1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
|
import Lean
import Mathlib.Tactic.Core
import Base.UtilsBase
/-
Mathlib tactics:
- rcases: https://leanprover-community.github.io/mathlib_docs/tactics.html#rcases
- split_ifs: https://leanprover-community.github.io/mathlib_docs/tactics.html#split_ifs
- norm_num: https://leanprover-community.github.io/mathlib_docs/tactics.html#norm_num
- should we use linarith or omega?
- hint: https://leanprover-community.github.io/mathlib_docs/tactics.html#hint
- classical: https://leanprover-community.github.io/mathlib_docs/tactics.html#classical
-/
/-
TODO:
- we want an easier to use cases:
- keeps in the goal an equation of the shape: `t = case`
- if called on Prop terms, uses Classical.em
Actually, the cases from mathlib seems already quite powerful
(https://leanprover-community.github.io/mathlib_docs/tactics.html#cases)
For instance: cases h : e
Also: **casesm**
- better split tactic
- we need conversions to operate on the head of applications.
Actually, something like this works:
```
conv at Hl =>
apply congr_fun
simp [fix_fuel_P]
```
Maybe we need a rpt ... ; focus?
- simplifier/rewriter have a strange behavior sometimes
-/
namespace List
-- TODO: I could not find this function??
@[simp] def flatten {a : Type u} : List (List a) → List a
| [] => []
| x :: ls => x ++ flatten ls
end List
-- TODO: move?
@[simp]
theorem neq_imp {α : Type u} {x y : α} (h : ¬ x = y) : ¬ y = x := by intro; simp_all
namespace Lean
namespace LocalContext
open Lean Lean.Elab Command Term Lean.Meta
-- Small utility: return the list of declarations in the context, from
-- the last to the first.
def getAllDecls (lctx : Lean.LocalContext) : MetaM (List Lean.LocalDecl) :=
lctx.foldrM (fun d ls => do let d ← instantiateLocalDeclMVars d; pure (d :: ls)) []
-- Return the list of declarations in the context, but filter the
-- declarations which are considered as implementation details
def getDecls (lctx : Lean.LocalContext) : MetaM (List Lean.LocalDecl) := do
let ls ← lctx.getAllDecls
pure (ls.filter (fun d => not d.isImplementationDetail))
end LocalContext
end Lean
namespace Utils
open Lean Elab Term Meta Tactic
-- Useful helper to explore definitions and figure out the variant
-- of their sub-expressions.
def explore_term (incr : String) (e : Expr) : MetaM Unit :=
match e with
| .bvar _ => do logInfo m!"{incr}bvar: {e}"; return ()
| .fvar _ => do logInfo m!"{incr}fvar: {e}"; return ()
| .mvar _ => do logInfo m!"{incr}mvar: {e}"; return ()
| .sort _ => do logInfo m!"{incr}sort: {e}"; return ()
| .const _ _ => do logInfo m!"{incr}const: {e}"; return ()
| .app fn arg => do
logInfo m!"{incr}app: {e}"
explore_term (incr ++ " ") fn
explore_term (incr ++ " ") arg
| .lam _bName bTy body _binfo => do
logInfo m!"{incr}lam: {e}"
explore_term (incr ++ " ") bTy
explore_term (incr ++ " ") body
| .forallE _bName bTy body _bInfo => do
logInfo m!"{incr}forallE: {e}"
explore_term (incr ++ " ") bTy
explore_term (incr ++ " ") body
| .letE _dName ty val body _nonDep => do
logInfo m!"{incr}letE: {e}"
explore_term (incr ++ " ") ty
explore_term (incr ++ " ") val
explore_term (incr ++ " ") body
| .lit _ => do logInfo m!"{incr}lit: {e}"; return ()
| .mdata _ e => do
logInfo m!"{incr}mdata: {e}"
explore_term (incr ++ " ") e
| .proj _ _ struct => do
logInfo m!"{incr}proj: {e}"
explore_term (incr ++ " ") struct
def explore_decl (n : Name) : TermElabM Unit := do
logInfo m!"Name: {n}"
let env ← getEnv
let decl := env.constants.find! n
match decl with
| .defnInfo val =>
logInfo m!"About to explore defn: {decl.name}"
logInfo m!"# Type:"
explore_term "" val.type
logInfo m!"# Value:"
explore_term "" val.value
| .axiomInfo _ => throwError m!"axiom: {n}"
| .thmInfo _ => throwError m!"thm: {n}"
| .opaqueInfo _ => throwError m!"opaque: {n}"
| .quotInfo _ => throwError m!"quot: {n}"
| .inductInfo _ => throwError m!"induct: {n}"
| .ctorInfo _ => throwError m!"ctor: {n}"
| .recInfo _ => throwError m!"rec: {n}"
syntax (name := printDecl) "print_decl " ident : command
open Lean.Elab.Command
@[command_elab printDecl] def elabPrintDecl : CommandElab := fun stx => do
liftTermElabM do
let id := stx[1]
addCompletionInfo <| CompletionInfo.id id id.getId (danglingDot := false) {} none
let cs ← resolveGlobalConstWithInfos id
explore_decl cs[0]!
