1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
|
(** The generic extraction *)
(* Turn the whole module into a functor: it is very annoying to carry the
the formatter everywhere...
*)
open Pure
open PureUtils
open TranslateCore
open ExtractBase
open Config
include ExtractTypes
(** Compute the names for all the pure functions generated from a rust function
(forward function and backward functions).
*)
let extract_fun_decl_register_names (ctx : extraction_ctx)
(has_decreases_clause : fun_decl -> bool) (def : pure_fun_translation) :
extraction_ctx =
(* Ignore the trait methods **declarations** (rem.: we do not ignore the trait
method implementations): we do not need to refer to them directly. We will
only use their type for the fields of the records we generate for the trait
declarations *)
match def.fwd.f.kind with
| TraitMethodDecl _ -> ctx
| _ -> (
(* Check if the function is builtin *)
let builtin =
let open ExtractBuiltin in
let funs_map = builtin_funs_map () in
let sname = name_to_simple_name def.fwd.f.basename in
SimpleNameMap.find_opt sname funs_map
in
(* Use the builtin names if necessary *)
match builtin with
| Some (filter_info, info) ->
(* Register the filtering information, if there is *)
let ctx =
match filter_info with
| Some keep ->
{
ctx with
funs_filter_type_args_map =
FunDeclId.Map.add def.fwd.f.def_id keep
ctx.funs_filter_type_args_map;
}
| _ -> ctx
in
let backs = List.map (fun f -> f.f) def.backs in
let funs = if def.keep_fwd then def.fwd.f :: backs else backs in
List.fold_left
(fun ctx (f : fun_decl) ->
let open ExtractBuiltin in
let fun_id =
(Pure.FunId (FRegular f.def_id), f.loop_id, f.back_id)
in
let fun_info =
List.find_opt
(fun (x : builtin_fun_info) -> x.rg = f.back_id)
info
in
match fun_info with
| Some fun_info ->
ctx_add (FunId (FromLlbc fun_id)) fun_info.extract_name ctx
| None ->
raise
(Failure
("Not found: "
^ Names.name_to_string f.basename
^ ", "
^ Print.option_to_string Pure.show_loop_id f.loop_id
^ Print.option_to_string Pure.show_region_group_id
f.back_id)))
ctx funs
| None ->
let fwd = def.fwd in
let backs = def.backs in
(* Register the decrease clauses, if necessary *)
let register_decreases ctx def =
if has_decreases_clause def then
(* Add the termination measure *)
let ctx = ctx_add_termination_measure def ctx in
(* Add the decreases proof for Lean only *)
match !Config.backend with
| Coq | FStar -> ctx
| HOL4 -> raise (Failure "Unexpected")
| Lean -> ctx_add_decreases_proof def ctx
else ctx
in
let ctx =
List.fold_left register_decreases ctx (fwd.f :: fwd.loops)
in
let register_fun ctx f = ctx_add_fun_decl def f ctx in
let register_funs ctx fl = List.fold_left register_fun ctx fl in
(* Register the names of the forward functions *)
let ctx =
if def.keep_fwd then register_funs ctx (fwd.f :: fwd.loops) else ctx
in
(* Register the names of the backward functions *)
List.fold_left
(fun ctx { f = back; loops = loop_backs } ->
let ctx = register_fun ctx back in
register_funs ctx loop_backs)
ctx backs)
(** Simply add the global name to the context. *)
let extract_global_decl_register_names (ctx : extraction_ctx)
(def : A.global_decl) : extraction_ctx =
ctx_add_global_decl_and_body def ctx
(** The following function factorizes the extraction of ADT values.
Note that patterns can introduce new variables: we thus return an extraction
context updated with new bindings.
[is_single_pat]: are we extracting a single pattern (a pattern for a let-binding
or a lambda).
TODO: we don't need something very generic anymore (some definitions used
to be polymorphic).
*)
let extract_adt_g_value
(extract_value : extraction_ctx -> bool -> 'v -> extraction_ctx)
(fmt : F.formatter) (ctx : extraction_ctx) (is_single_pat : bool)
(inside : bool) (variant_id : VariantId.id option) (field_values : 'v list)
(ty : ty) : extraction_ctx =
match ty with
| TAdt (TTuple, generics) ->
(* Tuple *)
(* For now, we only support fully applied tuple constructors *)
assert (List.length generics.types = List.length field_values);
assert (generics.const_generics = [] && generics.trait_refs = []);
(* This is very annoying: in Coq, we can't write [()] for the value of
type [unit], we have to write [tt]. *)
if !backend = Coq && field_values = [] then (
F.pp_print_string fmt "tt";
ctx)
else (
F.pp_print_string fmt "(";
let ctx =
Collections.List.fold_left_link
(fun () ->
F.pp_print_string fmt ",";
F.pp_print_space fmt ())
(fun ctx v -> extract_value ctx false v)
ctx field_values
in
F.pp_print_string fmt ")";
ctx)
| TAdt (adt_id, _) ->
(* "Regular" ADT *)
(* If we are generating a pattern for a let-binding and we target Lean,
the syntax is: `let ⟨ x0, ..., xn ⟩ := ...`.
Otherwise, it is: `let Cons x0 ... xn = ...`
*)
if is_single_pat && !Config.backend = Lean then (
F.pp_print_string fmt "⟨";
F.pp_print_space fmt ();
let ctx =
Collections.List.fold_left_link
(fun _ ->
F.pp_print_string fmt ",";
F.pp_print_space fmt ())
(fun ctx v -> extract_value ctx true v)
ctx field_values
in
F.pp_print_space fmt ();
F.pp_print_string fmt "⟩";
ctx)
else
(* We print something of the form: [Cons field0 ... fieldn].
* We could update the code to print something of the form:
* [{ field0=...; ...; fieldn=...; }] in case of structures.
*)
let cons =
match variant_id with
| Some vid -> (
(* In the case of Lean, we might have to add the type name as a prefix *)
match (!backend, adt_id) with
| Lean, TAssumed _ ->
ctx_get_type adt_id ctx ^ "." ^ ctx_get_variant adt_id vid ctx
| _ -> ctx_get_variant adt_id vid ctx)
| None -> ctx_get_struct adt_id ctx
in
let use_parentheses = inside && field_values <> [] in
if use_parentheses then F.pp_print_string fmt "(";
F.pp_print_string fmt cons;
let ctx =
Collections.List.fold_left
(fun ctx v ->
F.pp_print_space fmt ();
extract_value ctx true v)
ctx field_values
in
if use_parentheses then F.pp_print_string fmt ")";
ctx
| _ -> raise (Failure "Inconsistent typed value")
(* Extract globals in the same way as variables *)
let extract_global (ctx : extraction_ctx) (fmt : F.formatter)
(id : A.GlobalDeclId.id) : unit =
F.pp_print_string fmt (ctx_get_global id ctx)
(* Filter the generics of a function if it is builtin *)
let fun_builtin_filter_types (id : FunDeclId.id) (types : 'a list)
(ctx : extraction_ctx) : ('a list, 'a list * string) Result.result =
match FunDeclId.Map.find_opt id ctx.funs_filter_type_args_map with
| None -> Result.Ok types
| Some filter ->
if List.length filter <> List.length types then (
let decl = FunDeclId.Map.find id ctx.trans_funs in
let err =
"Ill-formed builtin information for function "
^ Names.name_to_string decl.fwd.f.basename
^ ": "
^ string_of_int (List.length filter)
^ " filtering arguments provided for "
^ string_of_int (List.length types)
^ " type arguments"
in
log#serror err;
Result.Error (types, err))
else
let types = List.combine filter types in
let types =
List.filter_map (fun (b, ty) -> if b then Some ty else None) types
in
Result.Ok types
(** [inside]: see {!extract_ty}.
As a pattern can introduce new variables, we return an extraction context
updated with new bindings.
*)
let rec extract_typed_pattern (ctx : extraction_ctx) (fmt : F.formatter)
(is_let : bool) (inside : bool) (v : typed_pattern) : extraction_ctx =
match v.value with
| PatConstant cv ->
ctx.fmt.extract_literal fmt inside cv;
ctx
| PatVar (v, _) ->
let vname =
ctx.fmt.var_basename ctx.names_maps.names_map.names_set v.basename v.ty
in
let ctx, vname = ctx_add_var vname v.id ctx in
F.pp_print_string fmt vname;
ctx
| PatDummy ->
F.pp_print_string fmt "_";
ctx
| PatAdt av ->
let extract_value ctx inside v =
extract_typed_pattern ctx fmt is_let inside v
in
extract_adt_g_value extract_value fmt ctx is_let inside av.variant_id
av.field_values v.ty
(** [inside]: controls the introduction of parentheses. See [extract_ty]
TODO: replace the formatting boolean [inside] with something more general?
Also, it seems we don't really use it...
Cases to consider:
- right-expression in a let: [let x = re in _] (never parentheses?)
- next expression in a let: [let x = _ in next_e] (never parentheses?)
- application argument: [f (exp)]
- match/if scrutinee: [if exp then _ else _]/[match exp | _ -> _]
*)
let rec extract_texpression (ctx : extraction_ctx) (fmt : F.formatter)
(inside : bool) (e : texpression) : unit =
match e.e with
| Var var_id ->
let var_name = ctx_get_var var_id ctx in
F.pp_print_string fmt var_name
| CVar var_id ->
let var_name = ctx_get_const_generic_var var_id ctx in
F.pp_print_string fmt var_name
| Const cv -> ctx.fmt.extract_literal fmt inside cv
| App _ ->
let app, args = destruct_apps e in
extract_App ctx fmt inside app args
| Abs _ ->
let xl, e = destruct_abs_list e in
extract_Abs ctx fmt inside xl e
| Qualif _ ->
(* We use the app case *)
extract_App ctx fmt inside e []
| Let (_, _, _, _) -> extract_lets ctx fmt inside e
| Switch (scrut, body) -> extract_Switch ctx fmt inside scrut body
| Meta (_, e) -> extract_texpression ctx fmt inside e
| StructUpdate supd -> extract_StructUpdate ctx fmt inside e.ty supd
| Loop _ ->
(* The loop nodes should have been eliminated in {!PureMicroPasses} *)
raise (Failure "Unreachable")
(* Extract an application *or* a top-level qualif (function extraction has
* to handle top-level qualifiers, so it seemed more natural to merge the
* two cases) *)
and extract_App (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
(app : texpression) (args : texpression list) : unit =
(* We don't do the same thing if the app is a top-level identifier (function,
* ADT constructor...) or a "regular" expression *)
match app.e with
| Qualif qualif -> (
(* Top-level qualifier *)
match qualif.id with
| FunOrOp fun_id ->
extract_function_call ctx fmt inside fun_id qualif.generics args
| Global global_id -> extract_global ctx fmt global_id
| AdtCons adt_cons_id ->
extract_adt_cons ctx fmt inside adt_cons_id qualif.generics args
| Proj proj ->
extract_field_projector ctx fmt inside app proj qualif.generics args
| TraitConst (trait_ref, generics, const_name) ->
let use_brackets = generics <> empty_generic_args in
if use_brackets then F.pp_print_string fmt "(";
extract_trait_ref ctx fmt TypeDeclId.Set.empty false trait_ref;
extract_generic_args ctx fmt TypeDeclId.Set.empty generics;
let name =
ctx_get_trait_const trait_ref.trait_decl_ref.trait_decl_id
const_name ctx
in
let add_brackets (s : string) =
if !backend = Coq then "(" ^ s ^ ")" else s
in
if use_brackets then F.pp_print_string fmt ")";
F.pp_print_string fmt ("." ^ add_brackets name))
| _ ->
(* "Regular" expression *)
(* Open parentheses *)
if inside then F.pp_print_string fmt "(";
(* Open a box for the application *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the app expression *)
let app_inside = (inside && args = []) || args <> [] in
extract_texpression ctx fmt app_inside app;
(* Print the arguments *)
List.iter
(fun ve ->
F.pp_print_space fmt ();
extract_texpression ctx fmt true ve)
args;
(* Close the box for the application *)
F.pp_close_box fmt ();
(* Close parentheses *)
if inside then F.pp_print_string fmt ")"
(** Subcase of the app case: function call *)
and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter)
(inside : bool) (fid : fun_or_op_id) (generics : generic_args)
(args : texpression list) : unit =
match (fid, args) with
| Unop unop, [ arg ] ->
(* A unop can have *at most* one argument (the result can't be a function!).
