_space fmt ();
  (* Open a box for the definition, so that whenever possible it gets printed on
   * one line *)
  F.pp_open_hvbox fmt ctx.indent_incr;
  (* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *)
  F.pp_open_hovbox fmt ctx.indent_incr;
  (* > "let FUN_NAME" *)
  let is_opaque = Option.is_none def.body in
  let qualif = fun_decl_qualif_keyword qualif in
  F.pp_print_string fmt (qualif ^ " " ^ def_name);
  F.pp_print_space fmt ();
  (* Open a box for "(PARAMS) : EFFECT =" *)
  F.pp_open_hvbox fmt 0;
  (* Open a box for "(PARAMS)" *)
  F.pp_open_hovbox fmt 0;
  let ctx, ctx_body = extract_fun_parameters ctx fmt def in
  (* Close the box for "(PARAMS)" *)
  F.pp_close_box fmt ();
  (* Print the return type - note that we have to be careful when
   * printing the input values for the decrease clause, because
   * it introduces bindings in the context... We thus "forget"
   * the bindings we introduced above.
   * TODO: figure out a cleaner way *)
  let _ =
    F.pp_print_string fmt ":";
    F.pp_print_space fmt ();
    (* Open a box for the EFFECT *)
    F.pp_open_hvbox fmt 0;
    (* Open a box for the return type *)
    F.pp_open_hovbox fmt ctx.indent_incr;
    (* Print the return type *)
    (* For opaque definitions, as we don't have named parameters under the hand,
     * we don't print parameters in the form [(x : a) (y : b) ...] above,
     * but wait until here to print the types: [a -> b -> ...]. *)
    if is_opaque then extract_fun_input_parameters_types ctx fmt def;
    (* [Tot] *)
    if has_decreases_clause then (
      F.pp_print_string fmt "Tot";
      F.pp_print_space fmt ());
    extract_ty ctx fmt has_decreases_clause def.signature.output;
    (* Close the box for the return type *)
    F.pp_close_box fmt ();
    (* Print the decrease clause - rk.: a function with a decreases clause
     * is necessarily a transparent function *)
    if has_decreases_clause then (
      F.pp_print_space fmt ();
      (* Open a box for the decrease clause *)
      F.pp_open_hovbox fmt 0;
      (* *)
      F.pp_print_string fmt "(decreases";
      F.pp_print_space fmt ();
      F.pp_print_string fmt "(";
      (* The name of the decrease clause *)
      let decr_name = ctx_get_decreases_clause def.def_id ctx in
      F.pp_print_string fmt decr_name;
      (* Print the type parameters *)
      List.iter
        (fun (p : type_var) ->
          let pname = ctx_get_type_var p.index ctx in
          F.pp_print_space fmt ();
          F.pp_print_string fmt pname)
        def.signature.type_params;
      (* Print the input values: we have to be careful here to print
       * only the input values which are in common with the *forward*
       * function (the additional input values "given back" to the
       * backward functions have no influence on termination: we thus
       * share the decrease clauses between the forward and the backward
       * functions).
       *)
      let inputs_lvs =
        let all_inputs = (Option.get def.body).inputs_lvs in
        (* We have to count:
         * - the forward inputs
         * - the state
         *)
        let num_fwd_inputs = def.signature.info.num_fwd_inputs in
        let num_fwd_inputs =
          if def.signature.info.effect_info.input_state then 1 + num_fwd_inputs
          else num_fwd_inputs
        in
        Collections.List.prefix num_fwd_inputs all_inputs
      in
      let _ =
        List.fold_left
          (fun ctx (lv : typed_pattern) ->
            F.pp_print_space fmt ();
            let ctx = extract_typed_pattern ctx fmt false lv in
            ctx)
          ctx inputs_lvs
      in
      F.pp_print_string fmt "))";
      (* Close the box for the decrease clause *)
      F.pp_close_box fmt ());
    (* Close the box for the EFFECT *)
    F.pp_close_box fmt ()
  in
  (* Print the "=" *)
  if not is_opaque then (
    F.pp_print_space fmt ();
    F.pp_print_string fmt "=");
  (* Close the box for "(PARAMS) : EFFECT =" *)
  F.pp_close_box fmt ();
  (* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *)
  F.pp_close_box fmt ();
  if not is_opaque then (
    F.pp_print_space fmt ();
    (* Open a box for the body *)
    F.pp_open_hvbox fmt 0;
    (* Extract the body *)
    let _ = extract_texpression ctx_body fmt false (Option.get def.body).body in
    (* Close the box for the body *)
    F.pp_close_box fmt ());
  (* Close the box for the definition *)
  F.pp_close_box fmt ();
  (* Add breaks to insert new lines between definitions *)
  F.pp_print_break fmt 0 0

(** Extract a global declaration body of the shape "QUALIF NAME : TYPE = BODY" with a custom body extractor *)
let extract_global_decl_body (ctx : extraction_ctx) (fmt : F.formatter)
    (qualif : fun_decl_qualif) (name : string) (ty : ty)
    (extract_body : (F.formatter -> unit) Option.t) : unit =
  let is_opaque = Option.is_none extract_body in

  (* Open the definition box (depth=0) *)
  F.pp_open_hvbox fmt ctx.indent_incr;