private def test1 : Nat := 0
private def test2 (x : Nat) : Nat := x
print_decl test1
print_decl test2
def printDecls (decls : List LocalDecl) : MetaM Unit := do
let decls ← decls.foldrM (λ decl msg => do
pure (m!"\n{decl.toExpr} : {← inferType decl.toExpr}" ++ msg)) m!""
logInfo m!"# Ctx decls:{decls}"
-- Small utility: print all the declarations in the context (including the "implementation details")
elab "print_all_ctx_decls" : tactic => do
let ctx ← Lean.MonadLCtx.getLCtx
let decls ← ctx.getAllDecls
printDecls decls
-- Small utility: print all declarations in the context
elab "print_ctx_decls" : tactic => do
let ctx ← Lean.MonadLCtx.getLCtx
let decls ← ctx.getDecls
printDecls decls
-- A map-reduce visitor function for expressions (adapted from `AbstractNestedProofs.visit`)
-- The continuation takes as parameters:
-- - the current depth of the expression (useful for printing/debugging)
-- - the expression to explore
partial def mapreduceVisit {a : Type} (k : Nat → a → Expr → MetaM (a × Expr))
(state : a) (e : Expr) : MetaM (a × Expr) := do
let mapreduceVisitBinders (state : a) (xs : Array Expr) (k2 : a → MetaM (a × Expr)) :
MetaM (a × Expr) := do
let localInstances ← getLocalInstances
-- Update the local declarations for the bindings in context `lctx`
let rec visit_xs (lctx : LocalContext) (state : a) (xs : List Expr) : MetaM (LocalContext × a) := do
match xs with
| [] => pure (lctx, state)
| x :: xs => do
let xFVarId := x.fvarId!
let localDecl ← xFVarId.getDecl
let (state, type) ← mapreduceVisit k state localDecl.type
let localDecl := localDecl.setType type
let (state, localDecl) ← match localDecl.value? with
| some value =>
let (state, value) ← mapreduceVisit k state value
pure (state, localDecl.setValue value)
| none => pure (state, localDecl)
let lctx := lctx.modifyLocalDecl xFVarId fun _ => localDecl
-- Recursive call
visit_xs lctx state xs
let (lctx, state) ← visit_xs (← getLCtx) state xs.toList
-- Call the continuation with the updated context
withLCtx lctx localInstances (k2 state)
-- TODO: use a cache? (Lean.checkCache)
let rec visit (i : Nat) (state : a) (e : Expr) : MetaM (a × Expr) := do
-- Explore
let (state, e) ← k i state e
match e with
| .bvar _
| .fvar _
| .mvar _
| .sort _
| .lit _
| .const _ _ => pure (state, e)
| .app .. => do e.withApp fun f args => do
let (state, args) ← args.foldlM (fun (state, args) arg => do let (state, arg) ← visit (i + 1) state arg; pure (state, arg :: args)) (state, [])
let args := args.reverse
let (state, f) ← visit (i + 1) state f
let e' := mkAppN f (Array.mk args)
return (state, e')
| .lam .. =>
lambdaLetTelescope e fun xs b =>
mapreduceVisitBinders state xs fun state => do
let (state, b) ← visit (i + 1) state b
let e' ← mkLambdaFVars xs b (usedLetOnly := false)
return (state, e')
| .forallE .. => do
forallTelescope e fun xs b =>
mapreduceVisitBinders state xs fun state => do
let (state, b) ← visit (i + 1) state b
let e' ← mkForallFVars xs b
return (state, e')
| .letE .. => do
