summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Utils.lean
blob: 9cd0db2375cd82c0e5290b841cd7a08a7bdaa5bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import Lean
import Mathlib.Tactic.Core
import Mathlib.Tactic.LeftRight

/-
Mathlib tactics:
- rcases: https://leanprover-community.github.io/mathlib_docs/tactics.html#rcases
- split_ifs: https://leanprover-community.github.io/mathlib_docs/tactics.html#split_ifs
- norm_num: https://leanprover-community.github.io/mathlib_docs/tactics.html#norm_num
- should we use linarith or omega?
- hint: https://leanprover-community.github.io/mathlib_docs/tactics.html#hint
- classical: https://leanprover-community.github.io/mathlib_docs/tactics.html#classical
-/

/-
TODO:
- we want an easier to use cases:
  - keeps in the goal an equation of the shape: `t = case`
  - if called on Prop terms, uses Classical.em
  Actually, the cases from mathlib seems already quite powerful
  (https://leanprover-community.github.io/mathlib_docs/tactics.html#cases)
  For instance: cases h : e
  Also: **casesm**
- better split tactic
- we need conversions to operate on the head of applications.
  Actually, something like this works:
  ```
  conv at Hl =>
    apply congr_fun
    simp [fix_fuel_P]
  ```
  Maybe we need a rpt ... ; focus?
- simplifier/rewriter have a strange behavior sometimes
-/


namespace List

  -- TODO: I could not find this function??
  @[simp] def flatten {a : Type u} : List (List a)  List a
  | [] => []
  | x :: ls => x ++ flatten ls

end List

-- TODO: move?
@[simp]
theorem neq_imp {α : Type u} {x y : α} (h : ¬ x = y) : ¬ y = x := by intro; simp_all

namespace Lean

namespace LocalContext

  open Lean Lean.Elab Command Term Lean.Meta

  -- Small utility: return the list of declarations in the context, from
  -- the last to the first.
  def getAllDecls (lctx : Lean.LocalContext) : MetaM (List Lean.LocalDecl) :=
    lctx.foldrM (fun d ls => do let d  instantiateLocalDeclMVars d; pure (d :: ls)) []

  -- Return the list of declarations in the context, but filter the
  -- declarations which are considered as implementation details
  def getDecls (lctx : Lean.LocalContext) : MetaM (List Lean.LocalDecl) := do
    let ls  lctx.getAllDecls
    pure (ls.filter (fun d => not d.isImplementationDetail))

end LocalContext

end Lean

namespace Utils

open Lean Elab Term Meta Tactic

-- Useful helper to explore definitions and figure out the variant
-- of their sub-expressions.
def explore_term (incr : String) (e : Expr) : MetaM Unit :=
  match e with
  | .bvar _ => do logInfo m!"{incr}bvar: {e}"; return ()
  | .fvar _ => do logInfo m!"{incr}fvar: {e}"; return ()
  | .mvar _ => do logInfo m!"{incr}mvar: {e}"; return ()
  | .sort _ => do logInfo m!"{incr}sort: {e}"; return ()
  | .const _ _ => do logInfo m!"{incr}const: {e}"; return ()
  | .app fn arg => do
    logInfo m!"{incr}app: {e}"
    explore_term (incr ++ "  ") fn
    explore_term (incr ++ "  ") arg
  | .lam _bName bTy body _binfo => do
    logInfo m!"{incr}lam: {e}"
    explore_term (incr ++ "  ") bTy
    explore_term (incr ++ "  ") body
  | .forallE _bName bTy body _bInfo => do
    logInfo m!"{incr}forallE: {e}"
    explore_term (incr ++ "  ") bTy
    explore_term (incr ++ "  ") body
  | .letE _dName ty val body _nonDep => do
    logInfo m!"{incr}letE: {e}"
    explore_term (incr ++ "  ") ty
    explore_term (incr ++ "  ") val
    explore_term (incr ++ "  ") body
  | .lit _ => do logInfo m!"{incr}lit: {e}"; return ()
  | .mdata _ e => do
    logInfo m!"{incr}mdata: {e}"
    explore_term (incr ++ "  ") e
  | .proj _ _ struct => do
    logInfo m!"{incr}proj: {e}"
    explore_term (incr ++ "  ") struct

