1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
import Lean
import Base.Arith
import Base.Progress.Base
namespace Progress
open Lean Elab Term Meta Tactic
open Utils
/-
-- TODO: remove
namespace Test
open Primitives
set_option trace.Progress true
@[pspec]
theorem vec_index_test (α : Type u) (v: Vec α) (i: Usize) (h: i.val < v.val.length) :
∃ x, v.index α i = .ret x := by
sorry
#eval pspecAttr.find? ``Primitives.Vec.index
end Test
-/
inductive TheoremOrLocal where
| Theorem (thName : Name)
| Local (asm : LocalDecl)
/- Type to propagate the errors of `progressWith`.
We need this because we use the exceptions to backtrack, when trying to
use the assumptions for instance. When there is actually an error we want
to propagate to the user, we return it. -/
inductive ProgressError
| Ok
| Error (msg : MessageData)
deriving Inhabited
def progressWith (fnExpr : Expr) (th : TheoremOrLocal) (ids : Array Name)
(asmTac : TacticM Unit) : TacticM ProgressError := do
/- Apply the theorem
We try to match the theorem with the goal
In order to do so, we introduce meta-variables for all the parameters
(i.e., quantified variables and assumpions), and unify those with the goal.
Remark: we do not introduce meta-variables for the quantified variables
which don't appear in the function arguments (we want to let them
quantified).
We also make sure that all the meta variables which appear in the
function arguments have been instantiated
-/
let env ← getEnv
let thTy ← do
match th with
| .Theorem thName =>
let thDecl := env.constants.find! thName
pure thDecl.type
| .Local asmDecl => pure asmDecl.type
trace[Progress] "theorem/assumption type: {thTy}"
-- TODO: the tactic fails if we uncomment withNewMCtxDepth
-- withNewMCtxDepth do
let (mvars, binders, thExBody) ← forallMetaTelescope thTy
trace[Progress] "After stripping foralls: {thExBody}"
-- Introduce the existentially quantified variables and the post-condition
-- in the context
let thBody ←
existsTelescope thExBody fun _evars thBody => do
trace[Progress] "After stripping existentials: {thBody}"
let (thBody, _) ← optSplitConj thBody
trace[Progress] "After splitting the conjunction: {thBody}"
let (thBody, _) ← destEq thBody
trace[Progress] "After splitting equality: {thBody}"
-- There shouldn't be any existential variables in thBody
pure thBody
-- Match the body with the target
trace[Progress] "Maching `{thBody}` with `{fnExpr}`"
let ok ← isDefEq thBody fnExpr
if ¬ ok then throwError "Could not unify the theorem with the target:\n- theorem: {thBody}\n- target: {fnExpr}"
let mgoal ← Tactic.getMainGoal
postprocessAppMVars `progress mgoal mvars binders true true
Term.synthesizeSyntheticMVarsNoPostponing
let thBody ← instantiateMVars thBody
trace[Progress] "thBody (after instantiation): {thBody}"
-- Add the instantiated theorem to the assumptions (we apply it on the metavariables).
let th ← do
match th with
| .Theorem thName => mkAppOptM thName (mvars.map some)
| .Local decl => mkAppOptM' (mkFVar decl.fvarId) (mvars.map some)
let asmName ← mkFreshUserName `h
let thTy ← inferType th
let thAsm ← Utils.addDeclTac asmName th thTy (asLet := false)
withMainContext do -- The context changed - TODO: remove once addDeclTac is updated
let ngoal ← getMainGoal
trace[Progress] "current goal: {ngoal}"
trace[Progress] "current goal: {← ngoal.isAssigned}"
-- The assumption should be of the shape:
-- `∃ x1 ... xn, f args = ... ∧ ...`
-- We introduce the existentially quantified variables and split the top-most
-- conjunction if there is one. We use the provided `ids` list to name the
-- introduced variables.
let res ← splitAllExistsTac thAsm ids.toList fun h ids => do
-- Split the conjunctions.