lambdaLetTelescope e fun xs b =>
mapreduceVisitBinders state xs fun state => do
let (state, b) ← visit (i + 1) state b
let e' ← mkLambdaFVars xs b (usedLetOnly := false)
return (state, e')
| .mdata _ b => do
let (state, b) ← visit (i + 1) state b
return (state, e.updateMData! b)
| .proj _ _ b => do
let (state, b) ← visit (i + 1) state b
return (state, e.updateProj! b)
visit 0 state e
-- A map visitor function for expressions (adapted from `AbstractNestedProofs.visit`)
-- The continuation takes as parameters:
-- - the current depth of the expression (useful for printing/debugging)
-- - the expression to explore
partial def mapVisit (k : Nat → Expr → MetaM Expr) (e : Expr) : MetaM Expr := do
let k' i (_ : Unit) e := do
let e ← k i e
pure ((), e)
let (_, e) ← mapreduceVisit k' () e
pure e
-- A reduce visitor
partial def reduceVisit {a : Type} (k : Nat → a → Expr → MetaM a) (s : a) (e : Expr) : MetaM a := do
let k' i (s : a) e := do
let s ← k i s e
pure (s, e)
let (s, _) ← mapreduceVisit k' s e
pure s
-- Generate a fresh user name for an anonymous proposition to introduce in the
-- assumptions
def mkFreshAnonPropUserName := mkFreshUserName `_
section Methods
variable [MonadLiftT MetaM m] [MonadControlT MetaM m] [Monad m] [MonadError m]
variable {a : Type}
/- Like `lambdaTelescopeN` but only destructs a fixed number of lambdas -/
def lambdaTelescopeN (e : Expr) (n : Nat) (k : Array Expr → Expr → m a) : m a :=
lambdaTelescope e fun xs body => do
if xs.size < n then throwError "lambdaTelescopeN: not enough lambdas"
let xs := xs.extract 0 n
let ys := xs.extract n xs.size
let body ← liftMetaM (mkLambdaFVars ys body)
k xs body
/- Like `lambdaTelescope`, but only destructs one lambda
TODO: is there an equivalent of this function somewhere in the
standard library? -/
def lambdaOne (e : Expr) (k : Expr → Expr → m a) : m a :=
lambdaTelescopeN e 1 λ xs b => k (xs.get! 0) b
def isExists (e : Expr) : Bool := e.getAppFn.isConstOf ``Exists ∧ e.getAppNumArgs = 2
-- Remark: Lean doesn't find the inhabited and nonempty instances if we don'
-- put them explicitely in the signature
partial def existsTelescopeProcess [Inhabited (m a)] [Nonempty (m a)]
(fvars : Array Expr) (e : Expr) (k : Array Expr → Expr → m a) : m a := do
-- Attempt to deconstruct an existential
if isExists e then do
let p := e.appArg!
lambdaOne p fun x ne =>
existsTelescopeProcess (fvars.push x) ne k
else
-- No existential: call the continuation
k fvars e
def existsTelescope [Inhabited (m a)] [Nonempty (m a)] (e : Expr) (k : Array Expr → Expr → m a) : m a := do
existsTelescopeProcess #[] e k
end Methods
-- TODO: this should take a continuation
def addDeclTac (name : Name) (val : Expr) (type : Expr) (asLet : Bool) : TacticM Expr :=
-- I don't think we need that
withMainContext do
-- Insert the new declaration
let withDecl := if asLet then withLetDecl name type val else withLocalDeclD name type
withDecl fun nval => do
-- For debugging
let lctx ← Lean.MonadLCtx.getLCtx
let fid := nval.fvarId!
