1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
|
(** Define base utilities for the extraction *)
open Contexts
open Pure
open StringUtils
open Config
module F = Format
open ExtractBuiltin
open TranslateCore
(** The local logger *)
let log = Logging.extract_log
type region_group_info = {
id : RegionGroupId.id;
(** The id of the region group.
Note that a simple way of generating unique names for backward
functions is to use the region group ids.
*)
region_names : string option list;
(** The names of the region variables included in this group.
Note that names are not always available...
*)
}
module StringSet = Collections.StringSet
module StringMap = Collections.StringMap
(** Characterizes a declaration.
Is in particular useful to derive the proper keywords to introduce the
declarations/definitions.
*)
type decl_kind =
| SingleNonRec
(** A single, non-recursive definition.
F*: [let x = ...]
Coq: [Definition x := ...]
*)
| SingleRec
(** A single, recursive definition.
F*: [let rec x = ...]
Coq: [Fixpoint x := ...]
*)
| MutRecFirst
(** The first definition of a group of mutually-recursive definitions.
F*: [type x0 = ... and x1 = ...]
Coq: [Fixpoint x0 := ... with x1 := ...]
*)
| MutRecInner
(** An inner definition in a group of mutually-recursive definitions. *)
| MutRecLast
(** The last definition in a group of mutually-recursive definitions.
We need this because in some theorem provers like Coq, we need to
delimit group of mutually recursive definitions (in particular, we
need to insert an end delimiter).
*)
| Assumed
(** An assumed definition.
F*: [assume val x]
Coq: [Axiom x : Type.]
*)
| Declared
(** Declare a type in an interface or a module signature.
Rem.: for now, in Coq, we don't declare module signatures: we
thus assume the corresponding declarations.
F*: [val x : Type0]
Coq: [Axiom x : Type.]
*)
[@@deriving show]
(** Return [true] if the declaration is the last from its group of declarations.
We need this because in some provers (e.g., Coq), we need to delimit the
end of a (group of) definition(s) (in Coq: with a ".").
*)
let decl_is_last_from_group (kind : decl_kind) : bool =
match kind with
| SingleNonRec | SingleRec | MutRecLast | Assumed | Declared -> true
| MutRecFirst | MutRecInner -> false
let decl_is_from_rec_group (kind : decl_kind) : bool =
match kind with
| SingleNonRec | Assumed | Declared -> false
| SingleRec | MutRecFirst | MutRecInner | MutRecLast -> true
let decl_is_from_mut_rec_group (kind : decl_kind) : bool =
match kind with
| SingleNonRec | SingleRec | Assumed | Declared -> false
| MutRecFirst | MutRecInner | MutRecLast -> true
let decl_is_first_from_group (kind : decl_kind) : bool =
match kind with
| SingleNonRec | SingleRec | MutRecFirst | Assumed | Declared -> true
| MutRecLast | MutRecInner -> false
(** Return [true] if the declaration is not the last from its group of declarations.
We need this because in some provers (e.g., HOL4), we need to delimit
the inner declarations (with `/\` for instance).
*)
let decl_is_not_last_from_group (kind : decl_kind) : bool =
not (decl_is_last_from_group kind)
type type_decl_kind = Enum | Struct | Tuple [@@deriving show]
(** We use identifiers to look for name clashes *)
type id =
| GlobalId of A.GlobalDeclId.id
| FunId of fun_id
| TerminationMeasureId of (A.fun_id * LoopId.id option)
(** The definition which provides the decreases/termination measure.
We insert calls to this clause to prove/reason about termination:
the body of those clauses must be defined by the user, in the
proper files.
More specifically:
- in F*, this is the content of the [decreases] clause.
Example:
========
{[
let rec sum (ls : list nat) : Tot nat (decreases ls) = ...
]}
- in Lean, this is the content of the [termination_by] clause.
*)
| DecreasesProofId of (A.fun_id * LoopId.id option)
(** The definition which provides the decreases/termination proof.
We insert calls to this clause to prove/reason about termination:
the body of those clauses must be defined by the user, in the
proper files.
More specifically:
- F* doesn't use this.
- in Lean, this is the tactic used by the [decreases_by] annotations.
*)
| TypeId of type_id
| StructId of type_id
(** We use this when we manipulate the names of the structure
constructors.
For instance, in F*:
{[
type pair = { x: nat; y : nat }
let p : pair = Mkpair 0 1
]}
*)
| VariantId of type_id * VariantId.id
(** If often happens that variant names must be unique (it is the case in
F* ) which is why we register them here.
*)
| FieldId of type_id * FieldId.id
(** If often happens that in the case of structures, the field names
must be unique (it is the case in F* ) which is why we register
them here.
*)
| TypeVarId of TypeVarId.id
| ConstGenericVarId of ConstGenericVarId.id
| VarId of VarId.id
| TraitDeclId of TraitDeclId.id
| TraitImplId of TraitImplId.id
| LocalTraitClauseId of TraitClauseId.id
| TraitDeclConstructorId of TraitDeclId.id
| TraitMethodId of TraitDeclId.id * string * T.RegionGroupId.id option
(** Something peculiar with trait methods: because we have to take into
account forward/backward functions, we may need to generate fields
items per method.
*)
| TraitItemId of TraitDeclId.id * string
(** A trait associated item which is not a method *)
| TraitParentClauseId of TraitDeclId.id * TraitClauseId.id
| TraitItemClauseId of TraitDeclId.id * string * TraitClauseId.id
| TraitSelfClauseId
(** Specifically for the clause: [Self : Trait].
For now, we forbid provided methods (methods in trait declarations
with a default implementation) from being overriden in trait implementations.
We extract trait provided methods such that they take an instance of
the trait as input: this instance is given by the trait self clause.
For instance:
{[
//
// Rust
//
trait ToU64 {
fn to_u64(&self) -> u64;
// Provided method
fn is_pos(&self) -> bool {
self.to_u64() > 0
}
}
//
// Generated code
//
struct ToU64 (T : Type) {
to_u64 : T -> u64;
}
// The trait self clause
// vvvvvvvvvvvvvvvvvvvvvv
let is_pos (T : Type) (trait_self : ToU64 T) (self : T) : bool =
trait_self.to_u64 self > 0
]}
*)
| UnknownId
(** Used for stored various strings like keywords, definitions which
should always be in context, etc. and which can't be linked to one
of the above.
TODO: rename to "keyword"
*)
[@@deriving show, ord]
module IdOrderedType = struct
type t = id
let compare = compare_id
let to_string = show_id
let pp_t = pp_id
let show_t = show_id
end
module IdMap = Collections.MakeMap (IdOrderedType)
module IdSet = Collections.MakeSet (IdOrderedType)
(** The names map stores the mappings from names to identifiers and vice-versa.
We use it for lookups (during the translation) and to check for name clashes.
[id_to_name] is for debugging.
*)
type names_map = {
id_to_name : string IdMap.t;
name_to_id : id StringMap.t;
(** The name to id map is used to look for name clashes, and generate nice
debugging messages: if there is a name clash, it is useful to know
precisely which identifiers are mapped to the same name...
*)
names_set : StringSet.t;
}
let empty_names_map : names_map =
{
id_to_name = IdMap.empty;
name_to_id = StringMap.empty;
names_set = StringSet.empty;
}
(** Small helper to report name collision *)
let report_name_collision (id_to_string : id -> string) (id1 : id) (id2 : id)
(name : string) : unit =
let id1 = "\n- " ^ id_to_string id1 in
let id2 = "\n- " ^ id_to_string id2 in
let err =
"Name clash detected: the following identifiers are bound to the same name \
\"" ^ name ^ "\":" ^ id1 ^ id2
^ "\nYou may want to rename some of your definitions, or report an issue."
in
log#serror err;
(* If we fail hard on errors, raise an exception *)
if !Config.fail_hard then raise (Failure err)
let names_map_get_id_from_name (name : string) (nm : names_map) : id option =
StringMap.find_opt name nm.name_to_id
let names_map_check_collision (id_to_string : id -> string) (id : id)
(name : string) (nm : names_map) : unit =
match names_map_get_id_from_name name nm with
| None -> () (* Ok *)
| Some clash ->
(* There is a clash: print a nice debugging message for the user *)
report_name_collision id_to_string clash id name
(** Insert bindings in a names map without checking for collisions *)
let names_map_add_unchecked (id : id) (name : string) (nm : names_map) :
names_map =
(* Insert *)
let id_to_name = IdMap.add id name nm.id_to_name in
let name_to_id = StringMap.add name id nm.name_to_id in
let names_set = StringSet.add name nm.names_set in
{ id_to_name; name_to_id; names_set }
let names_map_add (id_to_string : id -> string) (id : id) (name : string)
(nm : names_map) : names_map =
(* Check if there is a clash *)
names_map_check_collision id_to_string id name nm;
(* Sanity check *)
if StringSet.mem name nm.names_set then (
let err =
"Error when registering the name for id: " ^ id_to_string id
^ ":\nThe chosen name is already in the names set: " ^ name
in
log#serror err;
(* If we fail hard on errors, raise an exception *)
if !Config.fail_hard then raise (Failure err));
(* Insert *)
names_map_add_unchecked id name nm
(** The unsafe names map stores mappings from identifiers to names which might
collide. For some backends and some names, it might be acceptable to have
collisions. For instance, in Lean, different records can have fields with
the same name because Lean uses the typing information to resolve the
ambiguities.