* Note that the way we generate the translation, we shouldn't get the
* case where we have no argument (all functions are fully instantiated,
* and no AST transformation introduces partial calls). *)
ctx.fmt.extract_unop (extract_texpression ctx fmt) fmt inside unop arg
| Binop (binop, int_ty), [ arg0; arg1 ] ->
(* Number of arguments: similar to unop *)
ctx.fmt.extract_binop
(extract_texpression ctx fmt)
fmt inside binop int_ty arg0 arg1
| Fun fun_id, _ ->
if inside then F.pp_print_string fmt "(";
(* Open a box for the function call *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the function name.
For the function name: the id is not the same depending on whether
we call a trait method and a "regular" function (remark: trait
method *implementations* are considered as regular functions here;
only calls to method of traits which are parameterized in a where
clause have a special treatment.
Remark: the reason why trait method declarations have a special
treatment is that, as traits are extracted to records, we may
allow collisions between trait item names and some other names,
while we do not allow collisions between function names.
# Impl trait refs:
==================
When the trait ref refers to an impl, in
[InterpreterStatement.eval_transparent_function_call_symbolic] we
replace the call to the trait impl method to a call to the function
which implements the trait method (that is, we "forget" that we
called a trait method, and treat it as a regular function call).
# Provided trait methods:
=========================
Calls to provided trait methods also have a special treatment.
For now, we do not allow overriding provided trait methods (methods
for which a default implementation is provided in the trait declaration).
Whenever we translate a provided trait method, we translate it once as
a function which takes a trait ref as input. We have to handle this
case below.
With an example, if in Rust we write:
{[
fn Foo {
fn f(&self) -> u32; // Required
fn ret_true(&self) -> bool { true } // Provided
}
]}
We generate:
{[
structure Foo (Self : Type) = {
f : Self -> result u32
}
let ret_true (Self : Type) (self_clause : Foo Self) (self : Self) : result bool =
true
]}
*)
(match fun_id with
| FromLlbc
(TraitMethod (trait_ref, method_name, _fun_decl_id), lp_id, rg_id) ->
(* We have to check whether the trait method is required or provided *)
let trait_decl_id = trait_ref.trait_decl_ref.trait_decl_id in
let trait_decl =
TraitDeclId.Map.find trait_decl_id ctx.trans_trait_decls
in
let method_id =
PureUtils.trait_decl_get_method trait_decl method_name
in
if not method_id.is_provided then (
(* Required method *)
assert (lp_id = None);
extract_trait_ref ctx fmt TypeDeclId.Set.empty true trait_ref;
let fun_name =
ctx_get_trait_method trait_ref.trait_decl_ref.trait_decl_id
method_name rg_id ctx
in
let add_brackets (s : string) =
if !backend = Coq then "(" ^ s ^ ")" else s
in
F.pp_print_string fmt ("." ^ add_brackets fun_name))
else
(* Provided method: we see it as a regular function call, and use
the function name *)
let fun_id =
FromLlbc (FunId (FRegular method_id.id), lp_id, rg_id)
in
let fun_name = ctx_get_function fun_id ctx in
F.pp_print_string fmt fun_name;
(* Note that we do not need to print the generics for the trait
declaration: they are always implicit as they can be deduced
from the trait self clause.
Print the trait ref (to instantate the self clause) *)
F.pp_print_space fmt ();
extract_trait_ref ctx fmt TypeDeclId.Set.empty true trait_ref
| _ ->
let fun_name = ctx_get_function fun_id ctx in
F.pp_print_string fmt fun_name);
(* Sanity check: HOL4 doesn't support const generics *)
assert (generics.const_generics = [] || !backend <> HOL4);
(* Print the generics.
We might need to filter some of the type arguments, if the type
is builtin (for instance, we filter the global allocator type
argument for `Vec::new`).
*)
let types =
match fun_id with
| FromLlbc (FunId (FRegular id), _, _) ->
fun_builtin_filter_types id generics.types ctx
| _ -> Result.Ok generics.types
in
(match types with
| Ok types ->
extract_generic_args ctx fmt TypeDeclId.Set.empty
{ generics with types }
| Error (types, err) ->
extract_generic_args ctx fmt TypeDeclId.Set.empty
{ generics with types };
if !Config.fail_hard then raise (Failure err)
else
F.pp_print_string fmt
"(\"ERROR: ill-formed builtin: invalid number of filtering \
arguments\")");
(* Print the arguments *)
List.iter
(fun ve ->
F.pp_print_space fmt ();
extract_texpression ctx fmt true ve)
args;
(* Close the box for the function call *)
F.pp_close_box fmt ();
(* Return *)
if inside then F.pp_print_string fmt ")"
| (Unop _ | Binop _), _ ->
raise
(Failure
("Unreachable:\n" ^ "Function: " ^ show_fun_or_op_id fid
^ ",\nNumber of arguments: "
^ string_of_int (List.length args)
^ ",\nArguments: "
^ String.concat " " (List.map show_texpression args)))
(** Subcase of the app case: ADT constructor *)
and extract_adt_cons (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
(adt_cons : adt_cons_id) (generics : generic_args) (args : texpression list)
: unit =
let e_ty = TAdt (adt_cons.adt_id, generics) in
let is_single_pat = false in
let _ =
extract_adt_g_value
(fun ctx inside e ->
extract_texpression ctx fmt inside e;
ctx)
fmt ctx is_single_pat inside adt_cons.variant_id args e_ty
in
()
(** Subcase of the app case: ADT field projector. *)
and extract_field_projector (ctx : extraction_ctx) (fmt : F.formatter)
(inside : bool) (original_app : texpression) (proj : projection)
(_generics : generic_args) (args : texpression list) : unit =
(* We isolate the first argument (if there is), in order to pretty print the
* projection ([x.field] instead of [MkAdt?.field x] *)
match args with
| [ arg ] ->
(* Exactly one argument: pretty-print *)
let field_name = ctx_get_field proj.adt_id proj.field_id ctx in
(* Open a box *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Extract the expression *)
extract_texpression ctx fmt true arg;
(* We allow to break where the "." appears (except Lean, it's a syntax error) *)
if !backend <> Lean then F.pp_print_break fmt 0 0;
F.pp_print_string fmt ".";
(* If in Coq, the field projection has to be parenthesized *)
(match !backend with
| FStar | Lean | HOL4 -> F.pp_print_string fmt field_name
| Coq -> F.pp_print_string fmt ("(" ^ field_name ^ ")"));
(* Close the box *)
F.pp_close_box fmt ()
| arg :: args ->
(* Call extract_App again, but in such a way that the first argument is
* isolated *)
extract_App ctx fmt inside (mk_app original_app arg) args
| [] ->
(* No argument: shouldn't happen *)
raise (Failure "Unreachable")
and extract_Abs (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
(xl : typed_pattern list) (e : texpression) : unit =
(* Open a box for the abs expression *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Open parentheses *)
if inside then F.pp_print_string fmt "(";
(* Print the lambda - note that there should always be at least one variable *)
assert (xl <> []);
F.pp_print_string fmt "fun";
let ctx =
List.fold_left
(fun ctx x ->
F.pp_print_space fmt ();
extract_typed_pattern ctx fmt true true x)
ctx xl
in
F.pp_print_space fmt ();
if !backend = Lean then F.pp_print_string fmt "=>"
else F.pp_print_string fmt "->";
F.pp_print_space fmt ();
(* Print the body *)
extract_texpression ctx fmt false e;
(* Close parentheses *)
if inside then F.pp_print_string fmt ")";
(* Close the box for the abs expression *)
F.pp_close_box fmt ()
and extract_lets (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
(e : texpression) : unit =
(* Destruct the lets.
Note that in the case of HOL4, we stop destructing the lets if at some point
the "kind" (monadic or non-monadic) of the lets changes.
We do this because in HOL4 the parsing is not very powerful:
if we mix monadic let-bindings and non monadic let-bindings, we have to
wrap the let-bindings inside a [do ... od] whenever we need to extract
a monadic let-binding non immediately inside a monadic let-binding.
Ex.:
{[
do
x <- ...;
let y = f x in
do
z <- g y;
...
od
od
]}
*)
let lets, next_e =
match !backend with
| HOL4 -> destruct_lets_no_interleave e
| FStar | Coq | Lean -> destruct_lets e
in
(* Open a box for the whole expression.
In the case of Lean, we use a vbox so that line breaks are inserted
at the end of every let-binding: let-bindings are indeed not ended
with an "in" keyword.
*)
if !Config.backend = Lean then F.pp_open_vbox fmt 0 else F.pp_open_hvbox fmt 0;
(* Open parentheses *)
if inside && !backend <> Lean then F.pp_print_string fmt "(";
(* Extract the let-bindings *)
let extract_let (ctx : extraction_ctx) (monadic : bool) (lv : typed_pattern)
(re : texpression) : extraction_ctx =
(* Open a box for the let-binding *)
F.pp_open_hovbox fmt ctx.indent_incr;
let ctx =
(* There are two cases:
* - do we use a notation like [x <-- y;]
* - do we use notation with let-bindings
* Note that both notations can be used for monadic let-bindings.
* For instance, in F*, you can write:
* {[
* let* x = y in // monadic
* ...