let decl := lctx.get! fid
trace[Arith] " new decl: \"{decl.userName}\" ({nval}) : {decl.type} := {decl.value}"
--
-- Tranform the main goal `?m0` to `let x = nval in ?m1`
let mvarId ← getMainGoal
let newMVar ← mkFreshExprSyntheticOpaqueMVar (← mvarId.getType)
let newVal ← mkLetFVars #[nval] newMVar
-- There are two cases:
-- - asLet is true: newVal is `let $name := $val in $newMVar`
-- - asLet is false: ewVal is `λ $name => $newMVar`
-- We need to apply it to `val`
let newVal := if asLet then newVal else mkAppN newVal #[val]
-- Assign the main goal and update the current goal
mvarId.assign newVal
let goals ← getUnsolvedGoals
setGoals (newMVar.mvarId! :: goals)
-- Return the new value - note: we are in the *new* context, created
-- after the declaration was added, so it will persist
pure nval
def addDeclTacSyntax (name : Name) (val : Syntax) (asLet : Bool) : TacticM Unit :=
-- I don't think we need that
withMainContext do
--
let val ← Term.elabTerm val .none
let type ← inferType val
-- In some situations, the type will be left as a metavariable (for instance,
-- if the term is `3`, Lean has the choice between `Nat` and `Int` and will
-- not choose): we force the instantiation of the meta-variable
synthesizeSyntheticMVarsUsingDefault
--
let _ ← addDeclTac name val type asLet
elab "custom_let " n:ident " := " v:term : tactic => do
addDeclTacSyntax n.getId v (asLet := true)
elab "custom_have " n:ident " := " v:term : tactic =>
addDeclTacSyntax n.getId v (asLet := false)
example : Nat := by
custom_let x := 4
custom_have y := 4
apply y
example (x : Bool) : Nat := by
cases x <;> custom_let x := 3 <;> apply x
-- Attempt to apply a tactic
def tryTac (tac : TacticM Unit) : TacticM Unit := do
let _ ← tryTactic tac
-- Repeatedly apply a tactic
partial def repeatTac (tac : TacticM Unit) : TacticM Unit := do
try
tac
allGoals (focus (repeatTac tac))
-- TODO: does this restore the state?
catch _ => pure ()
def firstTac (tacl : List (TacticM Unit)) : TacticM Unit := do
match tacl with
| [] => pure ()
| tac :: tacl =>
-- Should use try ... catch or Lean.observing?
-- Generally speaking we should use Lean.observing? to restore the state,
-- but with tactics the try ... catch variant seems to work
try do
tac
-- Check that there are no remaining goals
let gl ← Tactic.getUnsolvedGoals
if ¬ gl.isEmpty then throwError "tactic failed"
catch _ => firstTac tacl
/- let res ← Lean.observing? do
tac
-- Check that there are no remaining goals
let gl ← Tactic.getUnsolvedGoals
if ¬ gl.isEmpty then throwError "tactic failed"
match res with
| some _ => pure ()
| none => firstTac tacl -/
-- Taken from Lean.Elab.evalAssumption
def assumptionTac : TacticM Unit :=
liftMetaTactic fun mvarId => do mvarId.assumption; pure []
def isConj (e : Expr) : MetaM Bool :=
e.consumeMData.withApp fun f args => pure (f.isConstOf ``And ∧ args.size = 2)
-- Return the first conjunct if the expression is a conjunction, or the
-- expression itself otherwise. Also return the second conjunct if it is a
-- conjunction.
def optSplitConj (e : Expr) : MetaM (Expr × Option Expr) := do
e.consumeMData.withApp fun f args =>
if f.isConstOf ``And ∧ args.size = 2 then pure (args.get! 0, some (args.get! 1))
else pure (e, none)
-- Split the goal if it is a conjunction
def splitConjTarget : TacticM Unit := do
withMainContext do
let g ← getMainTarget
trace[Utils] "splitConjTarget: goal: {g}"
-- The tactic was initially implemened with `_root_.Lean.MVarId.apply`
-- but it tended to mess the goal by unfolding terms, even when it failed
let (l, r) ← optSplitConj g
match r with
| none => do throwError "The goal is not a conjunction"
| some r => do
let lmvar ← mkFreshExprSyntheticOpaqueMVar l
let rmvar ← mkFreshExprSyntheticOpaqueMVar r
let and_intro ← mkAppM ``And.intro #[lmvar, rmvar]
let g ← getMainGoal
g.assign and_intro
let goals ← getUnsolvedGoals
setGoals (lmvar.mvarId! :: rmvar.mvarId! :: goals)
-- Destruct an equaliy and return the two sides
def destEq (e : Expr) : MetaM (Expr × Expr) := do
e.consumeMData.withApp fun f args =>
if f.isConstOf ``Eq ∧ args.size = 3 then pure (args.get! 1, args.get! 2)
else throwError "Not an equality: {e}"
-- Return the set of FVarIds in the expression
-- TODO: this collects fvars introduced in the inner bindings
partial def getFVarIds (e : Expr) (hs : HashSet FVarId := HashSet.empty) : MetaM (HashSet FVarId) := do
reduceVisit (fun _ (hs : HashSet FVarId) e =>
if e.isFVar then pure (hs.insert e.fvarId!) else pure hs)
hs e
-- Return the set of MVarIds in the expression
partial def getMVarIds (e : Expr) (hs : HashSet MVarId := HashSet.empty) : MetaM (HashSet MVarId) := do
reduceVisit (fun _ (hs : HashSet MVarId) e =>
if e.isMVar then pure (hs.insert e.mvarId!) else pure hs)
hs e
-- Tactic to split on a disjunction.
