1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
import Lean
import Std.Lean.HashSet
import Base.Utils
import Base.Primitives.Base
import Base.Extensions
namespace Progress
open Lean Elab Term Meta
open Utils Extensions
-- We can't define and use trace classes in the same file
initialize registerTraceClass `Progress
/- # Progress tactic -/
structure PSpecDesc where
-- The universally quantified variables
-- Can be fvars or mvars
fvars : Array Expr
-- The existentially quantified variables
evars : Array Expr
-- The function applied to its arguments
fArgsExpr : Expr
-- ⊤ if the function is a constant (must be if we are registering a theorem,
-- but is not necessarily the case if we are looking at a goal)
fIsConst : Bool
-- The function arguments
fLevels : List Level
args : Array Expr
-- The returned value
ret : Expr
-- The postcondition (if there is)
post : Option Expr
section Methods
variable [MonadLiftT MetaM m] [MonadControlT MetaM m] [Monad m] [MonadOptions m]
variable [MonadTrace m] [MonadLiftT IO m] [MonadRef m] [AddMessageContext m]
variable [MonadError m]
variable {a : Type}
/- Analyze a goal or a pspec theorem to decompose its arguments.
PSpec theorems should be of the following shape:
```
∀ x1 ... xn, H1 → ... Hn → ∃ y1 ... ym. f x1 ... xn = .ret ... ∧ Post1 ∧ ... ∧ Postk
```
The continuation `k` receives the following inputs:
- universally quantified variables
- assumptions
- existentially quantified variables
- function name
- function arguments
- return
- postconditions
TODO: generalize for when we do inductive proofs
-/
partial
def withPSpec [Inhabited (m a)] [Nonempty (m a)]
(isGoal : Bool) (th : Expr) (k : PSpecDesc → m a) :
m a := do
trace[Progress] "Proposition: {th}"
-- Dive into the quantified variables and the assumptions
-- Note that if we analyze a pspec theorem to register it in a database (i.e.
-- a discrimination tree), we need to introduce *meta-variables* for the
-- quantified variables.
let telescope (k : Array Expr → Expr → m a) : m a :=
if isGoal then forallTelescope th.consumeMData (fun fvars th => k fvars th)
else do
let (fvars, _, th) ← forallMetaTelescope th.consumeMData
k fvars th
telescope fun fvars th => do
trace[Progress] "Universally quantified arguments and assumptions: {fvars}"
-- Dive into the existentials
existsTelescope th.consumeMData fun evars th => do
trace[Progress] "Existentials: {evars}"
trace[Progress] "Proposition after stripping the quantifiers: {th}"
-- Take the first conjunct
let (th, post) ← optSplitConj th.consumeMData
trace[Progress] "After splitting the conjunction:\n- eq: {th}\n- post: {post}"
-- Destruct the equality
let (mExpr, ret) ← destEq th.consumeMData
trace[Progress] "After splitting the equality:\n- lhs: {th}\n- rhs: {ret}"
-- Recursively destruct the monadic application to dive into the binds,
-- if necessary (this is for when we use `withPSpec` inside of the `progress` tactic),
-- and destruct the application to get the function name
let rec strip_monad mExpr := do
mExpr.consumeMData.withApp fun mf margs => do
trace[Progress] "After stripping the arguments of the monad expression:\n- mf: {mf}\n- margs: {margs}"
if mf.isConst ∧ mf.constName = ``Bind.bind then do
-- Dive into the bind
let fExpr := (margs.get! 4).consumeMData
-- Recursve
strip_monad fExpr
else
-- No bind
pure (mExpr, mf, margs)
let (fArgsExpr, f, args) ← strip_monad mExpr
trace[Progress] "After stripping the arguments of the function call:\n- f: {f}\n- args: {args}"
let fLevels ← do
-- If we are registering a theorem, then the function must be a constant
if ¬ f.isConst then
if isGoal then pure []
else throwError "Not a constant: {f}"
else pure f.constLevels!
-- *Sanity check* (activated if we are analyzing a theorem to register it in a DB)
-- Check if some existentially quantified variables
let _ := do
-- Collect all the free variables in the arguments
let allArgsFVars ← args.foldlM (fun hs arg => getFVarIds arg hs) HashSet.empty
-- Check if they intersect the fvars we introduced for the existentially quantified variables
let evarsSet : HashSet FVarId := HashSet.ofArray (evars.map (fun (x : Expr) => x.fvarId!))
let filtArgsFVars := allArgsFVars.toArray.filter (fun var => evarsSet.contains var)
if filtArgsFVars.isEmpty then pure ()
else
let filtArgsFVars := filtArgsFVars.map (fun fvarId => Expr.fvar fvarId)
throwError "Some of the function inputs are not universally quantified: {filtArgsFVars}"
-- Return
trace[Progress] "Function with arguments: {fArgsExpr}";
let thDesc := {
fvars := fvars
evars := evars
fArgsExpr
fIsConst := f.isConst
fLevels
args := args
ret := ret
post := post
}
k thDesc
end Methods
def getPSpecFunArgsExpr (isGoal : Bool) (th : Expr) : MetaM Expr :=
withPSpec isGoal th (fun d => do pure d.fArgsExpr)
-- pspec attribute
structure PSpecAttr where
attr : AttributeImpl
ext : DiscrTreeExtension Name
deriving Inhabited
/- The persistent map from expressions to pspec theorems. -/
initialize pspecAttr : PSpecAttr ← do
let ext ← mkDiscrTreeExtention `pspecMap
let attrImpl : AttributeImpl := {
name := `pspec
descr := "Marks theorems to use with the `progress` tactic"
add := fun thName stx attrKind => do
Attribute.Builtin.ensureNoArgs stx
-- TODO: use the attribute kind
unless attrKind == AttributeKind.global do
throwError "invalid attribute 'pspec', must be global"
-- Lookup the theorem
let env ← getEnv
let thDecl := env.constants.find! thName
let fKey ← MetaM.run' (do
let fExpr ← getPSpecFunArgsExpr false thDecl.type
trace[Progress] "Registering spec theorem for {fExpr}"
-- Convert the function expression to a discrimination tree key
-- We use the default configuration
let config : WhnfCoreConfig := {}
DiscrTree.mkPath fExpr config)
let env := ext.addEntry env (fKey, thName)
setEnv env
trace[Progress] "Saved the environment"
pure ()
}
registerBuiltinAttribute attrImpl
pure { attr := attrImpl, ext := ext }
def PSpecAttr.find? (s : PSpecAttr) (e : Expr) : MetaM (Array Name) := do
-- We use the default configuration
let config : WhnfCoreConfig := {}
(s.ext.getState (← getEnv)).getMatch e config
def PSpecAttr.getState (s : PSpecAttr) : MetaM (DiscrTree Name) := do
pure (s.ext.getState (← getEnv))
def showStoredPSpec : MetaM Unit := do
let st ← pspecAttr.getState
-- TODO: how can we iterate over (at least) the values stored in the tree?
--let s := st.toList.foldl (fun s (f, th) => f!"{s}\n{f} → {th}") f!""
let s := f!"{st}"
IO.println s
end Progress
|