* ]}
* TODO: cleanup
* *)
if monadic && (!backend = Coq || !backend = HOL4) then (
let ctx = extract_typed_pattern ctx fmt true true lv in
F.pp_print_space fmt ();
let arrow =
match !backend with
| Coq | HOL4 -> "<-"
| FStar | Lean -> raise (Failure "impossible")
in
F.pp_print_string fmt arrow;
F.pp_print_space fmt ();
extract_texpression ctx fmt false re;
F.pp_print_string fmt ";";
ctx)
else (
(* Print the "let" *)
if monadic then
match !backend with
| FStar ->
F.pp_print_string fmt "let*";
F.pp_print_space fmt ()
| Coq | Lean ->
F.pp_print_string fmt "let";
F.pp_print_space fmt ()
| HOL4 -> ()
else (
F.pp_print_string fmt "let";
F.pp_print_space fmt ());
let ctx = extract_typed_pattern ctx fmt true true lv in
F.pp_print_space fmt ();
let eq =
match !backend with
| FStar -> "="
| Coq -> ":="
| Lean -> if monadic then "←" else ":="
| HOL4 -> if monadic then "<-" else "="
in
F.pp_print_string fmt eq;
F.pp_print_space fmt ();
extract_texpression ctx fmt false re;
(* End the let-binding *)
(match !backend with
| Lean ->
(* In Lean, (monadic) let-bindings don't require to end with anything *)
()
| Coq | FStar | HOL4 ->
F.pp_print_space fmt ();
F.pp_print_string fmt "in");
ctx)
in
(* Close the box for the let-binding *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Return *)
ctx
in
(* If Lean and HOL4, we rely on monadic blocks, so we insert a do and open a new box
immediately *)
let wrap_in_do_od =
match !backend with
| Lean ->
(* For Lean, we wrap in a block iff at least one of the let-bindings is monadic *)
List.exists (fun (m, _, _) -> m) lets
| HOL4 ->
(* HOL4 is similar to HOL4, but we add a sanity check *)
let wrap_in_do = List.exists (fun (m, _, _) -> m) lets in
if wrap_in_do then assert (List.for_all (fun (m, _, _) -> m) lets);
wrap_in_do
| FStar | Coq -> false
in
if wrap_in_do_od then (
F.pp_open_vbox fmt (if !backend = Lean then ctx.indent_incr else 0);
F.pp_print_string fmt "do";
F.pp_print_space fmt ());
let ctx =
List.fold_left
(fun ctx (monadic, lv, re) -> extract_let ctx monadic lv re)
ctx lets
in
(* Open a box for the next expression *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the next expression *)
extract_texpression ctx fmt false next_e;
(* Close the box for the next expression *)
F.pp_close_box fmt ();
(* do-box (Lean and HOL4 only) *)
if wrap_in_do_od then (
if !backend = HOL4 then (
F.pp_print_space fmt ();
F.pp_print_string fmt "od");
F.pp_close_box fmt ());
(* Close parentheses *)
if inside && !backend <> Lean then F.pp_print_string fmt ")";
(* Close the box for the whole expression *)
F.pp_close_box fmt ()
and extract_Switch (ctx : extraction_ctx) (fmt : F.formatter) (_inside : bool)
(scrut : texpression) (body : switch_body) : unit =
(* Remark: we don't use the [inside] parameter because we extract matches in
a conservative manner: we always make sure they are parenthesized/delimited
with keywords such as [end] *)
(* Open a box for the whole expression.
In the case of Lean, we rely on indentation to delimit the end of the
branches, and need to insert line breaks: we thus use a vbox.
*)
if !Config.backend = Lean then F.pp_open_vbox fmt 0 else F.pp_open_hvbox fmt 0;
(* Extract the switch *)
(match body with
| If (e_then, e_else) ->
(* Open a box for the [if e] *)
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt "if";
if !backend = Lean && ctx.use_dep_ite then F.pp_print_string fmt " h:";
F.pp_print_space fmt ();
let scrut_inside = PureUtils.texpression_requires_parentheses scrut in
extract_texpression ctx fmt scrut_inside scrut;
(* Close the box for the [if e] *)
F.pp_close_box fmt ();
(* Extract the branches *)
let extract_branch (is_then : bool) (e_branch : texpression) : unit =
F.pp_print_space fmt ();
(* Open a box for the then/else+branch *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for the then/else + space + opening parenthesis *)
F.pp_open_hovbox fmt 0;
let then_or_else = if is_then then "then" else "else" in
F.pp_print_string fmt then_or_else;
let parenth = PureUtils.texpression_requires_parentheses e_branch in
(* Open the parenthesized expression *)
let print_space_after_parenth =
if parenth then (
match !backend with
| FStar ->
F.pp_print_space fmt ();
F.pp_print_string fmt "begin";
F.pp_print_space fmt
| Coq | Lean | HOL4 ->
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
F.pp_print_cut fmt)
else F.pp_print_space fmt
in
(* Close the box for the then/else + space + opening parenthesis *)
F.pp_close_box fmt ();
print_space_after_parenth ();
(* Open a box for the branch *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the branch expression *)
extract_texpression ctx fmt false e_branch;
(* Close the box for the branch *)
F.pp_close_box fmt ();
(* Close the parenthesized expression *)
(if parenth then
match !backend with
| FStar ->
F.pp_print_space fmt ();
F.pp_print_string fmt "end"
| Coq | Lean | HOL4 -> F.pp_print_string fmt ")");
(* Close the box for the then/else+branch *)
F.pp_close_box fmt ()
in
extract_branch true e_then;
extract_branch false e_else
| Match branches -> (
(* Open a box for the [match ... with] *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the [match ... with] *)
let match_begin =
match !backend with
| FStar -> "begin match"
| Coq -> "match"
| Lean -> if ctx.use_dep_ite then "match h:" else "match"
| HOL4 ->
(* We're being extra safe in the case of HOL4 *)
"(case"
in
F.pp_print_string fmt match_begin;
F.pp_print_space fmt ();
let scrut_inside = PureUtils.texpression_requires_parentheses scrut in
extract_texpression ctx fmt scrut_inside scrut;
F.pp_print_space fmt ();
let match_scrut_end =
match !backend with FStar | Coq | Lean -> "with" | HOL4 -> "of"
in
F.pp_print_string fmt match_scrut_end;
(* Close the box for the [match ... with] *)
F.pp_close_box fmt ();
(* Extract the branches *)
let extract_branch (br : match_branch) : unit =
F.pp_print_space fmt ();
(* Open a box for the pattern+branch *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for the pattern *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the pattern *)
F.pp_print_string fmt "|";
F.pp_print_space fmt ();
let ctx = extract_typed_pattern ctx fmt false false br.pat in
F.pp_print_space fmt ();
let arrow =
match !backend with FStar -> "->" | Coq | Lean | HOL4 -> "=>"
in
F.pp_print_string fmt arrow;
(* Close the box for the pattern *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Open a box for the branch *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the branch itself *)
extract_texpression ctx fmt false br.branch;
(* Close the box for the branch *)
F.pp_close_box fmt ();
(* Close the box for the pattern+branch *)
F.pp_close_box fmt ()
in
List.iter extract_branch branches;
(* End the match *)
match !backend with
| Lean -> (*We rely on indentation in Lean *) ()
| FStar | Coq ->
F.pp_print_space fmt ();
F.pp_print_string fmt "end"
| HOL4 -> F.pp_print_string fmt ")"));
(* Close the box for the whole expression *)
F.pp_close_box fmt ()
and extract_StructUpdate (ctx : extraction_ctx) (fmt : F.formatter)
(inside : bool) (e_ty : ty) (supd : struct_update) : unit =
(* We can't update a subset of the fields in Coq (i.e., we can do
[{| x:= 3; y := 4 |}], but there is no syntax for [{| s with x := 3 |}]) *)
assert (!backend <> Coq || supd.init = None);
(* In the case of HOL4, records with no fields are not supported and are
thus extracted to unit. We need to check that by looking up the definition *)
let extract_as_unit =
match (!backend, supd.struct_id) with
| HOL4, TAdtId adt_id ->
let d = TypeDeclId.Map.find adt_id ctx.trans_ctx.type_ctx.type_decls in
d.kind = Struct []
| _ -> false
in
if extract_as_unit then
(* Remark: this is only valid for HOL4 (for instance the Coq unit value is [tt]) *)
F.pp_print_string fmt "()"
else
(* There are two cases:
- this is a regular struct
- this is an array
*)
match supd.struct_id with
| TAdtId _ ->
F.pp_open_hvbox fmt 0;
F.pp_open_hvbox fmt ctx.indent_incr;
(* Inner/outer brackets: there are several syntaxes for the field updates.
For instance, in F*:
{[
{ x with f = ..., ... }
]}
In HOL4:
{[
x with <| f = ..., ... |>
]}
In the above examples:
- in F*, the { } brackets are "outer" brackets
- in HOL4, the <| |> brackets are "inner" brackets
*)
(* Outer brackets *)
let olb, orb =
match !backend with
| Lean | FStar -> (Some "{", Some "}")
| Coq -> (Some "{|", Some "|}")
| HOL4 -> (None, None)
in
(* Inner brackets *)
let ilb, irb =
match !backend with
| Lean | FStar | Coq -> (None, None)
| HOL4 -> (Some "<|", Some "|>")
in
(* Helper *)
let print_bracket (is_left : bool) b =
match b with
| Some b ->
if not is_left then F.pp_print_space fmt ();
F.pp_print_string fmt b;
if is_left then F.pp_print_space fmt ()
| None -> ()
in
print_bracket true olb;
let need_paren = inside && !backend = HOL4 in
if need_paren then F.pp_print_string fmt "(";
F.pp_open_hvbox fmt ctx.indent_incr;
if supd.init <> None then (
let var_name = ctx_get_var (Option.get supd.init) ctx in
F.pp_print_string fmt var_name;
F.pp_print_space fmt ();
F.pp_print_string fmt "with";
F.pp_print_space fmt ());
print_bracket true ilb;
F.pp_open_hvbox fmt 0;
let delimiter =
match !backend with Lean -> "," | Coq | FStar | HOL4 -> ";"
in
let assign =
match !backend with Coq | Lean | HOL4 -> ":=" | FStar -> "="
in
Collections.List.iter_link
(fun () ->
F.pp_print_string fmt delimiter;
F.pp_print_space fmt ())
(fun (fid, fe) ->
F.pp_open_hvbox fmt ctx.indent_incr;
let f = ctx_get_field supd.struct_id fid ctx in
F.pp_print_string fmt f;
F.pp_print_string fmt (" " ^ assign);
F.pp_print_space fmt ();
F.pp_open_hvbox fmt ctx.indent_incr;
extract_texpression ctx fmt true fe;
F.pp_close_box fmt ();
F.pp_close_box fmt ())
supd.updates;
F.pp_close_box fmt ();
print_bracket false irb;
F.pp_close_box fmt ();
F.pp_close_box fmt ();
if need_paren then F.pp_print_string fmt ")";
print_bracket false orb;
F.pp_close_box fmt ()
| TAssumed TArray ->
(* Open the boxes *)
F.pp_open_hvbox fmt ctx.indent_incr;
let need_paren = inside in
if need_paren then F.pp_print_string fmt "(";
(* Open the box for `Array.replicate T N [` *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the array constructor *)
let cs = ctx_get_struct (TAssumed TArray) ctx in
F.pp_print_string fmt cs;
(* Print the parameters *)
let _, generics = ty_as_adt e_ty in
let ty = Collections.List.to_cons_nil generics.types in
F.pp_print_space fmt ();
extract_ty ctx fmt TypeDeclId.Set.empty true ty;
let cg = Collections.List.to_cons_nil generics.const_generics in
F.pp_print_space fmt ();
extract_const_generic ctx fmt true cg;
F.pp_print_space fmt ();
F.pp_print_string fmt "[";
(* Close the box for `Array.mk T N [` *)
F.pp_close_box fmt ();
(* Print the values *)
let delimiter =
match !backend with Lean -> "," | Coq | FStar | HOL4 -> ";"
in
F.pp_print_space fmt ();
F.pp_open_hovbox fmt 0;
Collections.List.iter_link
(fun () ->
F.pp_print_string fmt delimiter;
F.pp_print_space fmt ())
(fun (_, fe) -> extract_texpression ctx fmt false fe)
supd.updates;
(* Close the boxes *)
F.pp_close_box fmt ();
if supd.updates <> [] then F.pp_print_space fmt ();
F.pp_print_string fmt "]";
if need_paren then F.pp_print_string fmt ")";
F.pp_close_box fmt ()
| _ -> raise (Failure "Unreachable")
(** A small utility to print the parameters of a function signature.
We return two contexts:
- the context augmented with bindings for the generics
- the context augmented with bindings for the generics *and*
bindings for the input values
We also return names for the type parameters, const generics, etc.
TODO: do we really need the first one? We should probably always use
the second one.
It comes from the fact that when we print the input values for the
decrease clause, we introduce bindings in the context (because we print
patterns, not the variables). We should figure a cleaner way.
*)
let extract_fun_parameters (space : bool ref) (ctx : extraction_ctx)
(fmt : F.formatter) (def : fun_decl) :
extraction_ctx * extraction_ctx * string list =
(* First, add the associated types and constants if the function is a method
in a trait declaration.