-- The expression `h` should be an fvar.
-- TODO: there must be simpler. Use use _root_.Lean.MVarId.cases for instance
def splitDisjTac (h : Expr) (kleft kright : TacticM Unit) : TacticM Unit := do
trace[Arith] "assumption on which to split: {h}"
-- Retrieve the main goal
withMainContext do
let goalType ← getMainTarget
let hDecl := (← getLCtx).get! h.fvarId!
let hName := hDecl.userName
-- Case disjunction
let hTy ← inferType h
hTy.withApp fun f xs => do
trace[Arith] "as app: {f} {xs}"
-- Sanity check
if ¬ (f.isConstOf ``Or ∧ xs.size = 2) then throwError "Invalid argument to splitDisjTac"
let a := xs.get! 0
let b := xs.get! 1
-- Introduce the new goals
-- Returns:
-- - the match branch
-- - a fresh new mvar id
let mkGoal (hTy : Expr) (nGoalName : String) : MetaM (Expr × MVarId) := do
-- Introduce a variable for the assumption (`a` or `b`). Note that we reuse
-- the name of the assumption we split.
withLocalDeclD hName hTy fun var => do
-- The new goal
let mgoal ← mkFreshExprSyntheticOpaqueMVar goalType (tag := Name.mkSimple nGoalName)
-- Clear the assumption that we split
let mgoal ← mgoal.mvarId!.tryClearMany #[h.fvarId!]
-- The branch expression
let branch ← mkLambdaFVars #[var] (mkMVar mgoal)
pure (branch, mgoal)
let (inl, mleft) ← mkGoal a "left"
let (inr, mright) ← mkGoal b "right"
trace[Arith] "left: {inl}: {mleft}"
trace[Arith] "right: {inr}: {mright}"
-- Create the match expression
withLocalDeclD (← mkFreshAnonPropUserName) hTy fun hVar => do
let motive ← mkLambdaFVars #[hVar] goalType
let casesExpr ← mkAppOptM ``Or.casesOn #[a, b, motive, h, inl, inr]
let mgoal ← getMainGoal
trace[Arith] "goals: {← getUnsolvedGoals}"
trace[Arith] "main goal: {mgoal}"
mgoal.assign casesExpr
let goals ← getUnsolvedGoals
-- Focus on the left
setGoals [mleft]
withMainContext kleft
let leftGoals ← getUnsolvedGoals
-- Focus on the right
setGoals [mright]
withMainContext kright
let rightGoals ← getUnsolvedGoals
-- Put all the goals back
setGoals (leftGoals ++ rightGoals ++ goals)
trace[Arith] "new goals: {← getUnsolvedGoals}"
elab "split_disj " n:ident : tactic => do
withMainContext do
let decl ← Lean.Meta.getLocalDeclFromUserName n.getId
let fvar := mkFVar decl.fvarId
splitDisjTac fvar (fun _ => pure ()) (fun _ => pure ())
example (x y : Int) (h0 : x ≤ y ∨ x ≥ y) : x ≤ y ∨ x ≥ y := by
split_disj h0
. apply Or.inl; assumption
. apply Or.inr; assumption
-- Tactic to split on an exists.