This map complements the {!type:names_map}, which checks for collisions.
*)
type unsafe_names_map = { id_to_name : string IdMap.t }
let empty_unsafe_names_map = { id_to_name = IdMap.empty }
let unsafe_names_map_add (id : id) (name : string) (nm : unsafe_names_map) :
unsafe_names_map =
{ id_to_name = IdMap.add id name nm.id_to_name }
(** Make a (variable) basename unique (by adding an index).
We do this in an inefficient manner (by testing all indices starting from
0) but it shouldn't be a bottleneck.
Also note that at some point, we thought about trying to reuse names of
variables which are not used anymore, like here:
{[
let x = ... in
...
let x0 = ... in // We could use the name "x" if [x] is not used below
...
]}
However it is a good idea to keep things as they are for F*: as F* is
designed for extrinsic proofs, a proof about a function follows this
function's structure. The consequence is that we often end up
copy-pasting function bodies. As in the proofs (in assertions and
when calling lemmas) we often need to talk about the "past" (i.e.,
previous values), it is very useful to generate code where all variable
names are assigned at most once.
[append]: function to append an index to a string
*)
let basename_to_unique (names_set : StringSet.t)
(append : string -> int -> string) (basename : string) : string =
let rec gen (i : int) : string =
let s = append basename i in
if StringSet.mem s names_set then gen (i + 1) else s
in
if StringSet.mem basename names_set then gen 0 else basename
type fun_name_info = { keep_fwd : bool; num_backs : int }
type names_maps = {
names_map : names_map;
(** The map for id to names, where we forbid name collisions
(ex.: we always forbid function name collisions). *)
unsafe_names_map : unsafe_names_map;
(** The map for id to names, where we allow name collisions
(ex.: we might allow record field name collisions). *)
strict_names_map : names_map;
(** This map is a sub-map of [names_map]. For the ids in this map we also
forbid collisions with names in the [unsafe_names_map].
We do so for keywords for instance, but also for types (in a dependently
typed language, we might have an issue if the field of a record has, say,
the name "u32", and another field of the same record refers to "u32"
(for instance in its type).
*)
}
(** Return [true] if we are strict on collisions for this id (i.e., we forbid
collisions even with the ids in the unsafe names map) *)
let strict_collisions (id : id) : bool =
match id with UnknownId | TypeId _ -> true | _ -> false
(** We might not check for collisions for some specific ids (ex.: field names) *)
let allow_collisions (id : id) : bool =
match id with
| FieldId _ | TraitItemClauseId _ | TraitParentClauseId _ | TraitItemId _
| TraitMethodId _ ->
!Config.record_fields_short_names
| FunId (Pure _ | FromLlbc (FunId (FAssumed _), _, _)) ->
(* We map several assumed functions to the same id *)
true
| _ -> false
(** The [id_to_string] function to print nice debugging messages if there are
collisions *)
let names_maps_add (id_to_string : id -> string) (id : id) (name : string)
(nm : names_maps) : names_maps =
(* We do not use the same name map if we allow/disallow collisions.
We notably use it for field names: some backends like Lean can use the
type information to disambiguate field projections.
Remark: we still need to check that those "unsafe" ids don't collide with
the ids that we mark as "strict on collision".
For instance, we don't allow naming a field "let". We enforce this by
not checking collision between ids for which we permit collisions (ex.:
between fields), but still checking collisions between those ids and the
others (ex.: fields and keywords).
*)
if allow_collisions id then (
(* Check with the ids which are considered to be strict on collisions *)
names_map_check_collision id_to_string id name nm.strict_names_map;
{
nm with
unsafe_names_map = unsafe_names_map_add id name nm.unsafe_names_map;
})
else
(* Remark: if we are strict on collisions:
- we add the id to the strict collisions map
- we check that the id doesn't collide with the unsafe map
TODO: we might not check that:
- a user defined function doesn't collide with an assumed function
- two trait decl items don't collide with each other
*)
let strict_names_map =
if strict_collisions id then
names_map_add id_to_string id name nm.strict_names_map
else nm.strict_names_map
in
let names_map = names_map_add id_to_string id name nm.names_map in
{ nm with strict_names_map; names_map }
(** The [id_to_string] function to print nice debugging messages if there are
collisions *)
let names_maps_get (id_to_string : id -> string) (id : id) (nm : names_maps) :
string =
(* We do not use the same name map if we allow/disallow collisions *)
let map_to_string (m : string IdMap.t) : string =
"[\n"
^ String.concat ","
(List.map
(fun (id, n) -> "\n " ^ id_to_string id ^ " -> " ^ n)
(IdMap.bindings m))
^ "\n]"
in
if allow_collisions id then (
let m = nm.unsafe_names_map.id_to_name in
match IdMap.find_opt id m with
| Some s -> s
| None ->
let err =
"Could not find: " ^ id_to_string id ^ "\nNames map:\n"
^ map_to_string m
in
log#serror err;
if !Config.fail_hard then raise (Failure err)
else "(%%%ERROR: unknown identifier\": " ^ id_to_string id ^ "\"%%%)")
else
let m = nm.names_map.id_to_name in
match IdMap.find_opt id m with
| Some s -> s
| None ->
let err =
"Could not find: " ^ id_to_string id ^ "\nNames map:\n"
^ map_to_string m
in
log#serror err;
if !Config.fail_hard then raise (Failure err)
else "(ERROR: \"" ^ id_to_string id ^ "\")"
type names_map_init = {
keywords : string list;
assumed_adts : (assumed_ty * string) list;
assumed_structs : (assumed_ty * string) list;
assumed_variants : (assumed_ty * VariantId.id * string) list;
assumed_llbc_functions :
(A.assumed_fun_id * RegionGroupId.id option * string) list;
assumed_pure_functions : (pure_assumed_fun_id * string) list;
}
let names_maps_add_assumed_type (id_to_string : id -> string) (id : assumed_ty)
(name : string) (nm : names_maps) : names_maps =
names_maps_add id_to_string (TypeId (TAssumed id)) name nm
let names_maps_add_assumed_struct (id_to_string : id -> string)
(id : assumed_ty) (name : string) (nm : names_maps) : names_maps =
names_maps_add id_to_string (StructId (TAssumed id)) name nm
let names_maps_add_assumed_variant (id_to_string : id -> string)
(id : assumed_ty) (variant_id : VariantId.id) (name : string)
(nm : names_maps) : names_maps =
names_maps_add id_to_string (VariantId (TAssumed id, variant_id)) name nm
let names_maps_add_function (id_to_string : id -> string) (fid : fun_id)
(name : string) (nm : names_maps) : names_maps =
names_maps_add id_to_string (FunId fid) name nm
let bool_name () = if !backend = Lean then "Bool" else "bool"
let char_name () = if !backend = Lean then "Char" else "char"
let str_name () = if !backend = Lean then "String" else "string"
(** Small helper to compute the name of an int type *)
let int_name (int_ty : integer_type) =
let isize, usize, i_format, u_format =
match !backend with
| FStar | Coq | HOL4 ->
("isize", "usize", format_of_string "i%d", format_of_string "u%d")
| Lean -> ("Isize", "Usize", format_of_string "I%d", format_of_string "U%d")
in
match int_ty with
| Isize -> isize
| I8 -> Printf.sprintf i_format 8
| I16 -> Printf.sprintf i_format 16
| I32 -> Printf.sprintf i_format 32
| I64 -> Printf.sprintf i_format 64
| I128 -> Printf.sprintf i_format 128
| Usize -> usize
| U8 -> Printf.sprintf u_format 8
| U16 -> Printf.sprintf u_format 16
| U32 -> Printf.sprintf u_format 32
| U64 -> Printf.sprintf u_format 64
| U128 -> Printf.sprintf u_format 128
(** Extraction context.
Note that the extraction context contains information coming from the
LLBC AST (not only the pure AST). This is useful for naming, for instance:
we use the region information to generate the names of the backward
functions, etc.
*)
type extraction_ctx = {
crate : A.crate;
trans_ctx : trans_ctx;
names_maps : names_maps;
indent_incr : int;
(** The indent increment we insert whenever we need to indent more *)
use_dep_ite : bool;
(** For Lean: do we use dependent-if then else expressions?
Example:
{[
if h: b then ... else ...
