1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/- Vectors -/
import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith
import Base.IList
import Base.Primitives.Scalar
import Base.Primitives.ArraySlice
import Base.Arith
import Base.Progress.Base
namespace Primitives
open Result Error
namespace alloc.vec
def Vec (α : Type u) := { l : List α // l.length ≤ Usize.max }
instance (a : Type u) : Arith.HasIntProp (Vec a) where
prop_ty := λ v => 0 ≤ v.val.len ∧ v.val.len ≤ Scalar.max ScalarTy.Usize
prop := λ ⟨ _, l ⟩ => by simp[Scalar.max, List.len_eq_length, *]
instance {α : Type u} (p : Vec α → Prop) : Arith.HasIntProp (Subtype p) where
prop_ty := λ x => p x
prop := λ x => x.property
@[simp]
abbrev Vec.length {α : Type u} (v : Vec α) : Int := v.val.len
@[simp]
abbrev Vec.v {α : Type u} (v : Vec α) : List α := v.val
example {a: Type u} (v : Vec a) : v.length ≤ Scalar.max ScalarTy.Usize := by
scalar_tac
def Vec.new (α : Type u): Vec α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩
-- TODO: very annoying that the α is an explicit parameter
def Vec.len (α : Type u) (v : Vec α) : Usize :=
Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac)
@[simp]
theorem Vec.len_val {α : Type u} (v : Vec α) : (Vec.len α v).val = v.length :=
by rfl
-- This shouldn't be used
def Vec.push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-- This is actually the backward function
def Vec.push (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
:=
let nlen := List.length v.val + 1
if h : nlen ≤ U32.max || nlen ≤ Usize.max then
have h : nlen ≤ Usize.max := by
simp [Usize.max] at *
have hm := Usize.refined_max.property
cases h <;> cases hm <;> simp [U32.max, U64.max] at * <;> try linarith
return ⟨ List.concat v.val x, by simp at *; assumption ⟩
else
fail maximumSizeExceeded
-- This shouldn't be used
def Vec.insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit :=
if i.val < v.length then
.ret ()
else
.fail arrayOutOfBounds
-- This is actually the backward function
def Vec.insert (α : Type u) (v: Vec α) (i: Usize) (x: α) : Result (Vec α) :=
if i.val < v.length then
.ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
else
.fail arrayOutOfBounds
@[pspec]
theorem Vec.insert_spec {α : Type u} (v: Vec α) (i: Usize) (x: α)
(hbound : i.val < v.length) :
∃ nv, v.insert α i x = ret nv ∧ nv.val = v.val.update i.val x := by
simp [insert, *]
def Vec.index_usize {α : Type u} (v: Vec α) (i: Usize) : Result α :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some x => ret x
/- In the theorems below: we don't always need the `∃ ..`, but we use one
so that `progress` introduces an opaque variable and an equality. This
helps control the context.
-/
@[pspec]
theorem Vec.index_usize_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize)
(hbound : i.val < v.length) :
∃ x, v.index_usize i = ret x ∧ x = v.val.index i.val := by
simp only [index_usize]
-- TODO: dependent rewrite
have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
simp [*]
def Vec.update_usize {α : Type u} (v: Vec α) (i: Usize) (x: α) : Result (Vec α) :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some _ =>
.ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
@[pspec]
theorem Vec.update_usize_spec {α : Type u} (v: Vec α) (i: Usize) (x : α)
(hbound : i.val < v.length) :
∃ nv, v.update_usize i x = ret nv ∧
nv.val = v.val.update i.val x
:= by
simp only [update_usize]
have h := List.indexOpt_bounds v.val i.val
split
. simp_all [length]; cases h <;> scalar_tac
. simp_all
/- [alloc::vec::Vec::index]: forward function -/
def Vec.index (T I : Type) (inst : core.slice.index.SliceIndex I (Slice T))
(self : Vec T) (i : I) : Result inst.Output :=
sorry -- TODO
/- [alloc::vec::Vec::index_mut]: forward function -/
def Vec.index_mut (T I : Type) (inst : core.slice.index.SliceIndex I (Slice T))
(self : Vec T) (i : I) : Result inst.Output :=
sorry -- TODO
/- [alloc::vec::Vec::index_mut]: backward function 0 -/
def Vec.index_mut_back
(T I : Type) (inst : core.slice.index.SliceIndex I (Slice T))
(self : Vec T) (i : I) (x : inst.Output) : Result (alloc.vec.Vec T) :=
sorry -- TODO
/- Trait implementation: [alloc::vec::Vec] -/
def Vec.coreopsindexIndexInst (T I : Type)
(inst : core.slice.index.SliceIndex I (Slice T)) :
core.ops.index.Index (alloc.vec.Vec T) I := {
Output := inst.Output
index := Vec.index T I inst
}
/- Trait implementation: [alloc::vec::Vec] -/
def Vec.coreopsindexIndexMutInst (T I : Type)
(inst : core.slice.index.SliceIndex I (Slice T)) :
core.ops.index.IndexMut (alloc.vec.Vec T) I := {
indexInst := Vec.coreopsindexIndexInst T I inst
index_mut := Vec.index_mut T I inst
index_mut_back := Vec.index_mut_back T I inst
}
@[simp]
theorem Vec.index_slice_index {α : Type} (v : Vec α) (i : Usize) :
Vec.index α Usize (core.slice.index.SliceIndexUsizeSliceTInst α) v i =
Vec.index_usize v i :=
sorry
@[simp]
theorem Vec.index_mut_slice_index {α : Type} (v : Vec α) (i : Usize) :
Vec.index_mut α Usize (core.slice.index.SliceIndexUsizeSliceTInst α) v i =
Vec.index_usize v i :=
sorry
@[simp]
theorem Vec.index_mut_back_slice_index {α : Type} (v : Vec α) (i : Usize) (x : α) :
Vec.index_mut_back α Usize (core.slice.index.SliceIndexUsizeSliceTInst α) v i x =
Vec.update_usize v i x :=
sorry
end alloc.vec
end Primitives
|