-- `h` must be an FVar
def splitExistsTac (h : Expr) (optId : Option Name) (k : Expr → Expr → TacticM α) : TacticM α := do
withMainContext do
let goal ← getMainGoal
let hTy ← inferType h
if isExists hTy then do
-- Try to use the user-provided names
let altVarNames ← do
let hDecl ← h.fvarId!.getDecl
let id ← do
match optId with
| none => mkFreshUserName `x
| some id => pure id
pure #[{ varNames := [id, hDecl.userName] }]
let newGoals ← goal.cases h.fvarId! altVarNames
-- There should be exactly one goal
match newGoals.toList with
| [ newGoal ] =>
-- Set the new goal
let goals ← getUnsolvedGoals
setGoals (newGoal.mvarId :: goals)
-- There should be exactly two fields
let fields := newGoal.fields
withMainContext do
k (fields.get! 0) (fields.get! 1)
| _ =>
throwError "Unreachable"
else
throwError "Not a conjunction"
-- TODO: move
def listTryPopHead (ls : List α) : Option α × List α :=
match ls with
| [] => (none, ls)
| hd :: tl => (some hd, tl)
/- Destruct all the existentials appearing in `h`, and introduce them as variables
in the context.
If `ids` is not empty, we use it to name the introduced variables. We
transmit the stripped expression and the remaining ids to the continuation.
-/
partial def splitAllExistsTac [Inhabited α] (h : Expr) (ids : List (Option Name)) (k : Expr → List (Option Name) → TacticM α) : TacticM α := do
try
let (optId, ids) :=
match ids with
| [] => (none, [])
| x :: ids => (x, ids)
splitExistsTac h optId (fun _ body => splitAllExistsTac body ids k)
catch _ => k h ids
-- Tactic to split on a conjunction.
def splitConjTac (h : Expr) (optIds : Option (Name × Name)) (k : Expr → Expr → TacticM α) : TacticM α := do
withMainContext do
let goal ← getMainGoal
let hTy ← inferType h
if ← isConj hTy then do
-- Try to use the user-provided names
let altVarNames ←
match optIds with
| none => do
let id0 ← mkFreshAnonPropUserName
let id1 ← mkFreshAnonPropUserName
pure #[{ varNames := [id0, id1] }]
| some (id0, id1) => do
pure #[{ varNames := [id0, id1] }]
let newGoals ← goal.cases h.fvarId! altVarNames
-- There should be exactly one goal
match newGoals.toList with
| [ newGoal ] =>
-- Set the new goal
let goals ← getUnsolvedGoals
setGoals (newGoal.mvarId :: goals)
-- There should be exactly two fields
let fields := newGoal.fields
withMainContext do
k (fields.get! 0) (fields.get! 1)
| _ =>
throwError "Unreachable"
else
throwError "Not a conjunction"
-- Tactic to fully split a conjunction
partial def splitFullConjTacAux [Inhabited α] [Nonempty α] (keepCurrentName : Bool) (l : List Expr) (h : Expr) (k : List Expr → TacticM α) : TacticM α := do
try
let ids ← do
if keepCurrentName then do
let cur := (← h.fvarId!.getDecl).userName
let nid ← mkFreshAnonPropUserName
pure (some (cur, nid))
else
pure none
splitConjTac h ids (λ h1 h2 =>
splitFullConjTacAux keepCurrentName l h1 (λ l1 =>
splitFullConjTacAux keepCurrentName l1 h2 (λ l2 =>
k l2)))
catch _ =>
k (h :: l)
-- Tactic to fully split a conjunction
-- `keepCurrentName`: if `true`, then the first conjunct has the name of the original assumption
def splitFullConjTac [Inhabited α] [Nonempty α] (keepCurrentName : Bool) (h : Expr) (k : List Expr → TacticM α) : TacticM α := do
splitFullConjTacAux keepCurrentName [] h (λ l => k l.reverse)
syntax optAtArgs := ("at" ident)?
