1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
import Lean
import Std.Lean.HashSet
import Base.Utils
import Base.Primitives.Base
namespace Progress
open Lean Elab Term Meta
open Utils
-- We can't define and use trace classes in the same file
initialize registerTraceClass `Progress
/- # Progress tactic -/
structure PSpecDesc where
-- The universally quantified variables
fvars : Array Expr
-- The existentially quantified variables
evars : Array Expr
-- The function
fExpr : Expr
fName : Name
-- The function arguments
fLevels : List Level
args : Array Expr
-- The universally quantified variables which appear in the function arguments
argsFVars : Array FVarId
-- The returned value
ret : Expr
-- The postcondition (if there is)
post : Option Expr
section Methods
variable [MonadLiftT MetaM m] [MonadControlT MetaM m] [Monad m] [MonadOptions m]
variable [MonadTrace m] [MonadLiftT IO m] [MonadRef m] [AddMessageContext m]
variable [MonadError m]
variable {a : Type}
/- Analyze a pspec theorem to decompose its arguments.
PSpec theorems should be of the following shape:
```
∀ x1 ... xn, H1 → ... Hn → ∃ y1 ... ym. f x1 ... xn = .ret ... ∧ Post1 ∧ ... ∧ Postk
```
The continuation `k` receives the following inputs:
- universally quantified variables
- assumptions
- existentially quantified variables
- function name
- function arguments
- return
- postconditions
TODO: generalize for when we do inductive proofs
-/
partial
def withPSpec [Inhabited (m a)] [Nonempty (m a)] (th : Expr) (k : PSpecDesc → m a)
(sanityChecks : Bool := false) :
m a := do
trace[Progress] "Proposition: {th}"
-- Dive into the quantified variables and the assumptions
forallTelescope th.consumeMData fun fvars th => do
trace[Progress] "Universally quantified arguments and assumptions: {fvars}"
-- Dive into the existentials
existsTelescope th.consumeMData fun evars th => do
trace[Progress] "Existentials: {evars}"
trace[Progress] "Proposition after stripping the quantifiers: {th}"
-- Take the first conjunct
let (th, post) ← optSplitConj th.consumeMData
trace[Progress] "After splitting the conjunction:\n- eq: {th}\n- post: {post}"
-- Destruct the equality
let (mExpr, ret) ← destEq th.consumeMData
trace[Progress] "After splitting the equality:\n- lhs: {th}\n- rhs: {ret}"
-- Destruct the monadic application to dive into the bind, if necessary (this
-- is for when we use `withPSpec` inside of the `progress` tactic), and
-- destruct the application to get the function name
mExpr.consumeMData.withApp fun mf margs => do
trace[Progress] "After stripping the arguments of the monad expression:\n- mf: {mf}\n- margs: {margs}"
let (fExpr, f, args) ← do
if mf.isConst ∧ mf.constName = ``Bind.bind then do
-- Dive into the bind
let fExpr := (margs.get! 4).consumeMData
fExpr.withApp fun f args => pure (fExpr, f, args)
else pure (mExpr, mf, margs)
trace[Progress] "After stripping the arguments of the function call:\n- f: {f}\n- args: {args}"
if ¬ f.isConst then throwError "Not a constant: {f}"
-- Compute the set of universally quantified variables which appear in the function arguments
let allArgsFVars ← args.foldlM (fun hs arg => getFVarIds arg hs) HashSet.empty
-- Sanity check
if sanityChecks then
-- All the variables which appear in the inputs given to the function are
-- universally quantified (in particular, they are not *existentially* quantified)
let fvarsSet : HashSet FVarId := HashSet.ofArray (fvars.map (fun x => x.fvarId!))
let filtArgsFVars := allArgsFVars.toArray.filter (fun fvar => ¬ fvarsSet.contains fvar)
if ¬ filtArgsFVars.isEmpty then
let filtArgsFVars := filtArgsFVars.map (fun fvarId => Expr.fvar fvarId)
throwError "Some of the function inputs are not universally quantified: {filtArgsFVars}"
let argsFVars := fvars.map (fun x => x.fvarId!)
let argsFVars := argsFVars.filter (fun fvar => allArgsFVars.contains fvar)
-- Return
trace[Progress] "Function: {f.constName!}";
let thDesc := {
fvars := fvars
evars := evars
fExpr
fName := f.constName!