About the order: we want to make sure the names are reserved for
those (variable names might collide with them but it is ok, we will add
suffixes to the variables).
TODO: micro-pass to update what happens when calling trait provided
functions.
*)
let ctx, trait_decl =
match def.kind with
| TraitMethodProvided (decl_id, _) ->
let trait_decl = T.TraitDeclId.Map.find decl_id ctx.trans_trait_decls in
let ctx, _ = ctx_add_trait_self_clause ctx in
let ctx = { ctx with is_provided_method = true } in
(ctx, Some trait_decl)
| _ -> (ctx, None)
in
(* Add the type parameters - note that we need those bindings only for the
* body translation (they are not top-level) *)
let ctx, type_params, cg_params, trait_clauses =
ctx_add_generic_params def.signature.generics ctx
in
(* Print the generics *)
(* Open a box for the generics *)
F.pp_open_hovbox fmt 0;
(let space = Some space in
extract_generic_params ctx fmt TypeDeclId.Set.empty ~space ~trait_decl
def.signature.generics type_params cg_params trait_clauses);
(* Close the box for the generics *)
F.pp_close_box fmt ();
(* The input parameters - note that doing this adds bindings to the context *)
let ctx_body =
match def.body with
| None -> ctx
| Some body ->
List.fold_left
(fun ctx (lv : typed_pattern) ->
insert_req_space fmt space;
(* Open a box for the input parameter *)
F.pp_open_hovbox fmt 0;
F.pp_print_string fmt "(";
let ctx = extract_typed_pattern ctx fmt true false lv in
F.pp_print_space fmt ();
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
extract_ty ctx fmt TypeDeclId.Set.empty false lv.ty;
F.pp_print_string fmt ")";
(* Close the box for the input parameters *)
F.pp_close_box fmt ();
ctx)
ctx body.inputs_lvs
in
(ctx, ctx_body, List.concat [ type_params; cg_params; trait_clauses ])
(** A small utility to print the types of the input parameters in the form:
[u32 -> list u32 -> ...]
(we don't print the return type of the function)
This is used for opaque function declarations, in particular.
*)
let extract_fun_input_parameters_types (ctx : extraction_ctx)
(fmt : F.formatter) (def : fun_decl) : unit =
let extract_param (ty : ty) : unit =
let inside = false in
extract_ty ctx fmt TypeDeclId.Set.empty inside ty;
F.pp_print_space fmt ();
extract_arrow fmt ();
F.pp_print_space fmt ()
in
List.iter extract_param def.signature.inputs
let extract_fun_inputs_output_parameters_types (ctx : extraction_ctx)
(fmt : F.formatter) (def : fun_decl) : unit =
extract_fun_input_parameters_types ctx fmt def;
extract_ty ctx fmt TypeDeclId.Set.empty false def.signature.output
let assert_backend_supports_decreases_clauses () =
match !backend with
| FStar | Lean -> ()
| _ ->
raise
(Failure "decreases clauses only supported for the Lean & F* backends")
(** Extract a decreases clause function template body.
For F* only.
In order to help the user, we can generate a template for the functions
required by the decreases clauses for. We simply generate definitions of
the following form in a separate file:
{[
let f_decrease (t : Type0) (x : t) : nat = admit()
]}
Where the translated functions for [f] look like this:
{[
let f_fwd (t : Type0) (x : t) : Tot ... (decreases (f_decrease t x)) = ...
]}
*)
let extract_template_fstar_decreases_clause (ctx : extraction_ctx)
(fmt : F.formatter) (def : fun_decl) : unit =
assert (!backend = FStar);
(* Retrieve the function name *)
let def_name = ctx_get_termination_measure def.def_id def.loop_id ctx in
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment to link the extracted type to its original rust definition *)
extract_comment fmt
[ "[" ^ Print.fun_name_to_string def.basename ^ "]: decreases clause" ];
F.pp_print_space fmt ();
(* Open a box for the definition, so that whenever possible it gets printed on
* one line *)
F.pp_open_hvbox fmt 0;
(* Add the [unfold] keyword *)
F.pp_print_string fmt "unfold";
F.pp_print_space fmt ();
(* Open a box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* > "let FUN_NAME" *)
F.pp_print_string fmt ("let " ^ def_name);
F.pp_print_space fmt ();
(* Extract the parameters *)
let space = ref true in
let _, _, _ = extract_fun_parameters space ctx fmt def in
insert_req_space fmt space;
F.pp_print_string fmt ":";
(* Print the signature *)
F.pp_print_space fmt ();
F.pp_print_string fmt "nat";
(* Print the "=" *)
F.pp_print_space fmt ();
F.pp_print_string fmt "=";
(* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Print the "admit ()" *)
F.pp_print_string fmt "admit ()";
(* Close the box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *)
F.pp_close_box fmt ();
(* Close the box for the whole definition *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
(** Extract templates for the [termination_by] and [decreasing_by] clauses of a
recursive function definition.
For Lean only.
We extract two commands. The first one is a regular definition for the
termination measure (the value derived from the function arguments that
decreases over function calls). The second one is a macro definition that
defines a proof script (allowed to refer to function arguments) that proves
termination.
*)
let extract_template_lean_termination_and_decreasing (ctx : extraction_ctx)
(fmt : F.formatter) (def : fun_decl) : unit =
assert (!backend = Lean);
(*
* Extract a template for the termination measure
*)
(* Retrieve the function name *)
let def_name = ctx_get_termination_measure def.def_id def.loop_id ctx in
let def_body = Option.get def.body in
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment to link the extracted type to its original rust definition *)
extract_comment fmt
[ "[" ^ Print.fun_name_to_string def.basename ^ "]: termination measure" ];
F.pp_print_space fmt ();
(* Open a box for the definition, so that whenever possible it gets printed on
* one line *)
F.pp_open_hvbox fmt 0;
(* Add the [unfold] keyword *)
F.pp_print_string fmt "@[simp]";
F.pp_print_space fmt ();
(* Open a box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* > "let FUN_NAME" *)
F.pp_print_string fmt ("def " ^ def_name);
F.pp_print_space fmt ();
(* Extract the parameters *)
let space = ref true in
let _, ctx_body, _ = extract_fun_parameters space ctx fmt def in
(* Print the ":=" *)
F.pp_print_space fmt ();
F.pp_print_string fmt ":=";
(* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Tuple of the arguments *)
let vars = List.map (fun (v : var) -> v.id) def_body.inputs in
if List.length vars = 1 then
F.pp_print_string fmt (ctx_get_var (List.hd vars) ctx_body)
else (
F.pp_open_hovbox fmt 0;
F.pp_print_string fmt "(";
Collections.List.iter_link
(fun () ->
F.pp_print_string fmt ",";
F.pp_print_space fmt ())
(fun v -> F.pp_print_string fmt (ctx_get_var v ctx_body))
vars;
F.pp_print_string fmt ")";
F.pp_close_box fmt ());
(* Close the box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *)
F.pp_close_box fmt ();
(* Close the box for the whole definition *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0;
(*
* Extract a template for the decreases proof
*)
let def_name = ctx_get_decreases_proof def.def_id def.loop_id ctx in
(* syntax <def_name> term ... term : tactic *)
F.pp_print_break fmt 0 0;
extract_comment fmt
[ "[" ^ Print.fun_name_to_string def.basename ^ "]: decreases_by tactic" ];
F.pp_print_space fmt ();
F.pp_open_hvbox fmt 0;
F.pp_print_string fmt "syntax \"";
F.pp_print_string fmt def_name;
F.pp_print_string fmt "\" term+ : tactic";
F.pp_print_break fmt 0 0;
(* macro_rules | `(tactic| fact_termination_proof $x) => `(tactic| ( *)
F.pp_print_string fmt "macro_rules";
F.pp_print_space fmt ();
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_open_hovbox fmt 0;
F.pp_print_string fmt "| `(tactic| ";
F.pp_print_string fmt def_name;
List.iter
(fun v ->
F.pp_print_space fmt ();
F.pp_print_string fmt "$";
F.pp_print_string fmt (ctx_get_var v ctx_body))
vars;
F.pp_print_string fmt ") =>";
F.pp_close_box fmt ();
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt "`(tactic| sorry)";
F.pp_close_box fmt ();
F.pp_close_box fmt ();
F.pp_close_box fmt ();
F.pp_print_break fmt 0 0
let extract_fun_comment (ctx : extraction_ctx) (fmt : F.formatter)
(def : fun_decl) : unit =
let { keep_fwd; num_backs } =
PureUtils.RegularFunIdMap.find
(Pure.FunId (FRegular def.def_id), def.loop_id, def.back_id)
ctx.fun_name_info
in
let comment_pre = "[" ^ Print.fun_name_to_string def.basename ^ "]: " in
let comment =
let loop_comment =
match def.loop_id with
| None -> ""
| Some id -> "loop " ^ LoopId.to_string id ^ ": "
in
let fwd_back_comment =
match def.back_id with
| None -> [ "forward function" ]
| Some id ->
(* Check if there is only one backward function, and no forward function *)
if (not keep_fwd) && num_backs = 1 then
[
"merged forward/backward function";
"(there is a single backward function, and the forward function \
returns ())";
]
else [ "backward function " ^ T.RegionGroupId.to_string id ]
in
match fwd_back_comment with
| [] -> raise (Failure "Unreachable")
| [ s ] -> [ comment_pre ^ loop_comment ^ s ]
| s :: sl -> (comment_pre ^ loop_comment ^ s) :: sl
in
extract_comment fmt comment
(** Extract a function declaration.
This function is for all function declarations and all backends **at the exception**
of opaque (assumed/declared) functions for HOL4.
See {!extract_fun_decl}.
*)
let extract_fun_decl_gen (ctx : extraction_ctx) (fmt : F.formatter)
(kind : decl_kind) (has_decreases_clause : bool) (def : fun_decl) : unit =
assert (not def.is_global_decl_body);
(* Retrieve the function name *)
let def_name =
ctx_get_local_function def.def_id def.loop_id def.back_id ctx
in
(* Add a break before *)
if !backend <> HOL4 || not (decl_is_first_from_group kind) then
F.pp_print_break fmt 0 0;
(* Print a comment to link the extracted definition to its original rust definition *)
extract_fun_comment ctx fmt def;
F.pp_print_space fmt ();
(* Open two boxes for the definition, so that whenever possible it gets printed on
* one line and indents are correct *)
F.pp_open_hvbox fmt 0;
F.pp_open_vbox fmt ctx.indent_incr;
(* For HOL4: we may need to put parentheses around the definition *)
let parenthesize = !backend = HOL4 && decl_is_not_last_from_group kind in
if parenthesize then F.pp_print_string fmt "(";
(* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* > "let FUN_NAME" *)
let is_opaque = Option.is_none def.body in
(* If in Coq and the declaration is opaque, it must have the shape:
[Axiom Ident : forall (T0 ... Tn : Type), ... -> ... -> ...].
The boolean [is_opaque_coq] is used to detect this case.
*)
let is_opaque_coq = !backend = Coq && is_opaque in
let use_forall =
is_opaque_coq && def.signature.generics <> empty_generic_params
in
(* Print the qualifier ("assume", etc.). *)
let qualif = ctx.fmt.fun_decl_kind_to_qualif kind in
(match qualif with
| Some qualif ->
F.pp_print_string fmt qualif;
F.pp_print_space fmt ()
| None -> ());
F.pp_print_string fmt def_name;
F.pp_print_space fmt ();
if use_forall then (
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
F.pp_print_string fmt "forall");
(* Open a box for "(PARAMS) : EFFECT =" *)
F.pp_open_hvbox fmt 0;
(* Open a box for "(PARAMS) :" *)
F.pp_open_hovbox fmt 0;
let space = ref true in
let ctx, ctx_body, all_params = extract_fun_parameters space ctx fmt def in
(* Print the return type - note that we have to be careful when
* printing the input values for the decrease clause, because
* it introduces bindings in the context... We thus "forget"
* the bindings we introduced above.