def elabOptAtArgs (args : TSyntax `Utils.optAtArgs) : TacticM (Option Expr) := do
withMainContext do
let args := (args.raw.getArgs.get! 0).getArgs
if args.size > 0 then do
let n := (args.get! 1).getId
let decl ← Lean.Meta.getLocalDeclFromUserName n
let fvar := mkFVar decl.fvarId
pure (some fvar)
else
pure none
elab "split_conj" args:optAtArgs : tactic => do
withMainContext do
match ← elabOptAtArgs args with
| some fvar => do
trace[Utils] "split at {fvar}"
splitConjTac fvar none (fun _ _ => pure ())
| none => do
trace[Utils] "split goal"
splitConjTarget
elab "split_conjs" args:optAtArgs : tactic => do
withMainContext do
match ← elabOptAtArgs args with
| some fvar =>
trace[Utils] "split at {fvar}"
splitFullConjTac false fvar (fun _ => pure ())
| none =>
trace[Utils] "split goal"
repeatTac splitConjTarget
elab "split_existsl" " at " n:ident : tactic => do
withMainContext do
let decl ← Lean.Meta.getLocalDeclFromUserName n.getId
let fvar := mkFVar decl.fvarId
splitAllExistsTac fvar [] (fun _ _ => pure ())
example (h : a ∧ b) : a := by
split_existsl at h
split_conj at h
assumption
example (h : ∃ x y z, x + y + z ≥ 0) : ∃ x, x ≥ 0 := by
split_existsl at h
rename_i x y z
exists x + y + z
/- Initialize a context for the `simp` function.
The initialization of the context is adapted from `Tactic.elabSimpArgs`.
Something very annoying is that there is no function which allows to
initialize a simp context without doing an elaboration - as a consequence
we write our own here. -/
def mkSimpCtx (simpOnly : Bool) (config : Simp.Config) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
Tactic.TacticM Simp.Context := do
-- Initialize either with the builtin simp theorems or with all the simp theorems
let simpThms ←
if simpOnly then Tactic.simpOnlyBuiltins.foldlM (·.addConst ·) ({} : SimpTheorems)
else getSimpTheorems
-- Add the equational theorem for the declarations to unfold
let simpThms ←
declsToUnfold.foldlM (fun thms decl => thms.addDeclToUnfold decl) simpThms
-- Add the hypotheses and the rewriting theorems
let simpThms ←
hypsToUse.foldlM (fun thms fvarId =>
-- post: TODO: don't know what that is
-- inv: invert the equality
thms.add (.fvar fvarId) #[] (mkFVar fvarId) (post := false) (inv := false)
-- thms.eraseCore (.fvar fvar)
) simpThms
-- Add the rewriting theorems to use
let simpThms ←
thms.foldlM (fun thms thmName => do
let info ← getConstInfo thmName
if (← isProp info.type) then
-- post: TODO: don't know what that is
-- inv: invert the equality
thms.addConst thmName (post := false) (inv := false)
else
throwError "Not a proposition: {thmName}"
) simpThms
let congrTheorems ← getSimpCongrTheorems
pure { config, simpTheorems := #[simpThms], congrTheorems }
inductive Location where
/-- Apply the tactic everywhere. Same as `Tactic.Location.wildcard` -/
| wildcard
/-- Apply the tactic everywhere, including in the variable types (i.e., in
assumptions which are not propositions). --/
| wildcard_dep
/-- Same as Tactic.Location -/
| targets (hypotheses : Array Syntax) (type : Bool)
-- Comes from Tactic.simpLocation
def customSimpLocation (ctx : Simp.Context) (discharge? : Option Simp.Discharge := none)
(loc : Location) : TacticM Simp.UsedSimps := do
match loc with
| Location.targets hyps simplifyTarget =>
withMainContext do
let fvarIds ← Lean.Elab.Tactic.getFVarIds hyps
go fvarIds simplifyTarget
| Location.wildcard =>
withMainContext do
go (← (← getMainGoal).getNondepPropHyps) (simplifyTarget := true)
| Location.wildcard_dep =>
withMainContext do
let ctx ← Lean.MonadLCtx.getLCtx
let decls ← ctx.getDecls
let tgts := (decls.map (fun d => d.fvarId)).toArray
go tgts (simplifyTarget := true)
where
go (fvarIdsToSimp : Array FVarId) (simplifyTarget : Bool) : TacticM Simp.UsedSimps := do