-- ^^
-- makes the if then else dependent
]}
*)
fun_name_info : fun_name_info PureUtils.RegularFunIdMap.t;
(** Information used to filter and name functions - we use it
to print comments in the generated code, to help link
the generated code to the original code (information such
as: "this function is the backward function of ...", or
"this function is the merged forward/backward function of ..."
in case a Rust function only has one backward translation
and we filter the forward function because it returns unit.
*)
trait_decl_id : trait_decl_id option;
(** If we are extracting a trait declaration, identifies it *)
is_provided_method : bool;
trans_types : Pure.type_decl Pure.TypeDeclId.Map.t;
trans_funs : pure_fun_translation A.FunDeclId.Map.t;
functions_with_decreases_clause : PureUtils.FunLoopIdSet.t;
trans_trait_decls : Pure.trait_decl Pure.TraitDeclId.Map.t;
trans_trait_impls : Pure.trait_impl Pure.TraitImplId.Map.t;
types_filter_type_args_map : bool list TypeDeclId.Map.t;
(** The map to filter the type arguments for the builtin type
definitions.
We need this for type `Vec`, for instance, which takes a useless
(in the context of the type translation) type argument for the
allocator which is used, and which we want to remove.
TODO: it would be cleaner to filter those types in a micro-pass,
rather than at code generation time.
*)
funs_filter_type_args_map : bool list FunDeclId.Map.t;
(** Same as {!types_filter_type_args_map}, but for functions *)
trait_impls_filter_type_args_map : bool list TraitImplId.Map.t;
(** Same as {!types_filter_type_args_map}, but for trait implementations *)
}
let extraction_ctx_to_fmt_env (ctx : extraction_ctx) : PrintPure.fmt_env =
TranslateCore.trans_ctx_to_pure_fmt_env ctx.trans_ctx
let name_to_string (ctx : extraction_ctx) =
PrintPure.name_to_string (extraction_ctx_to_fmt_env ctx)
let trait_decl_id_to_string (ctx : extraction_ctx) =
PrintPure.trait_decl_id_to_string (extraction_ctx_to_fmt_env ctx)
let type_id_to_string (ctx : extraction_ctx) =
PrintPure.type_id_to_string (extraction_ctx_to_fmt_env ctx)
let global_decl_id_to_string (ctx : extraction_ctx) =
PrintPure.global_decl_id_to_string (extraction_ctx_to_fmt_env ctx)
let llbc_fun_id_to_string (ctx : extraction_ctx) =
PrintPure.llbc_fun_id_to_string (extraction_ctx_to_fmt_env ctx)
let fun_id_to_string (ctx : extraction_ctx) =
PrintPure.regular_fun_id_to_string (extraction_ctx_to_fmt_env ctx)
let adt_variant_to_string (ctx : extraction_ctx) =
PrintPure.adt_variant_to_string (extraction_ctx_to_fmt_env ctx)
let adt_field_to_string (ctx : extraction_ctx) =
PrintPure.adt_field_to_string (extraction_ctx_to_fmt_env ctx)
(** Debugging function, used when communicating name collisions to the user,
and also to print ids for internal debugging (in case of lookup miss for
instance).
*)
let id_to_string (id : id) (ctx : extraction_ctx) : string =
let trait_decl_id_to_string (id : A.TraitDeclId.id) : string =
let trait_name = trait_decl_id_to_string ctx id in
"trait_decl: " ^ trait_name ^ " (id: " ^ A.TraitDeclId.to_string id ^ ")"
in
match id with
| GlobalId gid -> global_decl_id_to_string ctx gid
| FunId fid -> fun_id_to_string ctx fid
| DecreasesProofId (fid, lid) ->
let fun_name = llbc_fun_id_to_string ctx fid in
let loop =
match lid with
| None -> ""
| Some lid -> ", loop: " ^ LoopId.to_string lid
in
"decreases proof for function: " ^ fun_name ^ loop
| TerminationMeasureId (fid, lid) ->
let fun_name = llbc_fun_id_to_string ctx fid in
let loop =
match lid with
| None -> ""
| Some lid -> ", loop: " ^ LoopId.to_string lid
in
"termination measure for function: " ^ fun_name ^ loop
| TypeId id -> "type name: " ^ type_id_to_string ctx id
| StructId id -> "struct constructor of: " ^ type_id_to_string ctx id
| VariantId (id, variant_id) ->
let type_name = type_id_to_string ctx id in
let variant_name = adt_variant_to_string ctx id (Some variant_id) in
"type name: " ^ type_name ^ ", variant name: " ^ variant_name
| FieldId (id, field_id) ->
let type_name = type_id_to_string ctx id in
let field_name = adt_field_to_string ctx id field_id in
"type name: " ^ type_name ^ ", field name: " ^ field_name
| UnknownId -> "keyword"
| TypeVarId id -> "type_var_id: " ^ TypeVarId.to_string id
| ConstGenericVarId id ->
"const_generic_var_id: " ^ ConstGenericVarId.to_string id
| VarId id -> "var_id: " ^ VarId.to_string id
| TraitDeclId id -> "trait_decl_id: " ^ TraitDeclId.to_string id
| TraitImplId id -> "trait_impl_id: " ^ TraitImplId.to_string id
| LocalTraitClauseId id ->
"local_trait_clause_id: " ^ TraitClauseId.to_string id
| TraitDeclConstructorId id ->
"trait_decl_constructor: " ^ trait_decl_id_to_string id
| TraitParentClauseId (id, clause_id) ->
"trait_parent_clause_id: " ^ trait_decl_id_to_string id ^ ", clause_id: "
^ TraitClauseId.to_string clause_id
| TraitItemClauseId (id, item_name, clause_id) ->
"trait_item_clause_id: " ^ trait_decl_id_to_string id ^ ", item name: "
^ item_name ^ ", clause_id: "
^ TraitClauseId.to_string clause_id
| TraitItemId (id, name) ->
"trait_item_id: " ^ trait_decl_id_to_string id ^ ", type name: " ^ name
| TraitMethodId (trait_decl_id, fun_name, rg_id) ->
let fwd_back_kind =
match rg_id with
| None -> "forward"
| Some rg_id -> "backward " ^ RegionGroupId.to_string rg_id
in
trait_decl_id_to_string trait_decl_id
^ ", method name (" ^ fwd_back_kind ^ "): " ^ fun_name
| TraitSelfClauseId -> "trait_self_clause"
let ctx_add (id : id) (name : string) (ctx : extraction_ctx) : extraction_ctx =
let id_to_string (id : id) : string = id_to_string id ctx in
let names_maps = names_maps_add id_to_string id name ctx.names_maps in
{ ctx with names_maps }
let ctx_get (id : id) (ctx : extraction_ctx) : string =
let id_to_string (id : id) : string = id_to_string id ctx in
names_maps_get id_to_string id ctx.names_maps
let ctx_get_global (id : A.GlobalDeclId.id) (ctx : extraction_ctx) : string =
ctx_get (GlobalId id) ctx
let ctx_get_function (id : fun_id) (ctx : extraction_ctx) : string =
ctx_get (FunId id) ctx
let ctx_get_local_function (id : A.FunDeclId.id) (lp : LoopId.id option)
(rg : RegionGroupId.id option) (ctx : extraction_ctx) : string =
ctx_get_function (FromLlbc (FunId (FRegular id), lp, rg)) ctx
let ctx_get_type (id : type_id) (ctx : extraction_ctx) : string =
assert (id <> TTuple);
ctx_get (TypeId id) ctx
let ctx_get_local_type (id : TypeDeclId.id) (ctx : extraction_ctx) : string =
ctx_get_type (TAdtId id) ctx
let ctx_get_assumed_type (id : assumed_ty) (ctx : extraction_ctx) : string =
ctx_get_type (TAssumed id) ctx
let ctx_get_trait_constructor (id : trait_decl_id) (ctx : extraction_ctx) :
string =
ctx_get (TraitDeclConstructorId id) ctx
let ctx_get_trait_self_clause (ctx : extraction_ctx) : string =
ctx_get TraitSelfClauseId ctx
let ctx_get_trait_decl (id : trait_decl_id) (ctx : extraction_ctx) : string =
ctx_get (TraitDeclId id) ctx
let ctx_get_trait_impl (id : trait_impl_id) (ctx : extraction_ctx) : string =
ctx_get (TraitImplId id) ctx
let ctx_get_trait_item (id : trait_decl_id) (item_name : string)
(ctx : extraction_ctx) : string =
ctx_get (TraitItemId (id, item_name)) ctx
let ctx_get_trait_const (id : trait_decl_id) (item_name : string)
(ctx : extraction_ctx) : string =
ctx_get_trait_item id item_name ctx
let ctx_get_trait_type (id : trait_decl_id) (item_name : string)
(ctx : extraction_ctx) : string =
ctx_get_trait_item id item_name ctx
let ctx_get_trait_method (id : trait_decl_id) (item_name : string)
(rg_id : T.RegionGroupId.id option) (ctx : extraction_ctx) : string =
ctx_get (TraitMethodId (id, item_name, rg_id)) ctx
let ctx_get_trait_parent_clause (id : trait_decl_id) (clause : trait_clause_id)
(ctx : extraction_ctx) : string =
ctx_get (TraitParentClauseId (id, clause)) ctx
let ctx_get_trait_item_clause (id : trait_decl_id) (item : string)
(clause : trait_clause_id) (ctx : extraction_ctx) : string =
ctx_get (TraitItemClauseId (id, item, clause)) ctx
let ctx_get_var (id : VarId.id) (ctx : extraction_ctx) : string =
ctx_get (VarId id) ctx
let ctx_get_type_var (id : TypeVarId.id) (ctx : extraction_ctx) : string =
ctx_get (TypeVarId id) ctx
let ctx_get_const_generic_var (id : ConstGenericVarId.id) (ctx : extraction_ctx)
: string =
ctx_get (ConstGenericVarId id) ctx
let ctx_get_local_trait_clause (id : TraitClauseId.id) (ctx : extraction_ctx) :
string =
ctx_get (LocalTraitClauseId id) ctx
let ctx_get_field (type_id : type_id) (field_id : FieldId.id)
(ctx : extraction_ctx) : string =
ctx_get (FieldId (type_id, field_id)) ctx
let ctx_get_struct (def_id : type_id) (ctx : extraction_ctx) : string =
ctx_get (StructId def_id) ctx
let ctx_get_variant (def_id : type_id) (variant_id : VariantId.id)
(ctx : extraction_ctx) : string =
ctx_get (VariantId (def_id, variant_id)) ctx
let ctx_get_decreases_proof (def_id : A.FunDeclId.id)
(loop_id : LoopId.id option) (ctx : extraction_ctx) : string =
ctx_get (DecreasesProofId (FRegular def_id, loop_id)) ctx
let ctx_get_termination_measure (def_id : A.FunDeclId.id)
(loop_id : LoopId.id option) (ctx : extraction_ctx) : string =
ctx_get (TerminationMeasureId (FRegular def_id, loop_id)) ctx
(** Small helper to compute the name of a unary operation *)
let unop_name (unop : unop) : string =
match unop with
| Not -> (
match !backend with FStar | Lean -> "not" | Coq -> "negb" | HOL4 -> "~")
| Neg (int_ty : integer_type) -> (
match !backend with Lean -> "-" | _ -> int_name int_ty ^ "_neg")
| Cast _ ->
(* We never directly use the unop name in this case *)
raise (Failure "Unsupported")
(** Small helper to compute the name of a binary operation (note that many
binary operations like "less than" are extracted to primitive operations,
like [<]).