def explore_decl (n : Name) : TermElabM Unit := do
  logInfo m!"Name: {n}"
  let env  getEnv
  let decl := env.constants.find! n
  match decl with
  | .defnInfo val =>
     logInfo m!"About to explore defn: {decl.name}"
     logInfo m!"# Type:"
     explore_term "" val.type
     logInfo m!"# Value:"
     explore_term "" val.value
  | .axiomInfo _  => throwError m!"axiom: {n}"
  | .thmInfo _    => throwError m!"thm: {n}"
  | .opaqueInfo _ => throwError m!"opaque: {n}"
  | .quotInfo _   => throwError m!"quot: {n}"
  | .inductInfo _ => throwError m!"induct: {n}"
  | .ctorInfo _   => throwError m!"ctor: {n}"
  | .recInfo _    => throwError m!"rec: {n}"

syntax (name := printDecl) "print_decl " ident : command

open Lean.Elab.Command

@[command_elab printDecl] def elabPrintDecl : CommandElab := fun stx => do
  liftTermElabM do
    let id := stx[1]
    addCompletionInfo <| CompletionInfo.id id id.getId (danglingDot := false) {} none
    let cs  resolveGlobalConstWithInfos id
    explore_decl cs[0]!

private def test1 : Nat := 0
private def test2 (x : Nat) : Nat := x

print_decl test1
print_decl test2

-- A map visitor function for expressions (adapted from `AbstractNestedProofs.visit`)
-- The continuation takes as parameters:
-- - the current depth of the expression (useful for printing/debugging)
-- - the expression to explore
partial def mapVisit (k : Nat  Expr  MetaM Expr) (e : Expr) : MetaM Expr := do
  let mapVisitBinders (xs : Array Expr) (k2 : MetaM Expr) : MetaM Expr := do
    let localInstances  getLocalInstances
    let mut lctx  getLCtx
    for x in xs do
      let xFVarId := x.fvarId!
      let localDecl  xFVarId.getDecl
      let type       mapVisit k localDecl.type
      let localDecl := localDecl.setType type
      let localDecl  match localDecl.value? with
         | some value => let value  mapVisit k value; pure <| localDecl.setValue value
         | none       => pure localDecl
      lctx :=lctx.modifyLocalDecl xFVarId fun _ => localDecl
    withLCtx lctx localInstances k2
  -- TODO: use a cache? (Lean.checkCache)
  let rec visit (i : Nat) (e : Expr) : MetaM Expr := do
    -- Explore
    let e  k i e
    match e with
    | .bvar _
    | .fvar _
    | .mvar _
    | .sort _
    | .lit _
    | .const _ _ => pure e
    | .app .. => do e.withApp fun f args => return mkAppN f ( args.mapM (visit (i + 1)))
    | .lam .. =>
      lambdaLetTelescope e fun xs b =>
        mapVisitBinders xs do mkLambdaFVars xs ( visit (i + 1) b) (usedLetOnly := false)
    | .forallE .. => do
      forallTelescope e fun xs b => mapVisitBinders xs do mkForallFVars xs ( visit (i + 1) b)
    | .letE .. => do
      lambdaLetTelescope e fun xs b => mapVisitBinders xs do
        mkLambdaFVars xs ( visit (i + 1) b) (usedLetOnly := false)
    | .mdata _ b => return e.updateMData! ( visit (i + 1) b)
    | .proj _ _ b => return e.updateProj! ( visit (i + 1) b)
  visit 0 e

section Methods
  variable [MonadLiftT MetaM m] [MonadControlT MetaM m] [Monad m] [MonadError m]
  variable {a : Type}

  /- Like `lambdaTelescopeN` but only destructs a fixed number of lambdas -/
  def lambdaTelescopeN (e : Expr) (n : Nat) (k : Array Expr  Expr  m a) : m a :=
    lambdaTelescope e fun xs body => do
    if xs.size < n then throwError "lambdaTelescopeN: not enough lambdas"
    let xs := xs.extract 0 n
    let ys := xs.extract n xs.size
    let body  liftMetaM (mkLambdaFVars ys body)
    k xs body

  /- Like `lambdaTelescope`, but only destructs one lambda
     TODO: is there an equivalent of this function somewhere in the
     standard library? -/
  def lambdaOne (e : Expr) (k : Expr  Expr  m a) : m a :=
    lambdaTelescopeN e 1 λ xs b => k (xs.get! 0) b

  def isExists (e : Expr) : Bool := e.getAppFn.isConstOf ``Exists  e.getAppNumArgs = 2