let mvarId ← getMainGoal
let (result?, usedSimps) ← simpGoal mvarId ctx (simplifyTarget := simplifyTarget) (discharge? := discharge?) (fvarIdsToSimp := fvarIdsToSimp)
match result? with
| none => replaceMainGoal []
| some (_, mvarId) => replaceMainGoal [mvarId]
return usedSimps
/- Call the simp tactic. -/
def simpAt (simpOnly : Bool) (config : Simp.Config) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId)
(loc : Location) :
Tactic.TacticM Unit := do
-- Initialize the simp context
let ctx ← mkSimpCtx simpOnly config declsToUnfold thms hypsToUse
-- Apply the simplifier
let _ ← customSimpLocation ctx (discharge? := .none) loc
/- Call the dsimp tactic. -/
def dsimpAt (simpOnly : Bool) (config : Simp.Config) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId)
(loc : Tactic.Location) :
Tactic.TacticM Unit := do
-- Initialize the simp context
let ctx ← mkSimpCtx simpOnly config declsToUnfold thms hypsToUse
-- Apply the simplifier
dsimpLocation ctx loc
-- Call the simpAll tactic
def simpAll (config : Simp.Config) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
Tactic.TacticM Unit := do
-- Initialize the simp context
let ctx ← mkSimpCtx false config declsToUnfold thms hypsToUse
-- Apply the simplifier
let _ ← Lean.Meta.simpAll (← getMainGoal) ctx
/- Adapted from Elab.Tactic.Rewrite -/
def rewriteTarget (eqThm : Expr) (symm : Bool) (config : Rewrite.Config := {}) : TacticM Unit := do
Term.withSynthesize <| withMainContext do
let r ← (← getMainGoal).rewrite (← getMainTarget) eqThm symm (config := config)
let mvarId' ← (← getMainGoal).replaceTargetEq r.eNew r.eqProof
replaceMainGoal (mvarId' :: r.mvarIds)
/- Adapted from Elab.Tactic.Rewrite -/
def rewriteLocalDecl (eqThm : Expr) (symm : Bool) (fvarId : FVarId) (config : Rewrite.Config := {}) :
TacticM Unit := withMainContext do
-- Note: we cannot execute `replaceLocalDecl` inside `Term.withSynthesize`.
-- See issues #2711 and #2727.
let rwResult ← Term.withSynthesize <| withMainContext do
let localDecl ← fvarId.getDecl
(← getMainGoal).rewrite localDecl.type eqThm symm (config := config)
let replaceResult ← (← getMainGoal).replaceLocalDecl fvarId rwResult.eNew rwResult.eqProof
replaceMainGoal (replaceResult.mvarId :: rwResult.mvarIds)
/- Adapted from Elab.Tactic.Rewrite -/
def rewriteWithThms
(thms : List (Bool × Expr))
(rewrite : (symm : Bool) → (thm : Expr) → TacticM Unit)
: TacticM Unit := do
let rec go thms :=
match thms with
| [] => throwError "Failed to rewrite with any theorem"
| (symm, eqThm)::thms =>
rewrite symm eqThm <|> go thms
go thms
/- Adapted from Elab.Tactic.Rewrite -/
def evalRewriteSeqAux (cfg : Rewrite.Config) (thms : List (Bool × Expr)) (loc : Tactic.Location) : TacticM Unit :=
rewriteWithThms thms fun symm term => do
withLocation loc
(rewriteLocalDecl term symm · cfg)
(rewriteTarget term symm cfg)
(throwTacticEx `rewrite · "did not find instance of the pattern in the current goal")
/-- `rpt`: if `true`, repeatedly rewrite -/
def rewriteAt (cfg : Rewrite.Config) (rpt : Bool)
(thms : List (Bool × Name)) (loc : Tactic.Location) : TacticM Unit := do
-- Lookup the theorems
let lookupThm (x : Bool × Name) : TacticM (List (Bool × Expr)) := do
let thName := x.snd
let lookupOne (thName : Name) : TacticM (Bool × Expr) := do
-- Lookup the theorem and introduce fresh meta-variables for the universes
let th ← mkConstWithFreshMVarLevels thName
pure (x.fst, th)
match ← getEqnsFor? thName (nonRec := true) with
| some eqThms => do
eqThms.data.mapM lookupOne
| none => do
pure [← lookupOne thName]
let thms ← List.mapM lookupThm thms
let thms := thms.flatten
-- Rewrite
if rpt then
Utils.repeatTac (evalRewriteSeqAux cfg thms loc)
else
evalRewriteSeqAux cfg thms loc
end Utils
|