*)
let named_binop_name (binop : E.binop) (int_ty : integer_type) : string =
let binop_s =
match binop with
| Div -> "div"
| Rem -> "rem"
| Add -> "add"
| Sub -> "sub"
| Mul -> "mul"
| Lt -> "lt"
| Le -> "le"
| Ge -> "ge"
| Gt -> "gt"
| BitXor -> "xor"
| BitAnd -> "and"
| BitOr -> "or"
| Shl -> "shl"
| Shr -> "shr"
| _ -> raise (Failure "Unreachable")
in
(* Remark: the Lean case is actually not used *)
match !backend with
| Lean -> int_name int_ty ^ "." ^ binop_s
| FStar | Coq | HOL4 -> int_name int_ty ^ "_" ^ binop_s
(** A list of keywords/identifiers used by the backend and with which we
want to check collision.
Remark: this is useful mostly to look for collisions when generating
names for *variables*.
*)
let keywords () =
let named_unops =
unop_name Not
:: List.map (fun it -> unop_name (Neg it)) T.all_signed_int_types
in
let named_binops = [ E.Div; Rem; Add; Sub; Mul ] in
let named_binops =
List.concat_map
(fun bn -> List.map (fun it -> named_binop_name bn it) T.all_int_types)
named_binops
in
let misc =
match !backend with
| FStar ->
[
"assert";
"assert_norm";
"assume";
"else";
"fun";
"fn";
"FStar";
"FStar.Mul";
"if";
"in";
"include";
"int";
"let";
"list";
"match";
"open";
"rec";
"scalar_cast";
"then";
"type";
"Type0";
"Type";
"unit";
"val";
"with";
]
| Coq ->
[
"assert";
"Arguments";
"Axiom";
"char_of_byte";
"Check";
"Declare";
"Definition";
"else";
"End";
"fun";
"Fixpoint";
"if";
"in";
"int";
"Inductive";
"Import";
"let";
"Lemma";
"match";
"Module";
"not";
"Notation";
"Proof";
"Qed";
"rec";
"Record";
"Require";
"Scope";
"Search";
"SearchPattern";
"Set";
"then";
(* [tt] is unit *)
"tt";
"type";
"Type";
"unit";
"with";
]
| Lean ->
[
"by";
"class";
"decreasing_by";
"def";
"deriving";
"do";
"else";
"end";
"for";
"have";
"if";
"inductive";
"instance";
"import";
"let";
"macro";
"match";
"namespace";
"opaque";
"open";
"run_cmd";
"set_option";
"simp";
"structure";
"syntax";
"termination_by";
"then";
"Type";
"unsafe";
"where";
"with";
"opaque_defs";
]
| HOL4 ->
[
"Axiom";
"case";
"Definition";
"else";
"End";
"fix";
"fix_exec";
"fn";
"fun";
"if";
"in";
"int";
"Inductive";
"let";
"of";
"Proof";
"QED";
"then";
"Theorem";
]
in
List.concat [ named_unops; named_binops; misc ]
let assumed_adts () : (assumed_ty * string) list =
let state =
if !use_state then
match !backend with
| Lean -> [ (TState, "State") ]
| Coq | FStar | HOL4 -> [ (TState, "state") ]
else []
in
(* We voluntarily omit the type [Error]: it is never directly
referenced in the generated translation, and easily collides
with user-defined types *)
let adts =
match !backend with
| Lean ->
[
(TResult, "Result");
(TFuel, "Nat");
(TArray, "Array");
(TSlice, "Slice");
(TStr, "Str");
(TRawPtr Mut, "MutRawPtr");
(TRawPtr Const, "ConstRawPtr");
]
| Coq | FStar | HOL4 ->
[
(TResult, "result");
(TFuel, if !backend = HOL4 then "num" else "nat");
(TArray, "array");
(TSlice, "slice");
(TStr, "str");
(TRawPtr Mut, "mut_raw_ptr");
(TRawPtr Const, "const_raw_ptr");
]
in
state @ adts
let assumed_struct_constructors () : (assumed_ty * string) list =
match !backend with
| Lean -> [ (TArray, "Array.make") ]
| Coq -> [ (TArray, "mk_array") ]
| FStar -> [ (TArray, "mk_array") ]
| HOL4 -> [ (TArray, "mk_array") ]
let assumed_variants () : (assumed_ty * VariantId.id * string) list =
match !backend with
| FStar ->
[
(TResult, result_return_id, "Return");
(TResult, result_fail_id, "Fail");
(TError, error_failure_id, "Failure");
(TError, error_out_of_fuel_id, "OutOfFuel");
(* No Fuel::Zero on purpose *)
(* No Fuel::Succ on purpose *)
]
| Coq ->
[
(TResult, result_return_id, "Return");
(TResult, result_fail_id, "Fail_");
(TError, error_failure_id, "Failure");
(TError, error_out_of_fuel_id, "OutOfFuel");
(TFuel, fuel_zero_id, "O");
(TFuel, fuel_succ_id, "S");
]
| Lean ->
[
(TResult, result_return_id, "Result.ret");
(TResult, result_fail_id, "Result.fail");
(* For panic: we omit the prefix "Error." because the type is always
clear from the context. Also, "Error" is often used by user-defined
types (when we omit the crate as a prefix). *)
(TError, error_failure_id, ".panic");
(* No Fuel::Zero on purpose *)
(* No Fuel::Succ on purpose *)
]
| HOL4 ->
[
(TResult, result_return_id, "Return");
(TResult, result_fail_id, "Fail");
(TError, error_failure_id, "Failure");
(* No Fuel::Zero on purpose *)
(* No Fuel::Succ on purpose *)
]
let assumed_llbc_functions () :
(A.assumed_fun_id * T.RegionGroupId.id option * string) list =
let rg0 = Some T.RegionGroupId.zero in
match !backend with
| FStar | Coq | HOL4 ->
[
(ArrayIndexShared, None, "array_index_usize");
(ArrayIndexMut, None, "array_index_usize");
(ArrayIndexMut, rg0, "array_update_usize");
(ArrayToSliceShared, None, "array_to_slice");
(ArrayToSliceMut, None, "array_to_slice");
(ArrayToSliceMut, rg0, "array_from_slice");
(ArrayRepeat, None, "array_repeat");
(SliceIndexShared, None, "slice_index_usize");
(SliceIndexMut, None, "slice_index_usize");
(SliceIndexMut, rg0, "slice_update_usize");
]
| Lean ->
[
(ArrayIndexShared, None, "Array.index_usize");
(ArrayIndexMut, None, "Array.index_usize");
(ArrayIndexMut, rg0, "Array.update_usize");
(ArrayToSliceShared, None, "Array.to_slice");
(ArrayToSliceMut, None, "Array.to_slice");
(ArrayToSliceMut, rg0, "Array.from_slice");
(ArrayRepeat, None, "Array.repeat");
(SliceIndexShared, None, "Slice.index_usize");
(SliceIndexMut, None, "Slice.index_usize");
(SliceIndexMut, rg0, "Slice.update_usize");
]
let assumed_pure_functions () : (pure_assumed_fun_id * string) list =
match !backend with
| FStar ->
[
(Return, "return");
(Fail, "fail");
(Assert, "massert");
(FuelDecrease, "decrease");
(FuelEqZero, "is_zero");
]
| Coq ->
(* We don't provide [FuelDecrease] and [FuelEqZero] on purpose *)
[ (Return, "return_"); (Fail, "fail_"); (Assert, "massert") ]
| Lean ->
(* We don't provide [FuelDecrease] and [FuelEqZero] on purpose *)
[ (Return, "return"); (Fail, "fail_"); (Assert, "massert") ]
| HOL4 ->
(* We don't provide [FuelDecrease] and [FuelEqZero] on purpose *)
[ (Return, "return"); (Fail, "fail"); (Assert, "massert") ]
let names_map_init () : names_map_init =
{
keywords = keywords ();
assumed_adts = assumed_adts ();
assumed_structs = assumed_struct_constructors ();
assumed_variants = assumed_variants ();
assumed_llbc_functions = assumed_llbc_functions ();
assumed_pure_functions = assumed_pure_functions ();
}
(** Initialize names maps with a proper set of keywords/names coming from the
target language/prover. *)
let initialize_names_maps () : names_maps =
let init = names_map_init () in
let int_names = List.map int_name T.all_int_types in
let keywords =
(* Remark: we don't put "str_name()" below because it clashes with
"alloc::string::String", which we register elsewhere. *)
List.concat [ [ bool_name (); char_name () ]; int_names; init.keywords ]
in
let names_set = StringSet.empty in
let name_to_id = StringMap.empty in
(* We fist initialize [id_to_name] as empty, because the id of a keyword is [UnknownId].