  (* Open "QUALIF NAME : TYPE =" box (depth=1) *)
  F.pp_open_hovbox fmt ctx.indent_incr;
  (* Print "QUALIF NAME " *)
  F.pp_print_string fmt (fun_decl_qualif_keyword qualif ^ " " ^ name);
  F.pp_print_space fmt ();

  (* Open ": TYPE =" box (depth=2) *)
  F.pp_open_hvbox fmt 0;
  (* Print ": " *)
  F.pp_print_string fmt ":";
  F.pp_print_space fmt ();

  (* Open "TYPE" box (depth=3) *)
  F.pp_open_hovbox fmt ctx.indent_incr;
  (* Print "TYPE" *)
  extract_ty ctx fmt false ty;
  (* Close "TYPE" box (depth=3) *)
  F.pp_close_box fmt ();

  if not is_opaque then (
    (* Print " =" *)
    F.pp_print_space fmt ();
    F.pp_print_string fmt "=");
  (* Close ": TYPE =" box (depth=2) *)
  F.pp_close_box fmt ();
  (* Close "QUALIF NAME : TYPE =" box (depth=1) *)
  F.pp_close_box fmt ();

  if not is_opaque then (
    F.pp_print_space fmt ();
    (* Open "BODY" box (depth=1) *)
    F.pp_open_hvbox fmt 0;
    (* Print "BODY" *)
    (Option.get extract_body) fmt;
    (* Close "BODY" box (depth=1) *)
    F.pp_close_box fmt ());
  (* Close the definition box (depth=0) *)
  F.pp_close_box fmt ()

(** Extract a global declaration.
    We generate the body which computes the global value separately from the value declaration itself.

    For example in Rust,
    [static X: u32 = 3;]

    will be translated to:
    [let x_body : result u32 = Return 3]
    [let x_c : u32 = eval_global x_body]
 *)
let extract_global_decl (ctx : extraction_ctx) (fmt : F.formatter)
    (global : A.global_decl) (body : fun_decl) (interface : bool) : unit =
  assert body.is_global_decl_body;
  assert (Option.is_none body.back_id);
  assert (List.length body.signature.inputs = 0);
  assert (List.length body.signature.doutputs = 1);
  assert (List.length body.signature.type_params = 0);

  (* Add a break then the name of the corresponding LLBC declaration *)
  F.pp_print_break fmt 0 0;
  F.pp_print_string fmt
    ("(** [" ^ Print.global_name_to_string global.name ^ "] *)");
  F.pp_print_space fmt ();

  let decl_name = ctx_get_global global.def_id ctx in
  let body_name = ctx_get_function (Regular global.body_id) None ctx in

  let decl_ty, body_ty =
    let ty = body.signature.output in
    if body.signature.info.effect_info.can_fail then (unwrap_result_ty ty, ty)
    else (ty, mk_result_ty ty)
  in
  match body.body with
  | None ->
      let qualif = if interface then Val else AssumeVal in
      extract_global_decl_body ctx fmt qualif decl_name decl_ty None
  | Some body ->
      extract_global_decl_body ctx fmt Let body_name body_ty
        (Some (fun fmt -> extract_texpression ctx fmt false body.body));
      F.pp_print_break fmt 0 0;
      extract_global_decl_body ctx fmt Let decl_name decl_ty
        (Some (fun fmt -> F.pp_print_string fmt ("eval_global " ^ body_name)));
      F.pp_print_break fmt 0 0

(** Extract a unit test, if the function is a unit function (takes no
    parameters, returns unit).
    
    A unit test simply checks that the function normalizes to [Return ()]:
    {[
      let _ = assert_norm (FUNCTION () = Return ())
    ]}
 *)
let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter)
    (def : fun_decl) : unit =
  (* We only insert unit tests for forward functions *)
  assert (def.back_id = None);
  (* Check if this is a unit function *)
  let sg = def.signature in
  if
    sg.type_params = []
    && (sg.inputs = [ mk_unit_ty ] || sg.inputs = [])
    && sg.output = mk_result_ty mk_unit_ty
  then (
    (* Add a break before *)
    F.pp_print_break fmt 0 0;
    (* Print a comment *)
    F.pp_print_string fmt
      ("(** Unit test for [" ^ Print.fun_name_to_string def.basename ^ "] *)");
    F.pp_print_space fmt ();
    (* Open a box for the test *)
    F.pp_open_hovbox fmt ctx.indent_incr;
    (* Print the test *)
    F.pp_print_string fmt "let _ =";
    F.pp_print_space fmt ();
    F.pp_print_string fmt "assert_norm";
    F.pp_print_space fmt ();
    F.pp_print_string fmt "(";
    let fun_name = ctx_get_local_function def.def_id def.back_id ctx in
    F.pp_print_string fmt fun_name;
    if sg.inputs <> [] then (
      F.pp_print_space fmt ();
      F.pp_print_string fmt "()");
    F.pp_print_space fmt ();
    F.pp_print_string fmt "=";
    F.pp_print_space fmt ();
    let success = ctx_get_variant (Assumed Result) result_return_id ctx in
    F.pp_print_string fmt (success ^ " ())");
    (* Close the box for the test *)
    F.pp_close_box fmt ();
    (* Add a break after *)
    F.pp_print_break fmt 0 0)
  else (* Do nothing *)
    ()