* TODO: figure out a cleaner way *)
let _ =
if use_forall then F.pp_print_string fmt ","
else (
insert_req_space fmt space;
F.pp_print_string fmt ":");
(* Close the box for "(PARAMS) :" *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Open a box for the EFFECT *)
F.pp_open_hvbox fmt 0;
(* Open a box for the return type *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the return type *)
(* For opaque definitions, as we don't have named parameters under the hand,
* we don't print parameters in the form [(x : a) (y : b) ...] above,
* but wait until here to print the types: [a -> b -> ...]. *)
if is_opaque then extract_fun_input_parameters_types ctx fmt def;
(* [Tot] *)
if has_decreases_clause then (
assert_backend_supports_decreases_clauses ();
if !backend = FStar then (
F.pp_print_string fmt "Tot";
F.pp_print_space fmt ()));
extract_ty ctx fmt TypeDeclId.Set.empty has_decreases_clause
def.signature.output;
(* Close the box for the return type *)
F.pp_close_box fmt ();
(* Print the decrease clause - rk.: a function with a decreases clause
* is necessarily a transparent function *)
if has_decreases_clause && !backend = FStar then (
assert_backend_supports_decreases_clauses ();
F.pp_print_space fmt ();
(* Open a box for the decreases clause *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* *)
F.pp_print_string fmt "(decreases (";
F.pp_print_cut fmt ();
(* Open a box for the decreases term *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* The name of the decrease clause *)
let decr_name = ctx_get_termination_measure def.def_id def.loop_id ctx in
F.pp_print_string fmt decr_name;
(* Print the generic parameters - TODO: we do this many
times, we should have a helper to factor it out *)
List.iter
(fun (name : string) ->
F.pp_print_space fmt ();
F.pp_print_string fmt name)
all_params;
(* Print the input values: we have to be careful here to print
* only the input values which are in common with the *forward*
* function (the additional input values "given back" to the
* backward functions have no influence on termination: we thus
* share the decrease clauses between the forward and the backward
* functions - we also ignore the additional state received by the
* backward function, if there is one).
*)
let inputs_lvs =
let all_inputs = (Option.get def.body).inputs_lvs in
let num_fwd_inputs =
def.signature.info.num_fwd_inputs_with_fuel_with_state
in
Collections.List.prefix num_fwd_inputs all_inputs
in
(* TODO: we should probably print the input variables, not the typed
patterns *)
let _ =
List.fold_left
(fun ctx (lv : typed_pattern) ->
F.pp_print_space fmt ();
let ctx = extract_typed_pattern ctx fmt true false lv in
ctx)
ctx inputs_lvs
in
F.pp_print_string fmt "))";
(* Close the box for the decreases term *)
F.pp_close_box fmt ();
(* Close the box for the decreases clause *)
F.pp_close_box fmt ());
(* Close the box for the EFFECT *)
F.pp_close_box fmt ()
in
(* Print the "=" *)
if not is_opaque then (
F.pp_print_space fmt ();
let eq = match !backend with FStar | HOL4 -> "=" | Coq | Lean -> ":=" in
F.pp_print_string fmt eq);
(* Close the box for "(PARAMS) : EFFECT =" *)
F.pp_close_box fmt ();
(* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_close_box fmt ();
if not is_opaque then (
F.pp_print_space fmt ();
(* Open a box for the body *)
F.pp_open_hvbox fmt 0;
(* Extract the body *)
let _ = extract_texpression ctx_body fmt false (Option.get def.body).body in
(* Close the box for the body *)
F.pp_close_box fmt ());
(* Close the inner box for the definition *)
F.pp_close_box fmt ();
(* Termination clause and proof for Lean *)
if has_decreases_clause && !backend = Lean then (
let def_body = Option.get def.body in
let all_vars = List.map (fun (v : var) -> v.id) def_body.inputs in
let num_fwd_inputs =
def.signature.info.num_fwd_inputs_with_fuel_with_state
in
let vars = Collections.List.prefix num_fwd_inputs all_vars in
(* termination_by *)
let terminates_name =
ctx_get_termination_measure def.def_id def.loop_id ctx
in
F.pp_print_break fmt 0 0;
(* Open a box for the whole [termination_by CALL => DECREASES] *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for {termination_by CALL =>} *)
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt "termination_by";
F.pp_print_space fmt ();
F.pp_print_string fmt def_name;
List.iter
(fun v ->
F.pp_print_space fmt ();
F.pp_print_string fmt (ctx_get_var v ctx_body))
all_vars;
F.pp_print_space fmt ();
F.pp_print_string fmt "=>";
(* Close the box for [termination_by CALL =>] *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Open the box for [DECREASES] *)
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt terminates_name;
(* Print the generic params - TODO: factor out *)
List.iter
(fun (name : string) ->
F.pp_print_space fmt ();
F.pp_print_string fmt name)
all_params;
(* Print the variables *)
List.iter
(fun v ->
F.pp_print_space fmt ();
F.pp_print_string fmt (ctx_get_var v ctx_body))
vars;
(* Close the box for [DECREASES] *)
F.pp_close_box fmt ();
(* Close the box for the whole [termination_by CALL => DECREASES] *)
F.pp_close_box fmt ();
F.pp_print_break fmt 0 0;
(* Open a box for the [decreasing by ...] *)
F.pp_open_hvbox fmt ctx.indent_incr;
let decreases_name = ctx_get_decreases_proof def.def_id def.loop_id ctx in
F.pp_print_string fmt "decreasing_by";
F.pp_print_space fmt ();
F.pp_open_hvbox fmt ctx.indent_incr;
F.pp_print_string fmt decreases_name;
List.iter
(fun v ->
F.pp_print_space fmt ();
F.pp_print_string fmt (ctx_get_var v ctx_body))
vars;
F.pp_close_box fmt ();
(* Close the box for the [decreasing by ...] *)
F.pp_close_box fmt ());
(* Close the parentheses *)
if parenthesize then F.pp_print_string fmt ")";
(* Add the definition end delimiter *)
if !backend = HOL4 && decl_is_not_last_from_group kind then (
F.pp_print_space fmt ();
F.pp_print_string fmt "/\\")
else if !backend = Coq && decl_is_last_from_group kind then (
(* This is actually an end of group delimiter. For aesthetic reasons
we print it here instead of in {!end_fun_decl_group}. *)
F.pp_print_cut fmt ();
F.pp_print_string fmt ".");
(* Close the outer box for the definition *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
if !backend <> HOL4 || decl_is_not_last_from_group kind then
F.pp_print_break fmt 0 0
(** Extract an opaque function declaration to HOL4.
Remark (SH): having to treat this specific case separately is very annoying,
but I could not find a better way.
*)
let extract_fun_decl_hol4_opaque (ctx : extraction_ctx) (fmt : F.formatter)
(def : fun_decl) : unit =
(* Retrieve the definition name *)
let def_name =
ctx_get_local_function def.def_id def.loop_id def.back_id ctx
in
assert (def.signature.generics.const_generics = []);
(* Add the type/const gen parameters - note that we need those bindings
only for the generation of the type (they are not top-level) *)
let ctx, _, _, _ = ctx_add_generic_params def.signature.generics ctx in
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0;
(* Open a box for the whole definition *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Print a comment to link the extracted definition to its original rust definition *)
extract_fun_comment ctx fmt def;
(* Generate: `val _ = new_constant ("...",` *)
F.pp_print_string fmt ("val _ = new_constant (\"" ^ def_name ^ "\",");
F.pp_print_space fmt ();
(* Open a box for the type *)
F.pp_open_hovbox fmt 0;
F.pp_print_string fmt "“:";
(* Generate the type *)
extract_fun_input_parameters_types ctx fmt def;
extract_ty ctx fmt TypeDeclId.Set.empty false def.signature.output;
(* Close the box for the type *)
F.pp_print_string fmt "”";
F.pp_close_box fmt ();
(* Close the parenthesis opened for the inputs of `new_constant` *)
F.pp_print_string fmt ")";
(* Close the box for the definition *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
(** Extract a function declaration.
Note that all the names used for extraction should already have been
registered.
We take the definition of the forward translation as parameter (which is
equal to the definition to extract, if we extract a forward function) because
it is useful for the decrease clause.
This function should be inserted between calls to {!start_fun_decl_group}
and {!end_fun_decl_group}.
*)
let extract_fun_decl (ctx : extraction_ctx) (fmt : F.formatter)
(kind : decl_kind) (has_decreases_clause : bool) (def : fun_decl) : unit =
assert (not def.is_global_decl_body);
(* We treat HOL4 opaque functions in a specific manner *)
if !backend = HOL4 && Option.is_none def.body then
extract_fun_decl_hol4_opaque ctx fmt def
else extract_fun_decl_gen ctx fmt kind has_decreases_clause def
(** Extract a global declaration body of the shape "QUALIF NAME : TYPE = BODY"
with a custom body extractor.
We introduce this helper because every (non opaque) global declaration gets
extracted to two declarations, and we can actually factor out the generation
of those declarations. See {!extract_global_decl} for more explanations.
*)
let extract_global_decl_body_gen (ctx : extraction_ctx) (fmt : F.formatter)
(kind : decl_kind) (name : string) (ty : ty)
(extract_body : (F.formatter -> unit) Option.t) : unit =
let is_opaque = Option.is_none extract_body in
(* HOL4: Definition wrapper *)
if !backend = HOL4 then (
(* Open a vertical box: we *must* break lines *)
F.pp_open_vbox fmt 0;
F.pp_print_string fmt ("Definition " ^ name ^ "_def:");
F.pp_print_space fmt ();
F.pp_open_vbox fmt ctx.indent_incr;
F.pp_print_string fmt (String.make ctx.indent_incr ' '));
(* Open the definition boxes (depth=0) *)
F.pp_open_hvbox fmt 0;
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open "QUALIF NAME : TYPE =" box (depth=1) *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print "QUALIF NAME " *)
(match ctx.fmt.fun_decl_kind_to_qualif kind with
| Some qualif ->
F.pp_print_string fmt qualif;
F.pp_print_space fmt ()
| None -> ());
F.pp_print_string fmt name;
F.pp_print_space fmt ();
(* Open ": TYPE =" box (depth=2) *)
F.pp_open_hvbox fmt 0;
(* Print ": " *)
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
(* Open "TYPE" box (depth=3) *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print "TYPE" *)
extract_ty ctx fmt TypeDeclId.Set.empty false ty;
(* Close "TYPE" box (depth=3) *)
F.pp_close_box fmt ();
if not is_opaque then (
(* Print " =" *)
F.pp_print_space fmt ();
let eq = match !backend with FStar | HOL4 -> "=" | Coq | Lean -> ":=" in
F.pp_print_string fmt eq);
(* Close ": TYPE =" box (depth=2) *)
F.pp_close_box fmt ();
(* Close "QUALIF NAME : TYPE =" box (depth=1) *)
F.pp_close_box fmt ();
if not is_opaque then (
F.pp_print_space fmt ();
(* Open "BODY" box (depth=1) *)
F.pp_open_hvbox fmt 0;
(* Print "BODY" *)
(Option.get extract_body) fmt;
(* Close "BODY" box (depth=1) *)
F.pp_close_box fmt ());
(* Close the inner definition box (depth=0) *)
F.pp_close_box fmt ();
(* Coq: add a "." *)
if !backend = Coq then (
F.pp_print_cut fmt ();
F.pp_print_string fmt ".");
(* Close the outer definition box (depth=0) *)
F.pp_close_box fmt ();
(* HOL4: Definition wrapper *)
if !backend = HOL4 then (
F.pp_close_box fmt ();
F.pp_print_space fmt ();
F.pp_print_string fmt "End";
F.pp_close_box fmt ())
(** Extract an opaque global declaration for HOL4.