* Also note that we don't need this mapping for keywords: we insert keywords only
* to check collisions. *)
let id_to_name = IdMap.empty in
let names_map = { id_to_name; name_to_id; names_set } in
let unsafe_names_map = empty_unsafe_names_map in
let strict_names_map = empty_names_map in
(* For debugging - we are creating bindings for assumed types and functions, so
* it is ok if we simply use the "show" function (those aren't simply identified
* by numbers) *)
let id_to_string = show_id in
(* Add the keywords as strict collisions *)
let strict_names_map =
List.fold_left
(fun nm name ->
(* There is duplication in the keywords so we don't check the collisions
while registering them (what is important is that there are no collisions
between keywords and user-defined identifiers) *)
names_map_add_unchecked UnknownId name nm)
strict_names_map keywords
in
let nm = { names_map; unsafe_names_map; strict_names_map } in
(* Then we add:
* - the assumed types
* - the assumed struct constructors
* - the assumed variants
* - the assumed functions
*)
let nm =
List.fold_left
(fun nm (type_id, name) ->
names_maps_add_assumed_type id_to_string type_id name nm)
nm init.assumed_adts
in
let nm =
List.fold_left
(fun nm (type_id, name) ->
names_maps_add_assumed_struct id_to_string type_id name nm)
nm init.assumed_structs
in
let nm =
List.fold_left
(fun nm (type_id, variant_id, name) ->
names_maps_add_assumed_variant id_to_string type_id variant_id name nm)
nm init.assumed_variants
in
let assumed_functions =
List.map
(fun (fid, rg, name) ->
(FromLlbc (Pure.FunId (FAssumed fid), None, rg), name))
init.assumed_llbc_functions
@ List.map (fun (fid, name) -> (Pure fid, name)) init.assumed_pure_functions
in
let nm =
List.fold_left
(fun nm (fid, name) -> names_maps_add_function id_to_string fid name nm)
nm assumed_functions
in
(* Return *)
nm
(** Compute the qualified for a type definition/declaration.
For instance: "type", "and", etc.
Remark: can return [None] for some backends like HOL4.
*)
let type_decl_kind_to_qualif (kind : decl_kind)
(type_kind : type_decl_kind option) : string option =
match !backend with
| FStar -> (
match kind with
| SingleNonRec -> Some "type"
| SingleRec -> Some "type"
| MutRecFirst -> Some "type"
| MutRecInner -> Some "and"
| MutRecLast -> Some "and"
| Assumed -> Some "assume type"
| Declared -> Some "val")
| Coq -> (
match (kind, type_kind) with
| SingleNonRec, Some Tuple -> Some "Definition"
| SingleNonRec, Some Enum -> Some "Inductive"
| SingleNonRec, Some Struct -> Some "Record"
| (SingleRec | MutRecFirst), Some _ -> Some "Inductive"
| (MutRecInner | MutRecLast), Some _ ->
(* Coq doesn't support groups of mutually recursive definitions which mix
* records and inductives: we convert everything to records if this happens
*)
Some "with"
| (Assumed | Declared), None -> Some "Axiom"
| SingleNonRec, None ->
(* This is for traits *)
Some "Record"
| _ ->
raise
(Failure
("Unexpected: (" ^ show_decl_kind kind ^ ", "
^ Print.option_to_string show_type_decl_kind type_kind
^ ")")))
| Lean -> (
match kind with
| SingleNonRec -> (
match type_kind with
| Some Tuple -> Some "def"
| Some Struct -> Some "structure"
| _ -> Some "inductive")
| SingleRec | MutRecFirst | MutRecInner | MutRecLast -> Some "inductive"
| Assumed -> Some "axiom"
| Declared -> Some "axiom")
| HOL4 -> None
(** Compute the qualified for a function definition/declaration.
For instance: "let", "let rec", "and", etc.
Remark: can return [None] for some backends like HOL4.
*)
let fun_decl_kind_to_qualif (kind : decl_kind) : string option =
match !backend with
| FStar -> (
match kind with
| SingleNonRec -> Some "let"
| SingleRec -> Some "let rec"
| MutRecFirst -> Some "let rec"
| MutRecInner -> Some "and"
| MutRecLast -> Some "and"
| Assumed -> Some "assume val"
| Declared -> Some "val")
| Coq -> (
match kind with
| SingleNonRec -> Some "Definition"
| SingleRec -> Some "Fixpoint"
| MutRecFirst -> Some "Fixpoint"
| MutRecInner -> Some "with"
| MutRecLast -> Some "with"
| Assumed -> Some "Axiom"
| Declared -> Some "Axiom")
| Lean -> (
match kind with
| SingleNonRec -> Some "def"
| SingleRec -> Some "divergent def"
| MutRecFirst -> Some "mutual divergent def"
| MutRecInner -> Some "divergent def"
| MutRecLast -> Some "divergent def"
| Assumed -> Some "axiom"
| Declared -> Some "axiom")
| HOL4 -> None
(** The type of types.
TODO: move inside the formatter?
*)
let type_keyword () =
match !backend with
| FStar -> "Type0"
| Coq | Lean -> "Type"
| HOL4 -> raise (Failure "Unexpected")
(** Helper *)
let name_last_elem_as_ident (n : llbc_name) : string =
match Collections.List.last n with
| PeIdent (s, _) -> s
| PeImpl _ -> raise (Failure "Unexpected")
(** Helper
Prepare a name.
The first id elem is always the crate: if it is the local crate,
we remove it. We ignore disambiguators (there may be collisions, but we
check if there are).
*)
let ctx_compute_simple_name (ctx : extraction_ctx) (name : llbc_name) :
string list =
(* Rmk.: initially we only filtered the disambiguators equal to 0 *)
match name with
| (PeIdent (crate, _) as id) :: name ->
let name = if crate = ctx.crate.name then name else id :: name in
name_to_simple_name ctx.trans_ctx name
| _ ->
raise
(Failure
("Unexpected name shape: "
^ TranslateCore.name_to_string ctx.trans_ctx name))
(** Helper *)
let ctx_compute_simple_type_name = ctx_compute_simple_name
(** Helper *)
let ctx_compute_type_name_no_suffix (ctx : extraction_ctx) (name : llbc_name) :
string =
flatten_name (ctx_compute_simple_type_name ctx name)
(** Provided a basename, compute a type name. *)
let ctx_compute_type_name (ctx : extraction_ctx) (name : llbc_name) =
let name = ctx_compute_type_name_no_suffix ctx name in
match !backend with
| FStar -> StringUtils.lowercase_first_letter (name ^ "_t")
| Coq | HOL4 -> name ^ "_t"
| Lean -> name
(** Inputs:
- type name
- field id
- field name
Note that fields don't always have names, but we still need to
generate some names if we want to extract the structures to records...