  -- Remark: Lean doesn't find the inhabited and nonempty instances if we don'
  -- put them explicitely in the signature
  partial def existsTelescopeProcess [Inhabited (m a)] [Nonempty (m a)]
    (fvars : Array Expr) (e : Expr) (k : Array Expr  Expr  m a) : m a := do
    -- Attempt to deconstruct an existential
    if isExists e then do
      let p := e.appArg!
      lambdaOne p fun x ne =>
      existsTelescopeProcess (fvars.push x) ne k
    else
      -- No existential: call the continuation
      k fvars e

  def existsTelescope [Inhabited (m a)] [Nonempty (m a)] (e : Expr) (k : Array Expr  Expr  m a) : m a := do
    existsTelescopeProcess #[] e k

end Methods

-- TODO: this should take a continuation
def addDeclTac (name : Name) (val : Expr) (type : Expr) (asLet : Bool) : TacticM Expr :=
  -- I don't think we need that
  withMainContext do
  -- Insert the new declaration
  let withDecl := if asLet then withLetDecl name type val else withLocalDeclD name type
  withDecl fun nval => do
    -- For debugging
    let lctx  Lean.MonadLCtx.getLCtx
    let fid := nval.fvarId!
    let decl := lctx.get! fid
    trace[Arith] "  new decl: \"{decl.userName}\" ({nval}) : {decl.type} := {decl.value}"
    --
    -- Tranform the main goal `?m0` to `let x = nval in ?m1`
    let mvarId  getMainGoal
    let newMVar  mkFreshExprSyntheticOpaqueMVar ( mvarId.getType)
    let newVal  mkLetFVars #[nval] newMVar
    -- There are two cases:
    -- - asLet is true: newVal is `let $name := $val in $newMVar`
    -- - asLet is false: ewVal is `λ $name => $newMVar`
    --   We need to apply it to `val`
    let newVal := if asLet then newVal else mkAppN newVal #[val]
    -- Assign the main goal and update the current goal
    mvarId.assign newVal
    let goals  getUnsolvedGoals
    setGoals (newMVar.mvarId! :: goals)
    -- Return the new value - note: we are in the *new* context, created
    -- after the declaration was added, so it will persist
    pure nval

def addDeclTacSyntax (name : Name) (val : Syntax) (asLet : Bool) : TacticM Unit :=
  -- I don't think we need that
  withMainContext do
  --
  let val  Term.elabTerm val .none
  let type  inferType val
  -- In some situations, the type will be left as a metavariable (for instance,
  -- if the term is `3`, Lean has the choice between `Nat` and `Int` and will
  -- not choose): we force the instantiation of the meta-variable
  synthesizeSyntheticMVarsUsingDefault
  --
  let _  addDeclTac name val type asLet

elab "custom_let " n:ident " := " v:term : tactic => do
  addDeclTacSyntax n.getId v (asLet := true)

elab "custom_have " n:ident " := " v:term : tactic =>
  addDeclTacSyntax n.getId v (asLet := false)

example : Nat := by
  custom_let x := 4
  custom_have y := 4
  apply y

example (x : Bool) : Nat := by
  cases x <;> custom_let x := 3 <;> apply x

-- Repeatedly apply a tactic
partial def repeatTac (tac : TacticM Unit) : TacticM Unit := do
  try
    tac
    allGoals (focus (repeatTac tac))
  -- TODO: does this restore the state?
  catch _ => pure ()

def firstTac (tacl : List (TacticM Unit)) : TacticM Unit := do
  match tacl with
  | [] => pure ()
  | tac :: tacl =>
    try tac
    catch _ => firstTac tacl

-- Split the goal if it is a conjunction
def splitConjTarget : TacticM Unit := do
  withMainContext do
  let and_intro := Expr.const ``And.intro []
  let mvarIds'  _root_.Lean.MVarId.apply ( getMainGoal) and_intro
  Term.synthesizeSyntheticMVarsNoPostponing
  replaceMainGoal mvarIds'

-- Taken from Lean.Elab.evalAssumption
def assumptionTac : TacticM Unit :=
  liftMetaTactic fun mvarId => do mvarId.assumption; pure []

def isConj (e : Expr) : MetaM Bool :=
  e.withApp fun f args => pure (f.isConstOf ``And  args.size = 2)

-- Return the first conjunct if the expression is a conjunction, or the
-- expression itself otherwise. Also return the second conjunct if it is a
-- conjunction.
def optSplitConj (e : Expr) : MetaM (Expr × Option Expr) := do
  e.withApp fun f args =>
  if f.isConstOf ``And  args.size = 2 then pure (args.get! 0, some (args.get! 1))
  else pure (e, none)