Remark (SH): having to treat this specific case separately is very annoying,
but I could not find a better way.
*)
let extract_global_decl_hol4_opaque (ctx : extraction_ctx) (fmt : F.formatter)
(name : string) (ty : ty) : unit =
(* Open the definition boxe (depth=0) *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* [val ..._def = new_constant ("...",] *)
F.pp_open_hovbox fmt 0;
F.pp_print_string fmt
("val " ^ name ^ "_def = new_constant (\"" ^ name ^ "\", ");
F.pp_close_box fmt ();
(* Print the type *)
F.pp_open_hovbox fmt 0;
extract_ty ctx fmt TypeDeclId.Set.empty false ty;
(* Close the definition *)
F.pp_print_string fmt ")";
F.pp_close_box fmt ();
(* Close the definition box *)
F.pp_close_box fmt ();
(* Add a line *)
F.pp_print_space fmt ()
(** Extract a global declaration.
We generate the body which *computes* the global value separately from the
value declaration itself.
For example in Rust,
[static X: u32 = 3;]
will be translated to the following F*:
[let x_body : result u32 = Return 3] (* this has type [result u32] *)
[let x_c : u32 = eval_global x_body] (* this has type [u32] (no [result]!) *)
This function generates the two declarations.
Remark: because global declaration groups are always singletons (i.e.,
there are no groups of mutually recursive global declarations), this function
doesn't need to be called between calls to functions of the shape
[{start,end}_gloabl_decl_group], contrary to {!extract_type_decl}
and {!extract_fun_decl}.
*)
let extract_global_decl (ctx : extraction_ctx) (fmt : F.formatter)
(global : A.global_decl) (body : fun_decl) (interface : bool) : unit =
assert body.is_global_decl_body;
assert (Option.is_none body.back_id);
assert (body.signature.inputs = []);
assert (List.length body.signature.doutputs = 1);
assert (body.signature.generics = empty_generic_params);
(* Add a break then the name of the corresponding LLBC declaration *)
F.pp_print_break fmt 0 0;
extract_comment fmt [ "[" ^ Print.global_name_to_string global.name ^ "]" ];
F.pp_print_space fmt ();
let decl_name = ctx_get_global global.def_id ctx in
let body_name =
ctx_get_function
(FromLlbc (Pure.FunId (FRegular global.body_id), None, None))
ctx
in
let decl_ty, body_ty =
let ty = body.signature.output in
if body.signature.info.effect_info.can_fail then (unwrap_result_ty ty, ty)
else (ty, mk_result_ty ty)
in
match body.body with
| None ->
(* No body: only generate a [val x_c : u32] declaration *)
let kind = if interface then Declared else Assumed in
if !backend = HOL4 then
extract_global_decl_hol4_opaque ctx fmt decl_name decl_ty
else extract_global_decl_body_gen ctx fmt kind decl_name decl_ty None
| Some body ->
(* There is a body *)
(* Generate: [let x_body : result u32 = Return 3] *)
extract_global_decl_body_gen ctx fmt SingleNonRec body_name body_ty
(Some (fun fmt -> extract_texpression ctx fmt false body.body));
F.pp_print_break fmt 0 0;
(* Generate: [let x_c : u32 = eval_global x_body] *)
extract_global_decl_body_gen ctx fmt SingleNonRec decl_name decl_ty
(Some
(fun fmt ->
let body =
match !backend with
| FStar -> "eval_global " ^ body_name
| Lean -> "eval_global " ^ body_name ^ " (by simp)"
| Coq -> body_name ^ "%global"
| HOL4 -> "get_return_value " ^ body_name
in
F.pp_print_string fmt body));
(* Add a break to insert lines between declarations *)
F.pp_print_break fmt 0 0
(** Similar to {!extract_trait_decl_register_names} *)
let extract_trait_decl_register_parent_clause_names (ctx : extraction_ctx)
(trait_decl : trait_decl)
(builtin_info : ExtractBuiltin.builtin_trait_decl_info option) :
extraction_ctx =
(* Compute the clause names *)
let clause_names =
match builtin_info with
| None ->
List.map
(fun (c : trait_clause) ->
let name = ctx.fmt.trait_parent_clause_name trait_decl c in
(* Add a prefix if necessary *)
let name =
if !Config.record_fields_short_names then name
else ctx.fmt.trait_decl_name trait_decl ^ name
in
(c.clause_id, name))
trait_decl.parent_clauses
| Some info ->
List.map
(fun (c, name) -> (c.clause_id, name))
(List.combine trait_decl.parent_clauses info.parent_clauses)
in
(* Register the names *)
List.fold_left
(fun ctx (cid, cname) ->
ctx_add (TraitParentClauseId (trait_decl.def_id, cid)) cname ctx)
ctx clause_names
(** Similar to {!extract_trait_decl_register_names} *)
let extract_trait_decl_register_constant_names (ctx : extraction_ctx)
(trait_decl : trait_decl)
(builtin_info : ExtractBuiltin.builtin_trait_decl_info option) :
extraction_ctx =
let consts = trait_decl.consts in
(* Compute the names *)
let constant_names =
match builtin_info with
| None ->
List.map
(fun (item_name, _) ->
let name = ctx.fmt.trait_const_name trait_decl item_name in
(* Add a prefix if necessary *)
let name =
if !Config.record_fields_short_names then name
else ctx.fmt.trait_decl_name trait_decl ^ name
in
(item_name, name))
consts
| Some info ->
let const_map = StringMap.of_list info.consts in
List.map
(fun (item_name, _) ->
(item_name, StringMap.find item_name const_map))
consts
in
(* Register the names *)
List.fold_left
(fun ctx (item_name, name) ->
ctx_add (TraitItemId (trait_decl.def_id, item_name)) name ctx)
ctx constant_names
(** Similar to {!extract_trait_decl_register_names} *)
let extract_trait_decl_type_names (ctx : extraction_ctx)
(trait_decl : trait_decl)
(builtin_info : ExtractBuiltin.builtin_trait_decl_info option) :
extraction_ctx =
let types = trait_decl.types in
(* Compute the names *)
let type_names =
match builtin_info with
| None ->
let compute_type_name (item_name : string) : string =
let type_name = ctx.fmt.trait_type_name trait_decl item_name in
if !Config.record_fields_short_names then type_name
else ctx.fmt.trait_decl_name trait_decl ^ type_name
in
let compute_clause_name (item_name : string) (clause : trait_clause) :
TraitClauseId.id * string =
let name =
ctx.fmt.trait_type_clause_name trait_decl item_name clause
in
(* Add a prefix if necessary *)
let name =
if !Config.record_fields_short_names then name
else ctx.fmt.trait_decl_name trait_decl ^ name
in
(clause.clause_id, name)
in
List.map
(fun (item_name, (item_clauses, _)) ->
(* Type name *)
let type_name = compute_type_name item_name in
(* Clause names *)
let clauses =
List.map (compute_clause_name item_name) item_clauses
in
(item_name, (type_name, clauses)))
types
| Some info ->
let type_map = StringMap.of_list info.types in
List.map
(fun (item_name, (item_clauses, _)) ->
let type_name, clauses_info = StringMap.find item_name type_map in
let clauses =
List.map
(fun (clause, clause_name) -> (clause.clause_id, clause_name))
(List.combine item_clauses clauses_info)
in
(item_name, (type_name, clauses)))
types
in
(* Register the names *)
List.fold_left
(fun ctx (item_name, (type_name, clauses)) ->
let ctx =
ctx_add (TraitItemId (trait_decl.def_id, item_name)) type_name ctx
in
List.fold_left
(fun ctx (clause_id, clause_name) ->
ctx_add
(TraitItemClauseId (trait_decl.def_id, item_name, clause_id))
clause_name ctx)
ctx clauses)
ctx type_names
(** Similar to {!extract_trait_decl_register_names} *)
let extract_trait_decl_method_names (ctx : extraction_ctx)
(trait_decl : trait_decl)
(builtin_info : ExtractBuiltin.builtin_trait_decl_info option) :
extraction_ctx =
let required_methods = trait_decl.required_methods in
(* Compute the names *)
let method_names =
(* We add one field per required forward/backward function *)
let get_funs_for_id (id : fun_decl_id) : fun_decl list =
let trans : pure_fun_translation = FunDeclId.Map.find id ctx.trans_funs in
List.map (fun f -> f.f) (trans.fwd :: trans.backs)
in
match builtin_info with
| None ->
(* We add one field per required forward/backward function *)
let compute_item_names (item_name : string) (id : fun_decl_id) :
string * (RegionGroupId.id option * string) list =
let compute_fun_name (f : fun_decl) : RegionGroupId.id option * string
=
(* We do something special to reuse the [ctx_compute_fun_decl]
function. TODO: make it cleaner. *)
let basename : name = [ Ident item_name ] in
let f = { f with basename } in
let trans = A.FunDeclId.Map.find f.def_id ctx.trans_funs in
let name = ctx_compute_fun_name trans f ctx in
(* Add a prefix if necessary *)
let name =
if !Config.record_fields_short_names then name
else ctx.fmt.trait_decl_name trait_decl ^ "_" ^ name
in
(f.back_id, name)
in
let funs = get_funs_for_id id in
(item_name, List.map compute_fun_name funs)
in
List.map (fun (name, id) -> compute_item_names name id) required_methods
| Some info ->
let funs_map = StringMap.of_list info.methods in
List.map
(fun (item_name, fun_id) ->
let open ExtractBuiltin in
let info = StringMap.find item_name funs_map in
let trans_funs = get_funs_for_id fun_id in
let find (trans_fun : fun_decl) =
let info =
List.find_opt
(fun (info : builtin_fun_info) -> info.rg = trans_fun.back_id)
info
in
match info with
| Some info -> (info.rg, info.extract_name)
| None ->
let err =
"Ill-formed builtin information for trait decl \""
^ Names.name_to_string trait_decl.name
^ "\", method \"" ^ item_name
^ "\": could not find name for region "
^ Print.option_to_string Pure.show_region_group_id
trans_fun.back_id
in
log#serror err;
if !Config.fail_hard then raise (Failure err)
else (trans_fun.back_id, "%ERROR_BUILTIN_NAME_NOT_FOUND%")
in
let rg_with_name_list = List.map find trans_funs in
(item_name, rg_with_name_list))
required_methods
in
(* Register the names *)
List.fold_left
(fun ctx (item_name, funs) ->
(* We add one field per required forward/backward function *)
List.fold_left
(fun ctx (rg, fun_name) ->
ctx_add
(TraitMethodId (trait_decl.def_id, item_name, rg))
fun_name ctx)
ctx funs)
ctx method_names
(** Similar to {!extract_type_decl_register_names} *)
let extract_trait_decl_register_names (ctx : extraction_ctx)
(trait_decl : trait_decl) : extraction_ctx =
(* Lookup the information if this is a builtin trait *)
let open ExtractBuiltin in
let sname = name_to_simple_name trait_decl.name in
let builtin_info =
SimpleNameMap.find_opt sname (builtin_trait_decls_map ())
in
let ctx =
let trait_name, trait_constructor =
match builtin_info with
| None ->
( ctx.fmt.trait_decl_name trait_decl,
ctx.fmt.trait_decl_constructor trait_decl )
| Some info -> (info.extract_name, info.constructor)
in
let ctx = ctx_add (TraitDeclId trait_decl.def_id) trait_name ctx in
ctx_add (TraitDeclConstructorId trait_decl.def_id) trait_constructor ctx
in
(* Parent clauses *)
let ctx =
extract_trait_decl_register_parent_clause_names ctx trait_decl builtin_info
in
(* Constants *)
let ctx =
extract_trait_decl_register_constant_names ctx trait_decl builtin_info
in
(* Types *)
let ctx = extract_trait_decl_type_names ctx trait_decl builtin_info in
(* Required methods *)
let ctx = extract_trait_decl_method_names ctx trait_decl builtin_info in
ctx
(** Similar to {!extract_type_decl_register_names} *)
let extract_trait_impl_register_names (ctx : extraction_ctx)
(trait_impl : trait_impl) : extraction_ctx =
let decl_id = trait_impl.impl_trait.trait_decl_id in
let trait_decl = TraitDeclId.Map.find decl_id ctx.trans_trait_decls in
(* Check if the trait implementation is builtin *)
let builtin_info =
let open ExtractBuiltin in
let type_sname = name_to_simple_name trait_impl.name in
let trait_sname = name_to_simple_name trait_decl.name in
SimpleNamePairMap.find_opt (type_sname, trait_sname)
(builtin_trait_impls_map ())
in
(* Register some builtin information (if necessary) *)
let ctx, builtin_info =
match builtin_info with
| None -> (ctx, None)
| Some (filter, info) ->
let ctx =
match filter with
| None -> ctx
| Some filter ->
{
ctx with
trait_impls_filter_type_args_map =
TraitImplId.Map.add trait_impl.def_id filter
ctx.trait_impls_filter_type_args_map;
}
in
(ctx, Some info)
in
(* For now we do not support overriding provided methods *)
assert (trait_impl.provided_methods = []);
(* Everything is taken care of by {!extract_trait_decl_register_names} *but*
the name of the implementation itself *)
(* Compute the name *)
let name =
match builtin_info with
| None -> ctx.fmt.trait_impl_name trait_decl trait_impl
| Some name -> name
in
ctx_add (TraitImplId trait_impl.def_id) name ctx
(** Small helper.