We might want to extract such structures to tuples, later, but field
access then causes trouble because not all provers accept syntax like
[x.3] where [x] is a tuple.
*)
let ctx_compute_field_name (ctx : extraction_ctx) (def_name : llbc_name)
(field_id : FieldId.id) (field_name : string option) : string =
let field_name_s =
match field_name with
| Some field_name -> field_name
| None ->
(* TODO: extract structs with no field names to tuples *)
FieldId.to_string field_id
in
if !Config.record_fields_short_names then
if field_name = None then (* TODO: this is a bit ugly *)
"_" ^ field_name_s
else field_name_s
else
let def_name =
ctx_compute_type_name_no_suffix ctx def_name ^ "_" ^ field_name_s
in
match !backend with
| Lean | HOL4 -> def_name
| Coq | FStar -> StringUtils.lowercase_first_letter def_name
(** Inputs:
- type name
- variant name
*)
let ctx_compute_variant_name (ctx : extraction_ctx) (def_name : llbc_name)
(variant : string) : string =
match !backend with
| FStar | Coq | HOL4 ->
let variant = to_camel_case variant in
if !variant_concatenate_type_name then
StringUtils.capitalize_first_letter
(ctx_compute_type_name_no_suffix ctx def_name ^ "_" ^ variant)
else variant
| Lean -> variant
(** Structure constructors are used when constructing structure values.
For instance, in F*:
{[
type pair = { x : nat; y : nat }
let p : pair = Mkpair 0 1
]}
Inputs:
- type name
*)
let ctx_compute_struct_constructor (ctx : extraction_ctx) (basename : llbc_name)
: string =
let tname = ctx_compute_type_name ctx basename in
ExtractBuiltin.mk_struct_constructor tname
let ctx_compute_fun_name_no_suffix (ctx : extraction_ctx) (fname : llbc_name) :
string =
let fname = ctx_compute_simple_name ctx fname in
(* TODO: don't convert to snake case for Coq, HOL4, F* *)
let fname = flatten_name fname in
match !backend with
| FStar | Coq | HOL4 -> StringUtils.lowercase_first_letter fname
| Lean -> fname
(** Provided a basename, compute the name of a global declaration. *)
let ctx_compute_global_name (ctx : extraction_ctx) (name : llbc_name) : string =
(* Converting to snake case also lowercases the letters (in Rust, global
* names are written in capital letters). *)
let parts = List.map to_snake_case (ctx_compute_simple_name ctx name) in
String.concat "_" parts
(** Helper function: generate a suffix for a function name, i.e., generates
a suffix like "_loop", "loop1", etc. to append to a function name.
*)
let default_fun_loop_suffix (num_loops : int) (loop_id : LoopId.id option) :
string =
match loop_id with
| None -> ""
| Some loop_id ->
(* If this is for a loop, generally speaking, we append the loop index.
If this function admits only one loop, we omit it. *)
if num_loops = 1 then "_loop" else "_loop" ^ LoopId.to_string loop_id
(** A helper function: generates a function suffix from a region group
information.
TODO: move all those helpers.
*)
let default_fun_suffix (num_loops : int) (loop_id : LoopId.id option)
(num_region_groups : int) (rg : region_group_info option)
((keep_fwd, num_backs) : bool * int) : string =
let lp_suff = default_fun_loop_suffix num_loops loop_id in
(* There are several cases:
- [rg] is [Some]: this is a forward function:
- we add "_fwd"
- [rg] is [None]: this is a backward function:
- this function has one extracted backward function:
- if the forward function has been filtered, we add nothing:
the forward function is useless, so the unique backward function
takes its place, in a way (in effect, we "merge" the forward
and the backward functions).
- otherwise we add "_back"
- this function has several backward functions: we add "_back" and an
additional suffix to identify the precise backward function
Note that we always add a suffix (in case there are no region groups,
we could not add the "_fwd" suffix) to prevent name clashes between
definitions (in particular between type and function definitions).
*)
let rg_suff =
(* TODO: make all the backends match what is done for Lean *)
match rg with
| None ->
if
(* In order to avoid name conflicts:
* - if the forward is eliminated, we add the suffix "_fwd" (it won't be used)
* - otherwise, no suffix (because the backward functions will have a suffix)
*)
num_backs = 1 && not keep_fwd
then "_fwd"
else ""
| Some rg ->
assert (num_region_groups > 0 && num_backs > 0);
if num_backs = 1 then
(* Exactly one backward function *)
if not keep_fwd then "" else "_back"
else if
(* Several region groups/backward functions:
- if all the regions in the group have names, we use those names
- otherwise we use an index
*)
List.for_all Option.is_some rg.region_names
then
(* Concatenate the region names *)
"_back" ^ String.concat "" (List.map Option.get rg.region_names)
else (* Use the region index *)
"_back" ^ RegionGroupId.to_string rg.id
in
lp_suff ^ rg_suff
(** Compute the name of a regular (non-assumed) function.
Inputs:
- function basename (TODO: shouldn't appear for assumed functions?...)
- number of loops in the function (useful to check if we need to use
indices to derive unique names for the loops for instance - if there is
exactly one loop, we don't need to use indices)
- loop id (if pertinent)
- number of region groups
- region group information in case of a backward function
([None] if forward function)
- pair:
- do we generate the forward function (it may have been filtered)?
- the number of *extracted backward functions* (same comment as for
the number of loops)
The number of extracted backward functions if not necessarily
equal to the number of region groups, because we may have
filtered some of them.
TODO: use the fun id for the assumed functions.
*)
let ctx_compute_fun_name (ctx : extraction_ctx) (fname : llbc_name)
(num_loops : int) (loop_id : LoopId.id option) (num_rgs : int)
(rg : region_group_info option) (filter_info : bool * int) : string =
let fname = ctx_compute_fun_name_no_suffix ctx fname in
(* Compute the suffix *)
let suffix = default_fun_suffix num_loops loop_id num_rgs rg filter_info in
(* Concatenate *)
fname ^ suffix
let ctx_compute_trait_decl_name (ctx : extraction_ctx) (trait_decl : trait_decl)
: string =
ctx_compute_type_name ctx trait_decl.llbc_name
let ctx_compute_trait_impl_name (ctx : extraction_ctx) (trait_decl : trait_decl)
(trait_impl : trait_impl) : string =
(* We derive the trait impl name from the implemented trait.
For instance, if this implementation is an instance of `trait::Trait`
for `<foo::Foo, u32>`, we generate the name: "trait.TraitFooFooU32Inst".
Importantly, it is to be noted that the name is independent of the place
where the instance has been defined (it is indepedent of the file, etc.).
*)
let name =
let params = trait_impl.llbc_generics in
let args = trait_impl.llbc_impl_trait.decl_generics in
trait_name_with_generics_to_simple_name ctx.trans_ctx trait_decl.llbc_name
params args
in
let name = flatten_name name in
match !backend with
| FStar -> StringUtils.lowercase_first_letter name
| Coq | HOL4 | Lean -> name
let ctx_compute_trait_decl_constructor (ctx : extraction_ctx)
(trait_decl : trait_decl) : string =
let name = ctx_compute_trait_decl_name ctx trait_decl in
ExtractBuiltin.mk_struct_constructor name
(** Helper to derive names for parent trait clauses and for variables
for trait instances.
We derive the name from the type of the clause (i.e., the trait ref
the clause implements).
For instance, if a trait clause is for the trait ref "Trait<Box<usize>",
we generate a name like "traitBoxUsizeInst". This is more meaningful
that giving it a generic name with an index (such as "parent_clause_1"
or "inst3").
Because we want to be precise when deriving the name, we use the
original LLBC types, that is the types from before the translation
to pure, which simplifies types like boxes and references.
*)
let ctx_compute_trait_clause_name (ctx : extraction_ctx)
(current_def_name : Types.name) (params : Types.generic_params)
(clauses : Types.trait_clause list) (clause_id : trait_clause_id) : string =
(* We derive the name of the clause from the trait instance.
For instance, if the clause gives us an instance of `Foo<u32>`,
we generate a name along the lines of "fooU32Inst".
*)
let clause =
(* If the current def and the trait decl referenced by the clause
are in the same namespace, we try to simplify the names. We do so by
removing the common prefixes in their names.
For instance, if we have:
{[
// This is file traits.rs
trait Parent {}
trait Child : Parent {}
]}
For the parent clause of trait [Child] we would like to generate
the name: "ParentInst", rather than "traitParentInst".