-- Destruct an equaliy and return the two sides
def destEq (e : Expr) : MetaM (Expr × Expr) := do
  e.withApp fun f args =>
  if f.isConstOf ``Eq  args.size = 3 then pure (args.get! 1, args.get! 2)
  else throwError "Not an equality: {e}"

-- Return the set of FVarIds in the expression
partial def getFVarIds (e : Expr) (hs : HashSet FVarId := HashSet.empty) : MetaM (HashSet FVarId) := do
  e.withApp fun body args => do
  let hs := if body.isFVar then hs.insert body.fvarId! else hs
  args.foldlM (fun hs arg => getFVarIds arg hs) hs

-- Tactic to split on a disjunction.
-- The expression `h` should be an fvar.
-- TODO: there must be simpler. Use use _root_.Lean.MVarId.cases for instance
def splitDisjTac (h : Expr) (kleft kright : TacticM Unit) : TacticM Unit := do
  trace[Arith] "assumption on which to split: {h}"
  -- Retrieve the main goal
  withMainContext do
  let goalType  getMainTarget
  let hDecl := ( getLCtx).get! h.fvarId!
  let hName := hDecl.userName
  -- Case disjunction
  let hTy  inferType h
  hTy.withApp fun f xs => do
  trace[Arith] "as app: {f} {xs}"
  -- Sanity check
  if ¬ (f.isConstOf ``Or  xs.size = 2) then throwError "Invalid argument to splitDisjTac"
  let a := xs.get! 0
  let b := xs.get! 1
  -- Introduce the new goals
  -- Returns:
  -- - the match branch
  -- - a fresh new mvar id
  let mkGoal (hTy : Expr) (nGoalName : String) : MetaM (Expr × MVarId) := do
    -- Introduce a variable for the assumption (`a` or `b`). Note that we reuse
    -- the name of the assumption we split.
    withLocalDeclD hName hTy fun var => do
    -- The new goal
    let mgoal  mkFreshExprSyntheticOpaqueMVar goalType (tag := Name.mkSimple nGoalName)
    -- Clear the assumption that we split
    let mgoal  mgoal.mvarId!.tryClearMany #[h.fvarId!]
    -- The branch expression
    let branch  mkLambdaFVars #[var] (mkMVar mgoal)
    pure (branch, mgoal)
  let (inl, mleft)  mkGoal a "left"
  let (inr, mright)  mkGoal b "right"
  trace[Arith] "left: {inl}: {mleft}"
  trace[Arith] "right: {inr}: {mright}"
  -- Create the match expression
  withLocalDeclD ( mkFreshUserName `h) hTy fun hVar => do
  let motive  mkLambdaFVars #[hVar] goalType
  let casesExpr  mkAppOptM ``Or.casesOn #[a, b, motive, h, inl, inr]
  let mgoal  getMainGoal
  trace[Arith] "goals: {← getUnsolvedGoals}"
  trace[Arith] "main goal: {mgoal}"
  mgoal.assign casesExpr
  let goals  getUnsolvedGoals
  -- Focus on the left
  setGoals [mleft]
  withMainContext kleft
  let leftGoals  getUnsolvedGoals
  -- Focus on the right
  setGoals [mright]
  withMainContext kright
  let rightGoals  getUnsolvedGoals
  -- Put all the goals back
  setGoals (leftGoals ++ rightGoals ++ goals)
  trace[Arith] "new goals: {← getUnsolvedGoals}"

elab "split_disj " n:ident : tactic => do
  withMainContext do
  let decl  Lean.Meta.getLocalDeclFromUserName n.getId
  let fvar := mkFVar decl.fvarId
  splitDisjTac fvar (fun _ => pure ()) (fun _ => pure ())

example (x y : Int) (h0 : x  y  x  y) : x  y  x  y := by
  split_disj h0
  . left; assumption
  . right; assumption


-- Tactic to split on an exists.
-- `h` must be an FVar
def splitExistsTac (h : Expr) (optId : Option Name) (k : Expr  Expr  TacticM α) : TacticM α := do
  withMainContext do
  let goal   getMainGoal
  let hTy  inferType h
  if isExists hTy then do
    -- Try to use the user-provided names
    let altVarNames 
      match optId with
      | none => pure #[]
      | some id => do
        let hDecl  h.fvarId!.getDecl
        pure #[{ varNames := [id, hDecl.userName] }]
    let newGoals  goal.cases h.fvarId! altVarNames
    -- There should be exactly one goal
    match newGoals.toList with
    | [ newGoal ] =>
      -- Set the new goal
      let goals  getUnsolvedGoals
      setGoals (newGoal.mvarId :: goals)
      -- There should be exactly two fields
      let fields := newGoal.fields
      withMainContext do
      k (fields.get! 0) (fields.get! 1)
    | _ =>
      throwError "Unreachable"
  else
    throwError "Not a conjunction"

-- TODO: move
def listTryPopHead (ls : List α) : Option α × List α :=
  match ls with
  | [] => (none, ls)
  | hd :: tl => (some hd, tl)

/- Destruct all the existentials appearing in `h`, and introduce them as variables
   in the context.