The type `ty` is to be understood in a very general sense.
*)
let extract_trait_item (ctx : extraction_ctx) (fmt : F.formatter)
(item_name : string) (separator : string) (ty : unit -> unit) : unit =
F.pp_print_space fmt ();
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt item_name;
F.pp_print_space fmt ();
(* ":" or "=" *)
F.pp_print_string fmt separator;
ty ();
(match !Config.backend with Lean -> () | _ -> F.pp_print_string fmt ";");
F.pp_close_box fmt ()
let extract_trait_decl_item (ctx : extraction_ctx) (fmt : F.formatter)
(item_name : string) (ty : unit -> unit) : unit =
extract_trait_item ctx fmt item_name ":" ty
let extract_trait_impl_item (ctx : extraction_ctx) (fmt : F.formatter)
(item_name : string) (ty : unit -> unit) : unit =
let assign = match !Config.backend with Lean | Coq -> ":=" | _ -> "=" in
extract_trait_item ctx fmt item_name assign ty
(** Small helper - TODO: move *)
let generic_params_drop_prefix ~(drop_trait_clauses : bool)
(g1 : generic_params) (g2 : generic_params) : generic_params =
let open Collections.List in
let types = drop (length g1.types) g2.types in
let const_generics = drop (length g1.const_generics) g2.const_generics in
let trait_clauses =
if drop_trait_clauses then drop (length g1.trait_clauses) g2.trait_clauses
else g2.trait_clauses
in
{ types; const_generics; trait_clauses }
(** Small helper.
Extract the items for a method in a trait decl.
*)
let extract_trait_decl_method_items (ctx : extraction_ctx) (fmt : F.formatter)
(decl : trait_decl) (item_name : string) (id : fun_decl_id) : unit =
(* Lookup the definition *)
let trans = A.FunDeclId.Map.find id ctx.trans_funs in
(* Extract the items *)
let funs = if trans.keep_fwd then trans.fwd :: trans.backs else trans.backs in
let extract_method (f : fun_and_loops) =
let f = f.f in
let fun_name = ctx_get_trait_method decl.def_id item_name f.back_id ctx in
let ty () =
(* Extract the generics *)
(* We need to add the generics specific to the method, by removing those
which actually apply to the trait decl *)
let generics =
let drop_trait_clauses = false in
generic_params_drop_prefix ~drop_trait_clauses decl.generics
f.signature.generics
in
let ctx, type_params, cg_params, trait_clauses =
ctx_add_generic_params generics ctx
in
let backend_uses_forall =
match !backend with Coq | Lean -> true | FStar | HOL4 -> false
in
let generics_not_empty = generics <> empty_generic_params in
let use_forall = generics_not_empty && backend_uses_forall in
let use_arrows = generics_not_empty && not backend_uses_forall in
let use_forall_use_sep = false in
extract_generic_params ctx fmt TypeDeclId.Set.empty ~use_forall
~use_forall_use_sep ~use_arrows generics type_params cg_params
trait_clauses;
if use_forall then F.pp_print_string fmt ",";
(* Extract the inputs and output *)
F.pp_print_space fmt ();
extract_fun_inputs_output_parameters_types ctx fmt f
in
extract_trait_decl_item ctx fmt fun_name ty
in
List.iter extract_method funs
(** Extract a trait declaration *)
let extract_trait_decl (ctx : extraction_ctx) (fmt : F.formatter)
(decl : trait_decl) : unit =
(* Retrieve the trait name *)
let decl_name = ctx_get_trait_decl decl.def_id ctx in
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment to link the extracted type to its original rust definition *)
extract_comment fmt
[ "Trait declaration: [" ^ Print.name_to_string decl.name ^ "]" ];
F.pp_print_break fmt 0 0;
(* Open two outer boxes for the definition, so that whenever possible it gets printed on
one line and indents are correct.
There is just an exception with Lean: in this backend, line breaks are important
for the parsing, so we always open a vertical box.
*)
if !Config.backend = Lean then F.pp_open_vbox fmt ctx.indent_incr
else (
F.pp_open_hvbox fmt 0;
F.pp_open_hvbox fmt ctx.indent_incr);
(* `struct Trait (....) =` *)
(* Open the box for the name + generics *)
F.pp_open_hovbox fmt ctx.indent_incr;
let qualif =
Option.get (ctx.fmt.type_decl_kind_to_qualif SingleNonRec (Some Struct))
in
(* When checking if the trait declaration is empty: we ignore the provided
methods, because for now they are extracted separately *)
let is_empty = trait_decl_is_empty { decl with provided_methods = [] } in
if !backend = FStar && not is_empty then (
F.pp_print_string fmt "noeq";
F.pp_print_space fmt ());
F.pp_print_string fmt qualif;
F.pp_print_space fmt ();
F.pp_print_string fmt decl_name;
(* Print the generics *)
let generics = decl.generics in
(* Add the type and const generic params - note that we need those bindings only for the
* body translation (they are not top-level) *)
let ctx, type_params, cg_params, trait_clauses =
ctx_add_generic_params generics ctx
in
extract_generic_params ctx fmt TypeDeclId.Set.empty generics type_params
cg_params trait_clauses;
F.pp_print_space fmt ();
if is_empty && !backend = FStar then (
F.pp_print_string fmt "= unit";
(* Outer box *)
F.pp_close_box fmt ())
else if is_empty && !backend = Coq then (
(* Coq is not very good at infering constructors *)
let cons = ctx_get_trait_constructor decl.def_id ctx in
F.pp_print_string fmt (":= " ^ cons ^ "{}.");
(* Outer box *)
F.pp_close_box fmt ())
else (
(match !backend with
| Lean -> F.pp_print_string fmt "where"
| FStar -> F.pp_print_string fmt "= {"
| Coq ->
let cons = ctx_get_trait_constructor decl.def_id ctx in
F.pp_print_string fmt (":= " ^ cons ^ " {")
| _ -> F.pp_print_string fmt "{");
(* Close the box for the name + generics *)
F.pp_close_box fmt ();
(*
* Extract the items
*)
(* The constants *)
List.iter
(fun (name, (ty, _)) ->
let item_name = ctx_get_trait_const decl.def_id name ctx in
let ty () =
let inside = false in
F.pp_print_space fmt ();
extract_ty ctx fmt TypeDeclId.Set.empty inside ty
in
extract_trait_decl_item ctx fmt item_name ty)
decl.consts;
(* The types *)
List.iter
(fun (name, (clauses, _)) ->
(* Extract the type *)
let item_name = ctx_get_trait_type decl.def_id name ctx in
let ty () =
F.pp_print_space fmt ();
F.pp_print_string fmt (type_keyword ())
in
extract_trait_decl_item ctx fmt item_name ty;
(* Extract the clauses *)
List.iter
(fun clause ->
let item_name =
ctx_get_trait_item_clause decl.def_id name clause.clause_id ctx
in
let ty () =
F.pp_print_space fmt ();
extract_trait_clause_type ctx fmt TypeDeclId.Set.empty clause
in
extract_trait_decl_item ctx fmt item_name ty)
clauses)
decl.types;
(* The parent clauses - note that the parent clauses may refer to the types
and const generics: for this reason we extract them *after* *)
List.iter
(fun clause ->
let item_name =
ctx_get_trait_parent_clause decl.def_id clause.clause_id ctx
in
let ty () =
F.pp_print_space fmt ();
extract_trait_clause_type ctx fmt TypeDeclId.Set.empty clause
in
extract_trait_decl_item ctx fmt item_name ty)
decl.parent_clauses;
(* The required methods *)
List.iter
(fun (name, id) -> extract_trait_decl_method_items ctx fmt decl name id)
decl.required_methods;
(* Close the outer boxes for the definition *)
if !Config.backend <> Lean then F.pp_close_box fmt ();
(* Close the brackets *)
match !Config.backend with
| Lean -> ()
| Coq ->
F.pp_print_space fmt ();
F.pp_print_string fmt "}."
| _ ->
F.pp_print_space fmt ();
F.pp_print_string fmt "}");
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
(** Generate the [Arguments] instructions for the trait declarationsin Coq, so
that we don't have to provide the implicit arguments when projecting the fields. *)
let extract_trait_decl_coq_arguments (ctx : extraction_ctx) (fmt : F.formatter)
(decl : trait_decl) : unit =
(* Generating the [Arguments] instructions is useful only if there are parameters *)
let num_params =
List.length decl.generics.types
+ List.length decl.generics.const_generics
+ List.length decl.generics.trait_clauses
in
if num_params > 0 then (
(* The constructor *)
let cons_name = ctx_get_trait_constructor decl.def_id ctx in
extract_coq_arguments_instruction ctx fmt cons_name num_params;
(* The constants *)
List.iter
(fun (name, _) ->
let item_name = ctx_get_trait_const decl.def_id name ctx in
extract_coq_arguments_instruction ctx fmt item_name num_params)
decl.consts;
(* The types *)
List.iter
(fun (name, (clauses, _)) ->
(* The type *)
let item_name = ctx_get_trait_type decl.def_id name ctx in
extract_coq_arguments_instruction ctx fmt item_name num_params;
(* The type clauses *)
List.iter
(fun clause ->
let item_name =
ctx_get_trait_item_clause decl.def_id name clause.clause_id ctx
in
extract_coq_arguments_instruction ctx fmt item_name num_params)
clauses)
decl.types;
(* The parent clauses *)
List.iter
(fun clause ->
let item_name =
ctx_get_trait_parent_clause decl.def_id clause.clause_id ctx
in
extract_coq_arguments_instruction ctx fmt item_name num_params)
decl.parent_clauses;
(* The required methods *)
List.iter
(fun (item_name, id) ->
(* Lookup the definition *)
let trans = A.FunDeclId.Map.find id ctx.trans_funs in
(* Extract the items *)
let funs =
if trans.keep_fwd then trans.fwd :: trans.backs else trans.backs
in
let extract_for_method (f : fun_and_loops) =
let f = f.f in
let item_name =
ctx_get_trait_method decl.def_id item_name f.back_id ctx
in
extract_coq_arguments_instruction ctx fmt item_name num_params
in
List.iter extract_for_method funs)
decl.required_methods;
(* Add a space *)
F.pp_print_space fmt ())
(** See {!extract_trait_decl_coq_arguments} *)
let extract_trait_decl_extra_info (ctx : extraction_ctx) (fmt : F.formatter)
(trait_decl : trait_decl) : unit =
match !backend with
| Coq -> extract_trait_decl_coq_arguments ctx fmt trait_decl
| _ -> ()
(** Small helper.