*)
let prefix = Some current_def_name in
let clause =
List.find
(fun (c : Types.trait_clause) -> c.clause_id = clause_id)
clauses
in
let trait_id = clause.trait_id in
let impl_trait_decl = TraitDeclId.Map.find trait_id ctx.crate.trait_decls in
let args = clause.clause_generics in
trait_name_with_generics_to_simple_name ctx.trans_ctx ~prefix
impl_trait_decl.name params args
in
String.concat "" clause
let ctx_compute_trait_parent_clause_name (ctx : extraction_ctx)
(trait_decl : trait_decl) (clause : trait_clause) : string =
(* We derive the name of the clause from the trait instance.
For instance, if the clause gives us an instance of `Foo<u32>`,
we generate a name along the lines of "fooU32Inst".
*)
(* We need to lookup the LLBC definitions, to have the original instantiation *)
let clause =
let current_def_name = trait_decl.llbc_name in
let params = trait_decl.llbc_generics in
ctx_compute_trait_clause_name ctx current_def_name params
trait_decl.llbc_parent_clauses clause.clause_id
in
let clause =
if !Config.record_fields_short_names then clause
else ctx_compute_trait_decl_name ctx trait_decl ^ "_" ^ clause
in
match !backend with
| FStar -> StringUtils.lowercase_first_letter clause
| Coq | HOL4 | Lean -> clause
let ctx_compute_trait_type_name (ctx : extraction_ctx) (trait_decl : trait_decl)
(item : string) : string =
let name =
if !Config.record_fields_short_names then item
else ctx_compute_trait_decl_name ctx trait_decl ^ "_" ^ item
in
(* Constants are usually all capital letters.
Some backends do not support field names starting with a capital letter,
and it may be weird to lowercase everything (especially as it may lead
to more name collisions): we add a prefix when necessary.
For instance, it gives: "U" -> "tU"
Note that for some backends we prepend the type name (because those backends
can't disambiguate fields coming from different ADTs if they have the same
names), and thus don't need to add a prefix starting with a lowercase.
*)
match !backend with FStar -> "t" ^ name | Coq | Lean | HOL4 -> name
let ctx_compute_trait_const_name (ctx : extraction_ctx)
(trait_decl : trait_decl) (item : string) : string =
let name =
if !Config.record_fields_short_names then item
else ctx_compute_trait_decl_name ctx trait_decl ^ "_" ^ item
in
(* See [trait_type_name] *)
match !backend with FStar -> "c" ^ name | Coq | Lean | HOL4 -> name
let ctx_compute_trait_method_name (ctx : extraction_ctx)
(trait_decl : trait_decl) (item : string) : string =
if !Config.record_fields_short_names then item
else ctx_compute_trait_decl_name ctx trait_decl ^ "_" ^ item
let ctx_compute_trait_type_clause_name (ctx : extraction_ctx)
(trait_decl : trait_decl) (item : string) (clause : trait_clause) : string =
(* TODO: improve - it would be better to not use indices *)
ctx_compute_trait_type_name ctx trait_decl item
^ "_clause_"
^ TraitClauseId.to_string clause.clause_id
(** Generates the name of the termination measure used to prove/reason about
termination. The generated code uses this clause where needed,
but its body must be defined by the user.
F* and Lean only.
Inputs:
- function id: this is especially useful to identify whether the
function is an assumed function or a local function
- function basename
- the number of loops in the parent function. This is used for
the same purpose as in [llbc_name].
- loop identifier, if this is for a loop
*)
let ctx_compute_termination_measure_name (ctx : extraction_ctx)
(_fid : A.FunDeclId.id) (fname : llbc_name) (num_loops : int)
(loop_id : LoopId.id option) : string =
let fname = ctx_compute_fun_name_no_suffix ctx fname in
let lp_suffix = default_fun_loop_suffix num_loops loop_id in
(* Compute the suffix *)
let suffix =
match !Config.backend with
| FStar -> "_decreases"
| Lean -> "_terminates"
| Coq | HOL4 -> raise (Failure "Unexpected")
in
(* Concatenate *)
fname ^ lp_suffix ^ suffix
(** Generates the name of the proof used to prove/reason about
termination. The generated code uses this clause where needed,
but its body must be defined by the user.
Lean only.
Inputs:
- function id: this is especially useful to identify whether the
function is an assumed function or a local function
- function basename
- the number of loops in the parent function. This is used for
the same purpose as in [llbc_name].
- loop identifier, if this is for a loop
*)
let ctx_compute_decreases_proof_name (ctx : extraction_ctx)
(_fid : A.FunDeclId.id) (fname : llbc_name) (num_loops : int)
(loop_id : LoopId.id option) : string =
let fname = ctx_compute_fun_name_no_suffix ctx fname in
let lp_suffix = default_fun_loop_suffix num_loops loop_id in
(* Compute the suffix *)
let suffix =
match !Config.backend with
| Lean -> "_decreases"
| FStar | Coq | HOL4 -> raise (Failure "Unexpected")
in
(* Concatenate *)
fname ^ lp_suffix ^ suffix
(** Generates a variable basename.
Inputs:
- the set of names used in the context so far
- the basename we got from the symbolic execution, if we have one
- the type of the variable (can be useful for heuristics, in order
not to always use "x" for instance, whenever naming anonymous
variables)
Note that once the formatter generated a basename, we add an index
if necessary to prevent name clashes: the burden of name clashes checks
is thus on the caller's side.
*)
let ctx_compute_var_basename (ctx : extraction_ctx) (basename : string option)
(ty : ty) : string =
(* Small helper to derive var names from ADT type names.
We do the following:
- convert the type name to snake case
- take the first letter of every "letter group"
Ex.: "HashMap" -> "hash_map" -> "hm"
*)
let name_from_type_ident (name : string) : string =
let cl = to_snake_case name in
let cl = String.split_on_char '_' cl in
let cl = List.filter (fun s -> String.length s > 0) cl in
assert (List.length cl > 0);
let cl = List.map (fun s -> s.[0]) cl in
StringUtils.string_of_chars cl
in
(* If there is a basename, we use it *)
match basename with
| Some basename ->
(* This should be a no-op *)
to_snake_case basename
| None -> (
(* No basename: we use the first letter of the type *)
match ty with
| TAdt (type_id, generics) -> (
match type_id with
| TTuple ->
(* The "pair" case is frequent enough to have its special treatment *)
if List.length generics.types = 2 then "p" else "t"
| TAssumed TResult -> "r"
| TAssumed TError -> ConstStrings.error_basename
| TAssumed TFuel -> ConstStrings.fuel_basename
| TAssumed TArray -> "a"
| TAssumed TSlice -> "s"
| TAssumed TStr -> "s"
| TAssumed TState -> ConstStrings.state_basename
| TAssumed (TRawPtr _) -> "p"
| TAdtId adt_id ->
let def =
TypeDeclId.Map.find adt_id ctx.trans_ctx.type_ctx.type_decls
in
(* Derive the var name from the last ident of the type name
Ex.: ["hashmap"; "HashMap"] ~~> "HashMap" -> "hash_map" -> "hm"
*)
(* The name shouldn't be empty, and its last element should
* be an ident *)
let cl = Collections.List.last def.name in
name_from_type_ident (TypesUtils.as_ident cl))
| TVar _ -> (
(* TODO: use "t" also for F* *)
match !backend with
| FStar -> "x" (* lacking inspiration here... *)
| Coq | Lean | HOL4 -> "t" (* lacking inspiration here... *))
| TLiteral lty -> (
match lty with TBool -> "b" | TChar -> "c" | TInteger _ -> "i")
| TArrow _ -> "f"
| TTraitType (_, _, name) -> name_from_type_ident name)
(** Generates a type variable basename. *)
let ctx_compute_type_var_basename (_ctx : extraction_ctx) (basename : string) :
string =
(* Rust type variables are snake-case and start with a capital letter *)
match !backend with
| FStar ->
(* This is *not* a no-op: this removes the capital letter *)
to_snake_case basename
| HOL4 ->
(* In HOL4, type variable names must start with "'" *)
"'" ^ to_snake_case basename
| Coq | Lean -> basename
(** Generates a const generic variable basename. *)
let ctx_compute_const_generic_var_basename (_ctx : extraction_ctx)
(basename : string) : string =
(* Rust type variables are snake-case and start with a capital letter *)
match !backend with
| FStar | HOL4 ->
(* This is *not* a no-op: this removes the capital letter *)
to_snake_case basename
| Coq | Lean -> basename
(** Return a base name for a trait clause. We might add a suffix to prevent
collisions.
In the traduction we explicitely manipulate the trait clause instances,
that is we introduce one input variable for each trait clause.