fLevels := f.constLevels!
args := args
argsFVars
ret := ret
post := post
}
k thDesc
end Methods
def getPSpecFunName (th : Expr) : MetaM Name :=
withPSpec th (fun d => do pure d.fName) true
def getPSpecClassFunNames (th : Expr) : MetaM (Name × Name) :=
withPSpec th (fun d => do
let arg0 := d.args.get! 0
arg0.withApp fun f _ => do
if ¬ f.isConst then throwError "Not a constant: {f}"
pure (d.fName, f.constName)
) true
def getPSpecClassFunNameArg (th : Expr) : MetaM (Name × Expr) :=
withPSpec th (fun d => do
let arg0 := d.args.get! 0
pure (d.fName, arg0)
) true
-- "Regular" pspec attribute
structure PSpecAttr where
attr : AttributeImpl
ext : MapDeclarationExtension Name
deriving Inhabited
/- pspec attribute for type classes: we use the name of the type class to
lookup another map. We use the *first* argument of the type class to lookup
into this second map.
Example:
========
We use type classes for addition. For instance, the addition between two
U32 is written (without syntactic sugar) as `HAdd.add (Scalar ty) x y`. As a consequence,
we store the theorem through the bindings: HAdd.add → Scalar → ...
SH: TODO: this (and `PSpecClassExprAttr`) is a bit ad-hoc. For now it works for the
specs of the scalar operations, which is what I really need, but I'm not sure it
applies well to other situations. A better way would probably to use type classes, but
I couldn't get them to work on those cases. It is worth retrying.
-/
structure PSpecClassAttr where
attr : AttributeImpl
ext : MapDeclarationExtension (NameMap Name)
deriving Inhabited
/- Same as `PSpecClassAttr` but we use the full first argument (it works when it
is a constant). -/
structure PSpecClassExprAttr where
attr : AttributeImpl
ext : MapDeclarationExtension (HashMap Expr Name)
deriving Inhabited
-- TODO: the original function doesn't define correctly the `addImportedFn`. Do a PR?
def mkMapDeclarationExtension [Inhabited α] (name : Name := by exact decl_name%) : IO (MapDeclarationExtension α) :=
registerSimplePersistentEnvExtension {
name := name,
addImportedFn := fun a => a.foldl (fun s a => a.foldl (fun s (k, v) => s.insert k v) s) RBMap.empty,
addEntryFn := fun s n => s.insert n.1 n.2 ,
toArrayFn := fun es => es.toArray.qsort (fun a b => Name.quickLt a.1 b.1)
}
/- The persistent map from function to pspec theorems. -/
initialize pspecAttr : PSpecAttr ← do
let ext ← mkMapDeclarationExtension `pspecMap
let attrImpl : AttributeImpl := {
name := `pspec
descr := "Marks theorems to use with the `progress` tactic"
add := fun thName stx attrKind => do
Attribute.Builtin.ensureNoArgs stx
-- TODO: use the attribute kind
unless attrKind == AttributeKind.global do
throwError "invalid attribute 'pspec', must be global"
-- Lookup the theorem
let env ← getEnv
let thDecl := env.constants.find! thName
let fName ← MetaM.run' (getPSpecFunName thDecl.type)
trace[Progress] "Registering spec theorem for {fName}"
let env := ext.addEntry env (fName, thName)
setEnv env
pure ()
}
registerBuiltinAttribute attrImpl
pure { attr := attrImpl, ext := ext }
/- The persistent map from type classes to pspec theorems -/
initialize pspecClassAttr : PSpecClassAttr ← do
let ext : MapDeclarationExtension (NameMap Name) ← mkMapDeclarationExtension `pspecClassMap
let attrImpl : AttributeImpl := {
name := `cpspec
descr := "Marks theorems to use for type classes with the `progress` tactic"
add := fun thName stx attrKind => do
Attribute.Builtin.ensureNoArgs stx
-- TODO: use the attribute kind
unless attrKind == AttributeKind.global do
throwError "invalid attribute 'cpspec', must be global"
-- Lookup the theorem
let env ← getEnv