   If `ids` is not empty, we use it to name the introduced variables. We
   transmit the stripped expression and the remaining ids to the continuation.
 -/
partial def splitAllExistsTac [Inhabited α] (h : Expr) (ids : List Name) (k : Expr  List Name  TacticM α) : TacticM α := do
  try
    let (optId, ids) := listTryPopHead ids
    splitExistsTac h optId (fun _ body => splitAllExistsTac body ids k)
  catch _ => k h ids

-- Tactic to split on a conjunction.
def splitConjTac (h : Expr) (optIds : Option (Name × Name)) (k : Expr  Expr  TacticM α)  : TacticM α := do
  withMainContext do
  let goal   getMainGoal
  let hTy  inferType h
  if  isConj hTy then do
    -- Try to use the user-provided names
    let altVarNames 
      match optIds with
      | none => pure #[]
      | some (id0, id1) => do
        pure #[{ varNames := [id0, id1] }]
    let newGoals  goal.cases h.fvarId! altVarNames
    -- There should be exactly one goal
    match newGoals.toList with
    | [ newGoal ] =>
      -- Set the new goal
      let goals  getUnsolvedGoals
      setGoals (newGoal.mvarId :: goals)
      -- There should be exactly two fields
      let fields := newGoal.fields
      withMainContext do
      k (fields.get! 0) (fields.get! 1)
    | _ =>
      throwError "Unreachable"
  else
    throwError "Not a conjunction"

elab "split_conj " n:ident : tactic => do
  withMainContext do
  let decl  Lean.Meta.getLocalDeclFromUserName n.getId
  let fvar := mkFVar decl.fvarId
  splitConjTac fvar none (fun _ _ =>  pure ())

elab "split_all_exists " n:ident : tactic => do
  withMainContext do
  let decl  Lean.Meta.getLocalDeclFromUserName n.getId
  let fvar := mkFVar decl.fvarId
  splitAllExistsTac fvar [] (fun _ _ => pure ())

example (h : a  b) : a := by
  split_all_exists h
  split_conj h
  assumption

example (h :  x y z, x + y + z  0) :  x, x  0 := by
  split_all_exists h
  rename_i x y z h
  exists x + y + z

/- Call the simp tactic.
   The initialization of the context is adapted from Tactic.elabSimpArgs.
   Something very annoying is that there is no function which allows to
   initialize a simp context without doing an elaboration - as a consequence
   we write our own here. -/
def simpAt (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId)
  (loc : Tactic.Location) :
  Tactic.TacticM Unit := do
  -- Initialize with the builtin simp theorems
  let simpThms  Tactic.simpOnlyBuiltins.foldlM (·.addConst ·) ({} : SimpTheorems)
  -- Add the equational theorem for the declarations to unfold
  let simpThms 
    declsToUnfold.foldlM (fun thms decl => thms.addDeclToUnfold decl) simpThms
  -- Add the hypotheses and the rewriting theorems
  let simpThms 
    hypsToUse.foldlM (fun thms fvarId =>
      -- post: TODO: don't know what that is
      -- inv: invert the equality
      thms.add (.fvar fvarId) #[] (mkFVar fvarId) (post := false) (inv := false)
      -- thms.eraseCore (.fvar fvar)
      ) simpThms
  -- Add the rewriting theorems to use
  let simpThms 
    thms.foldlM (fun thms thmName => do
      let info  getConstInfo thmName
      if ( isProp info.type) then
        -- post: TODO: don't know what that is
        -- inv: invert the equality
        thms.addConst thmName (post := false) (inv := false)
      else
        throwError "Not a proposition: {thmName}"
      ) simpThms
  let congrTheorems  getSimpCongrTheorems
  let ctx : Simp.Context := { simpTheorems := #[simpThms], congrTheorems }
  -- Apply the simplifier
  let _  Tactic.simpLocation ctx (discharge? := .none) loc

end Utils