*)
let ctx_compute_trait_clause_basename (ctx : extraction_ctx)
(current_def_name : Types.name) (params : Types.generic_params)
(clause_id : trait_clause_id) : string =
(* This is similar to {!ctx_compute_trait_parent_clause_name}: we
derive the name from the trait reference (i.e., from the type) *)
let clause =
ctx_compute_trait_clause_name ctx current_def_name params
params.trait_clauses clause_id
in
match !backend with
| FStar | Coq | HOL4 -> StringUtils.lowercase_first_letter clause
| Lean -> clause
let trait_self_clause_basename = "self_clause"
(** Appends an index to a name - we use this to generate unique
names: when doing so, the role of the formatter is just to concatenate
indices to names, the responsability of finding a proper index is
delegated to helper functions.
*)
let name_append_index (basename : string) (i : int) : string =
basename ^ string_of_int i
(** Generate a unique type variable name and add it to the context *)
let ctx_add_type_var (basename : string) (id : TypeVarId.id)
(ctx : extraction_ctx) : extraction_ctx * string =
let name = ctx_compute_type_var_basename ctx basename in
let name =
basename_to_unique ctx.names_maps.names_map.names_set name_append_index name
in
let ctx = ctx_add (TypeVarId id) name ctx in
(ctx, name)
(** Generate a unique const generic variable name and add it to the context *)
let ctx_add_const_generic_var (basename : string) (id : ConstGenericVarId.id)
(ctx : extraction_ctx) : extraction_ctx * string =
let name = ctx_compute_const_generic_var_basename ctx basename in
let name =
basename_to_unique ctx.names_maps.names_map.names_set name_append_index name
in
let ctx = ctx_add (ConstGenericVarId id) name ctx in
(ctx, name)
(** See {!ctx_add_type_var} *)
let ctx_add_type_vars (vars : (string * TypeVarId.id) list)
(ctx : extraction_ctx) : extraction_ctx * string list =
List.fold_left_map
(fun ctx (name, id) -> ctx_add_type_var name id ctx)
ctx vars
(** Generate a unique variable name and add it to the context *)
let ctx_add_var (basename : string) (id : VarId.id) (ctx : extraction_ctx) :
extraction_ctx * string =
let name =
basename_to_unique ctx.names_maps.names_map.names_set name_append_index
basename
in
let ctx = ctx_add (VarId id) name ctx in
(ctx, name)
(** Generate a unique variable name for the trait self clause and add it to the context *)
let ctx_add_trait_self_clause (ctx : extraction_ctx) : extraction_ctx * string =
let basename = trait_self_clause_basename in
let name =
basename_to_unique ctx.names_maps.names_map.names_set name_append_index
basename
in
let ctx = ctx_add TraitSelfClauseId name ctx in
(ctx, name)
(** Generate a unique trait clause name and add it to the context *)
let ctx_add_local_trait_clause (basename : string) (id : TraitClauseId.id)
(ctx : extraction_ctx) : extraction_ctx * string =
let name =
basename_to_unique ctx.names_maps.names_map.names_set name_append_index
basename
in
let ctx = ctx_add (LocalTraitClauseId id) name ctx in
(ctx, name)
(** See {!ctx_add_var} *)
let ctx_add_vars (vars : var list) (ctx : extraction_ctx) :
extraction_ctx * string list =
List.fold_left_map
(fun ctx (v : var) ->
let name = ctx_compute_var_basename ctx v.basename v.ty in
ctx_add_var name v.id ctx)
ctx vars
let ctx_add_type_params (vars : type_var list) (ctx : extraction_ctx) :
extraction_ctx * string list =
List.fold_left_map
(fun ctx (var : type_var) -> ctx_add_type_var var.name var.index ctx)
ctx vars
let ctx_add_const_generic_params (vars : const_generic_var list)
(ctx : extraction_ctx) : extraction_ctx * string list =
List.fold_left_map
(fun ctx (var : const_generic_var) ->
ctx_add_const_generic_var var.name var.index ctx)
ctx vars
(** Returns the lists of names for:
- the type variables
- the const generic variables
- the trait clauses
For the [current_name_def] and the [llbc_generics]: we use them to derive
pretty names for the trait clauses. See {!ctx_compute_trait_clause_name}
for additional information.
*)
let ctx_add_local_trait_clauses (current_def_name : Types.name)
(llbc_generics : Types.generic_params) (clauses : trait_clause list)
(ctx : extraction_ctx) : extraction_ctx * string list =
List.fold_left_map
(fun ctx (c : trait_clause) ->
let basename =
ctx_compute_trait_clause_basename ctx current_def_name llbc_generics
c.clause_id
in
ctx_add_local_trait_clause basename c.clause_id ctx)
ctx clauses
(** Returns the lists of names for:
- the type variables
- the const generic variables
- the trait clauses
For the [current_name_def] and the [llbc_generics]: we use them to derive
pretty names for the trait clauses. See {!ctx_compute_trait_clause_name}
for additional information.
*)
let ctx_add_generic_params (current_def_name : Types.name)
(llbc_generics : Types.generic_params) (generics : generic_params)
(ctx : extraction_ctx) :
extraction_ctx * string list * string list * string list =
let { types; const_generics; trait_clauses } = generics in
let ctx, tys = ctx_add_type_params types ctx in
let ctx, cgs = ctx_add_const_generic_params const_generics ctx in
let ctx, tcs =
ctx_add_local_trait_clauses current_def_name llbc_generics trait_clauses ctx
in
(ctx, tys, cgs, tcs)
let ctx_add_decreases_proof (def : fun_decl) (ctx : extraction_ctx) :
extraction_ctx =
let name =
ctx_compute_decreases_proof_name ctx def.def_id def.llbc_name def.num_loops
def.loop_id
in
ctx_add (DecreasesProofId (FRegular def.def_id, def.loop_id)) name ctx
let ctx_add_termination_measure (def : fun_decl) (ctx : extraction_ctx) :
extraction_ctx =
let name =
ctx_compute_termination_measure_name ctx def.def_id def.llbc_name
def.num_loops def.loop_id
in
ctx_add (TerminationMeasureId (FRegular def.def_id, def.loop_id)) name ctx
let ctx_add_global_decl_and_body (def : A.global_decl) (ctx : extraction_ctx) :
extraction_ctx =
(* TODO: update once the body id can be an option *)
let decl = GlobalId def.def_id in
(* Check if the global corresponds to an assumed global that we should map
to a custom definition in our standard library (for instance, happens
with "core::num::usize::MAX") *)
match match_name_find_opt ctx.trans_ctx def.name builtin_globals_map with
| Some name ->
(* Yes: register the custom binding *)
ctx_add decl name ctx
| None ->
(* Not the case: "standard" registration *)
let name = ctx_compute_global_name ctx def.name in
let body = FunId (FromLlbc (FunId (FRegular def.body), None, None)) in
let ctx = ctx_add decl (name ^ "_c") ctx in
let ctx = ctx_add body (name ^ "_body") ctx in
ctx
let ctx_compute_fun_name (trans_group : pure_fun_translation) (def : fun_decl)
(ctx : extraction_ctx) : string =
(* Lookup the LLBC def to compute the region group information *)
let def_id = def.def_id in
let llbc_def = A.FunDeclId.Map.find def_id ctx.trans_ctx.fun_ctx.fun_decls in
let sg = llbc_def.signature in
let regions_hierarchy =
LlbcAstUtils.FunIdMap.find (FRegular def_id)
ctx.trans_ctx.fun_ctx.regions_hierarchies
in
let num_rgs = List.length regions_hierarchy in
let { keep_fwd; fwd = _; backs } = trans_group in
let num_backs = List.length backs in
let rg_info =
match def.back_id with
| None -> None
| Some rg_id ->
let rg = T.RegionGroupId.nth regions_hierarchy rg_id in
let region_names =
List.map
(fun rid -> (T.RegionVarId.nth sg.generics.regions rid).name)
rg.regions
in
Some { id = rg_id; region_names }
in
(* Add the function name *)
ctx_compute_fun_name ctx def.llbc_name def.num_loops def.loop_id num_rgs
rg_info (keep_fwd, num_backs)
(* TODO: move to Extract *)
let ctx_add_fun_decl (trans_group : pure_fun_translation) (def : fun_decl)
(ctx : extraction_ctx) : extraction_ctx =
(* Sanity check: the function should not be a global body - those are handled
* separately *)
assert (not def.is_global_decl_body);
(* Lookup the LLBC def to compute the region group information *)
let def_id = def.def_id in
let { keep_fwd; fwd = _; backs } = trans_group in
let num_backs = List.length backs in
(* Add the function name *)
let def_name = ctx_compute_fun_name trans_group def ctx in
let fun_id = (Pure.FunId (FRegular def_id), def.loop_id, def.back_id) in
let ctx = ctx_add (FunId (FromLlbc fun_id)) def_name ctx in
(* Add the name info *)
{
ctx with
fun_name_info =
PureUtils.RegularFunIdMap.add fun_id { keep_fwd; num_backs }
ctx.fun_name_info;
}
let ctx_compute_type_decl_name (ctx : extraction_ctx) (def : type_decl) : string
=
ctx_compute_type_name ctx def.llbc_name
|