let thDecl := env.constants.find! thName
let (fName, argName) ← MetaM.run' (getPSpecClassFunNames thDecl.type)
trace[Progress] "Registering class spec theorem for ({fName}, {argName})"
-- Update the entry if there is one, add an entry if there is none
let env :=
match (ext.getState (← getEnv)).find? fName with
| none =>
let m := RBMap.ofList [(argName, thName)]
ext.addEntry env (fName, m)
| some m =>
let m := m.insert argName thName
ext.addEntry env (fName, m)
setEnv env
pure ()
}
registerBuiltinAttribute attrImpl
pure { attr := attrImpl, ext := ext }
/- The 2nd persistent map from type classes to pspec theorems -/
initialize pspecClassExprAttr : PSpecClassExprAttr ← do
let ext : MapDeclarationExtension (HashMap Expr Name) ← mkMapDeclarationExtension `pspecClassExprMap
let attrImpl : AttributeImpl := {
name := `cepspec
descr := "Marks theorems to use for type classes with the `progress` tactic"
add := fun thName stx attrKind => do
Attribute.Builtin.ensureNoArgs stx
-- TODO: use the attribute kind
unless attrKind == AttributeKind.global do
throwError "invalid attribute 'cpspec', must be global"
-- Lookup the theorem
let env ← getEnv
let thDecl := env.constants.find! thName
let (fName, arg) ← MetaM.run' (getPSpecClassFunNameArg thDecl.type)
-- Sanity check: no variables appear in the argument
MetaM.run' do
let fvars ← getFVarIds arg
if ¬ fvars.isEmpty then throwError "The first argument ({arg}) contains variables"
-- We store two bindings:
-- - arg to theorem name
-- - reduced arg to theorem name
let rarg ← MetaM.run' (reduceAll arg)
trace[Progress] "Registering class spec theorem for ({fName}, {arg}) and ({fName}, {rarg})"
-- Update the entry if there is one, add an entry if there is none
let env :=
match (ext.getState (← getEnv)).find? fName with
| none =>
let m := HashMap.ofList [(arg, thName), (rarg, thName)]
ext.addEntry env (fName, m)
| some m =>
let m := m.insert arg thName
let m := m.insert rarg thName
ext.addEntry env (fName, m)
setEnv env
pure ()
}
registerBuiltinAttribute attrImpl
pure { attr := attrImpl, ext := ext }
def PSpecAttr.find? (s : PSpecAttr) (name : Name) : MetaM (Option Name) := do
return (s.ext.getState (← getEnv)).find? name
def PSpecClassAttr.find? (s : PSpecClassAttr) (className argName : Name) : MetaM (Option Name) := do
match (s.ext.getState (← getEnv)).find? className with
| none => return none
| some map => return map.find? argName
def PSpecClassExprAttr.find? (s : PSpecClassExprAttr) (className : Name) (arg : Expr) : MetaM (Option Name) := do
match (s.ext.getState (← getEnv)).find? className with
| none => return none
| some map => return map.find? arg
def PSpecAttr.getState (s : PSpecAttr) : MetaM (NameMap Name) := do
pure (s.ext.getState (← getEnv))
def PSpecClassAttr.getState (s : PSpecClassAttr) : MetaM (NameMap (NameMap Name)) := do
pure (s.ext.getState (← getEnv))
def PSpecClassExprAttr.getState (s : PSpecClassExprAttr) : MetaM (NameMap (HashMap Expr Name)) := do
pure (s.ext.getState (← getEnv))
def showStoredPSpec : MetaM Unit := do
let st ← pspecAttr.getState
let s := st.toList.foldl (fun s (f, th) => f!"{s}\n{f} → {th}") f!""
IO.println s
def showStoredPSpecClass : MetaM Unit := do
let st ← pspecClassAttr.getState
let s := st.toList.foldl (fun s (f, m) =>
let ms := m.toList.foldl (fun s (f, th) =>
f!"{s}\n {f} → {th}") f!""
f!"{s}\n{f} → [{ms}]") f!""
IO.println s
def showStoredPSpecExprClass : MetaM Unit := do
let st ← pspecClassExprAttr.getState
let s := st.toList.foldl (fun s (f, m) =>
let ms := m.toList.foldl (fun s (f, th) =>
f!"{s}\n {f} → {th}") f!""
f!"{s}\n{f} → [{ms}]") f!""
IO.println s
end Progress
|