-- For the conjunctions, we split according once to separate the equality `f ... = .ret ...`
-- from the postcondition, if there is, then continue to split the postcondition if there
-- are remaining ids.
let splitEqAndPost (k : Expr → Option Expr → List Name → TacticM ProgressError) : TacticM ProgressError := do
if ← isConj (← inferType h) then do
let hName := (← h.fvarId!.getDecl).userName
let (optId, ids) := listTryPopHead ids
let optIds := match optId with | none => none | some id => some (hName, id)
splitConjTac h optIds (fun hEq hPost => k hEq (some hPost) ids)
else k h none ids
-- Simplify the target by using the equality and some monad simplifications,
-- then continue splitting the post-condition
splitEqAndPost fun hEq hPost ids => do
trace[Progress] "eq and post:\n{hEq} : {← inferType hEq}\n{hPost}"
simpAt [] [``Primitives.bind_tc_ret, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div]
[hEq.fvarId!] (.targets #[] true)
-- Clear the equality
let mgoal ← getMainGoal
let mgoal ← mgoal.tryClearMany #[hEq.fvarId!]
setGoals (mgoal :: (← getUnsolvedGoals))
trace[Progress] "Goal after splitting eq and post and simplifying the target: {mgoal}"
-- Continue splitting following the ids provided by the user
if ¬ ids.isEmpty then
let hPost ←
match hPost with
| none => do return (.Error m!"Too many ids provided ({ids}): there is no postcondition to split")
| some hPost => pure hPost
let curPostId := (← hPost.fvarId!.getDecl).userName
let rec splitPost (hPost : Expr) (ids : List Name) : TacticM ProgressError := do
match ids with
| [] => pure .Ok -- Stop
| nid :: ids => do
-- Split
if ← isConj hPost then
splitConjTac hPost (some (nid, curPostId)) (λ _ nhPost => splitPost nhPost ids)
else return (.Error m!"Too many ids provided ({nid :: ids}) not enough conjuncts to split in the postcondition")
splitPost hPost ids
else return .Ok
match res with
| .Error _ => return res -- Can we get there? We're using "return"
| .Ok =>
-- Update the set of goals
let curGoals ← getUnsolvedGoals
let newGoals := mvars.map Expr.mvarId!
let newGoals ← newGoals.filterM fun mvar => not <$> mvar.isAssigned
trace[Progress] "new goals: {newGoals}"
setGoals newGoals.toList
allGoals asmTac
let newGoals ← getUnsolvedGoals
setGoals (newGoals ++ curGoals)
--
pure .Ok
-- The array of ids are identifiers to use when introducing fresh variables
def progressAsmsOrLookupTheorem (ids : Array Name) (asmTac : TacticM Unit) : TacticM Unit := do
withMainContext do
-- Retrieve the goal
let mgoal ← Tactic.getMainGoal
let goalTy ← mgoal.getType
trace[Progress] "goal: {goalTy}"
-- Dive into the goal to lookup the theorem
let (fName, fLevels, args) ← do
withPSpec goalTy fun desc =>
-- TODO: check that no universally quantified variables in the arguments
pure (desc.fName, desc.fLevels, desc.args)
-- TODO: this should be in the pspec desc
let fnExpr := mkAppN (.const fName fLevels) args
trace[Progress] "Function: {fName}"
-- Try all the assumptions one by one and if it fails try to lookup a theorem
let ctx ← Lean.MonadLCtx.getLCtx
let decls ← ctx.getDecls
for decl in decls.reverse do
trace[Progress] "Trying assumption: {decl.userName} : {decl.type}"
try
match ← progressWith fnExpr (.Local decl) ids asmTac with
| .Ok => return ()
| .Error msg => throwError msg
catch _ => continue
-- It failed: try to lookup a theorem
-- TODO: use a list of theorems, and try them one by one?
trace[Progress] "No assumption succeeded: trying to lookup a theorem"
let thName ← do
match ← pspecAttr.find? fName with
| none => throwError "Could not find a pspec theorem for {fName}"
| some thName => pure thName
trace[Progress] "Lookuped up: {thName}"
-- Apply the theorem
match ← progressWith fnExpr (.Theorem thName) ids asmTac with
| .Ok => return ()
| .Error msg => throwError msg
syntax progressArgs := ("as" " ⟨ " (ident)+ " ⟩")?
def evalProgress (args : TSyntax `Progress.progressArgs) : TacticM Unit := do
let args := args.raw
-- Process the arguments to retrieve the identifiers to use
trace[Progress] "Progress arguments: {args}"
let args := args.getArgs
let ids :=
if args.size > 0 then
let args := (args.get! 0).getArgs
let args := (args.get! 2).getArgs
args.map Syntax.getId
else #[]
trace[Progress] "User-provided ids: {ids}"
progressAsmsOrLookupTheorem ids (firstTac [assumptionTac, Arith.scalarTac])
elab "progress" args:progressArgs : tactic =>
evalProgress args
/-
-- TODO: remove
namespace Test
open Primitives
set_option trace.Progress true
@[pspec]
theorem vec_index_test2 (α : Type u) (v: Vec α) (i: Usize) (h: i.val < v.val.length) :
∃ (x: α), v.index α i = .ret x := by
progress as ⟨ x ⟩
simp
set_option trace.Progress false
end Test
-/
end Progress
|