Extract the items for a method in a trait impl.
*)
let extract_trait_impl_method_items (ctx : extraction_ctx) (fmt : F.formatter)
(impl : trait_impl) (item_name : string) (id : fun_decl_id)
(impl_generics : string list * string list * string list) : unit =
let trait_decl_id = impl.impl_trait.trait_decl_id in
(* Lookup the definition *)
let trans = A.FunDeclId.Map.find id ctx.trans_funs in
(* Extract the items *)
let funs = if trans.keep_fwd then trans.fwd :: trans.backs else trans.backs in
let extract_method (f : fun_and_loops) =
let f = f.f in
let fun_name = ctx_get_trait_method trait_decl_id item_name f.back_id ctx in
let ty () =
(* Filter the generics if the method is a builtin *)
let i_tys, _, _ = impl_generics in
let impl_types, i_tys, f_tys =
match FunDeclId.Map.find_opt f.def_id ctx.funs_filter_type_args_map with
| None -> (impl.generics.types, i_tys, f.signature.generics.types)
| Some filter ->
let filter_list filter ls =
let ls = List.combine filter ls in
List.filter_map (fun (b, ty) -> if b then Some ty else None) ls
in
let impl_types = impl.generics.types in
let impl_filter =
Collections.List.prefix (List.length impl_types) filter
in
let i_tys = i_tys in
let i_filter = Collections.List.prefix (List.length i_tys) filter in
( filter_list impl_filter impl_types,
filter_list i_filter i_tys,
filter_list filter f.signature.generics.types )
in
let f_generics = { f.signature.generics with types = f_tys } in
(* Extract the generics - we need to quantify over the generics which
are specific to the method, and call it will all the generics
(trait impl + method generics) *)
let f_generics =
let drop_trait_clauses = true in
generic_params_drop_prefix ~drop_trait_clauses
{ impl.generics with types = impl_types }
f_generics
in
(* Register and print the quantified generics *)
let ctx, f_tys, f_cgs, f_tcs = ctx_add_generic_params f_generics ctx in
let use_forall = f_generics <> empty_generic_params in
extract_generic_params ctx fmt TypeDeclId.Set.empty ~use_forall f_generics
f_tys f_cgs f_tcs;
if use_forall then F.pp_print_string fmt ",";
(* Extract the function call *)
F.pp_print_space fmt ();
let fun_name = ctx_get_local_function f.def_id None f.back_id ctx in
F.pp_print_string fmt fun_name;
let all_generics =
let _, i_cgs, i_tcs = impl_generics in
List.concat [ i_tys; f_tys; i_cgs; f_cgs; i_tcs; f_tcs ]
in
(* Filter the generics if the function is builtin *)
List.iter
(fun p ->
F.pp_print_space fmt ();
F.pp_print_string fmt p)
all_generics
in
extract_trait_impl_item ctx fmt fun_name ty
in
List.iter extract_method funs
(** Extract a trait implementation *)
let extract_trait_impl (ctx : extraction_ctx) (fmt : F.formatter)
(impl : trait_impl) : unit =
log#ldebug (lazy ("extract_trait_impl: " ^ Names.name_to_string impl.name));
(* Retrieve the impl name *)
let impl_name = ctx_get_trait_impl impl.def_id ctx in
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment to link the extracted type to its original rust definition *)
extract_comment fmt
[ "Trait implementation: [" ^ Print.name_to_string impl.name ^ "]" ];
F.pp_print_break fmt 0 0;
(* Open two outer boxes for the definition, so that whenever possible it gets printed on
one line and indents are correct.
There is just an exception with Lean: in this backend, line breaks are important
for the parsing, so we always open a vertical box.
*)
if !Config.backend = Lean then (
F.pp_open_vbox fmt 0;
F.pp_open_vbox fmt ctx.indent_incr)
else (
F.pp_open_hvbox fmt 0;
F.pp_open_hvbox fmt ctx.indent_incr);
(* `let (....) : Trait ... =` *)
(* Open the box for the name + generics *)
F.pp_open_hovbox fmt ctx.indent_incr;
(match ctx.fmt.fun_decl_kind_to_qualif SingleNonRec with
| Some qualif ->
F.pp_print_string fmt qualif;
F.pp_print_space fmt ()
| None -> ());
F.pp_print_string fmt impl_name;
(* Print the generics *)
(* Add the type and const generic params - note that we need those bindings only for the
* body translation (they are not top-level) *)
let ctx, type_params, cg_params, trait_clauses =
ctx_add_generic_params impl.generics ctx
in
let all_generics = (type_params, cg_params, trait_clauses) in
extract_generic_params ctx fmt TypeDeclId.Set.empty impl.generics type_params
cg_params trait_clauses;
(* Print the type *)
F.pp_print_space fmt ();
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
extract_trait_decl_ref ctx fmt TypeDeclId.Set.empty false impl.impl_trait;
(* When checking if the trait impl is empty: we ignore the provided
methods, because for now they are extracted separately *)
let is_empty = trait_impl_is_empty { impl with provided_methods = [] } in
F.pp_print_space fmt ();
if is_empty && !Config.backend = FStar then (
F.pp_print_string fmt "= ()";
(* Outer box *)
F.pp_close_box fmt ())
else if is_empty && !Config.backend = Coq then (
(* Coq is not very good at infering constructors *)
let cons = ctx_get_trait_constructor impl.impl_trait.trait_decl_id ctx in
F.pp_print_string fmt (":= " ^ cons ^ ".");
(* Outer box *)
F.pp_close_box fmt ())
else (
if !Config.backend = Lean then F.pp_print_string fmt ":= {"
else if !Config.backend = Coq then F.pp_print_string fmt ":= {|"
else F.pp_print_string fmt "= {";
(* Close the box for the name + generics *)
F.pp_close_box fmt ();
(*
* Extract the items
*)
let trait_decl_id = impl.impl_trait.trait_decl_id in
(* The constants *)
List.iter
(fun (name, (_, id)) ->
let item_name = ctx_get_trait_const trait_decl_id name ctx in
let ty () =
F.pp_print_space fmt ();
F.pp_print_string fmt (ctx_get_global id ctx)
in
extract_trait_impl_item ctx fmt item_name ty)
impl.consts;
(* The types *)
List.iter
(fun (name, (trait_refs, ty)) ->
(* Extract the type *)
let item_name = ctx_get_trait_type trait_decl_id name ctx in
let ty () =
F.pp_print_space fmt ();
extract_ty ctx fmt TypeDeclId.Set.empty false ty
in
extract_trait_impl_item ctx fmt item_name ty;
(* Extract the clauses *)
TraitClauseId.iteri
(fun clause_id trait_ref ->
let item_name =
ctx_get_trait_item_clause trait_decl_id name clause_id ctx
in
let ty () =
F.pp_print_space fmt ();
extract_trait_ref ctx fmt TypeDeclId.Set.empty false trait_ref
in
extract_trait_impl_item ctx fmt item_name ty)
trait_refs)
impl.types;
(* The parent clauses *)
TraitClauseId.iteri
(fun clause_id trait_ref ->
let item_name =
ctx_get_trait_parent_clause trait_decl_id clause_id ctx
in
let ty () =
F.pp_print_space fmt ();
extract_trait_ref ctx fmt TypeDeclId.Set.empty false trait_ref
in
extract_trait_impl_item ctx fmt item_name ty)
impl.parent_trait_refs;
(* The required methods *)
List.iter
(fun (name, id) ->
extract_trait_impl_method_items ctx fmt impl name id all_generics)
impl.required_methods;
(* Close the outer boxes for the definition, as well as the brackets *)
F.pp_close_box fmt ();
if !backend = Coq then (
F.pp_print_space fmt ();
F.pp_print_string fmt "|}.")
else if (not (!backend = FStar)) || not is_empty then (
F.pp_print_space fmt ();
F.pp_print_string fmt "}"));
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
(** Extract a unit test, if the function is a unit function (takes no
parameters, returns unit).
A unit test simply checks that the function normalizes to [Return ()].
F*:
{[
let _ = assert_norm (FUNCTION = Return ())
]}
Coq:
{[
Check (FUNCTION)%return).
]}
*)
let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter)
(def : fun_decl) : unit =
(* We only insert unit tests for forward functions *)
assert (def.back_id = None);
(* Check if this is a unit function *)
let sg = def.signature in
if
sg.generics = empty_generic_params
&& (sg.inputs = [ mk_unit_ty ] || sg.inputs = [])
&& sg.output = mk_result_ty mk_unit_ty
then (
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment *)
extract_comment fmt
[ "Unit test for [" ^ Print.fun_name_to_string def.basename ^ "]" ];
F.pp_print_space fmt ();
(* Open a box for the test *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the test *)
(match !backend with
| FStar ->
F.pp_print_string fmt "let _ =";
F.pp_print_space fmt ();
F.pp_print_string fmt "assert_norm";
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
let fun_name =
ctx_get_local_function def.def_id def.loop_id def.back_id ctx
in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
F.pp_print_string fmt "()");
F.pp_print_space fmt ();
F.pp_print_string fmt "=";
F.pp_print_space fmt ();
let success = ctx_get_variant (TAssumed TResult) result_return_id ctx in
F.pp_print_string fmt (success ^ " ())")
| Coq ->
F.pp_print_string fmt "Check";
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
let fun_name =
ctx_get_local_function def.def_id def.loop_id def.back_id ctx
in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
F.pp_print_string fmt "()");
F.pp_print_space fmt ();
F.pp_print_string fmt ")%return."
| Lean ->
F.pp_print_string fmt "#assert";
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
let fun_name =
ctx_get_local_function def.def_id def.loop_id def.back_id ctx
in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
F.pp_print_string fmt "()");
F.pp_print_space fmt ();
F.pp_print_string fmt "==";
F.pp_print_space fmt ();
let success = ctx_get_variant (TAssumed TResult) result_return_id ctx in
F.pp_print_string fmt ("." ^ success ^ " ())")
| HOL4 ->
F.pp_print_string fmt "val _ = assert_return (";
F.pp_print_string fmt "“";
let fun_name =
ctx_get_local_function def.def_id def.loop_id def.back_id ctx
in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
F.pp_print_string fmt "()");
F.pp_print_string fmt "”)");
(* Close the box for the test *)
F.pp_close_box fmt ();
(* Add a break after *)
F.pp_print_break fmt 0 0)
else (* Do nothing *)
()
|