summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Primitives/Vec.lean
blob: c4c4d9f23271c4806e03012a5fbae104e9372b5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/- Vectors -/
import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith
import Base.IList
import Base.Primitives.Scalar
import Base.Primitives.Array
import Base.Arith
import Base.Progress.Base

namespace Primitives

open Result Error

def Vec (α : Type u) := { l : List α // l.length  Usize.max }

instance (a : Type u) : Arith.HasIntProp (Vec a) where
  prop_ty := λ v => 0  v.val.len  v.val.len  Scalar.max ScalarTy.Usize
  prop := λ  _, l  => by simp[Scalar.max, List.len_eq_length, *]

instance {α : Type u} (p : Vec α  Prop) : Arith.HasIntProp (Subtype p) where
  prop_ty := λ x => p x
  prop := λ x => x.property

@[simp]
abbrev Vec.length {α : Type u} (v : Vec α) : Int := v.val.len

@[simp]
abbrev Vec.v {α : Type u} (v : Vec α) : List α := v.val

example {a: Type u} (v : Vec a) : v.length  Scalar.max ScalarTy.Usize := by
  scalar_tac

def Vec.new (α : Type u): Vec α :=  [], by apply Scalar.cMax_suffices .Usize; simp 

-- TODO: very annoying that the α is an explicit parameter
def Vec.len (α : Type u) (v : Vec α) : Usize :=
  Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac)

@[simp]
theorem Vec.len_val {α : Type u} (v : Vec α) : (Vec.len α v).val = v.length :=
  by rfl

-- This shouldn't be used
def Vec.push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()

-- This is actually the backward function
def Vec.push (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
  :=
  let nlen := List.length v.val + 1
  if h : nlen  U32.max || nlen  Usize.max then
    have h : nlen  Usize.max := by
      simp [Usize.max] at *
      have hm := Usize.refined_max.property
      cases h <;> cases hm <;> simp [U32.max, U64.max] at * <;> try linarith
    return  List.concat v.val x, by simp at *; assumption 
  else
    fail maximumSizeExceeded

-- This shouldn't be used
def Vec.insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit :=
  if i.val < v.length then
    .ret ()
  else
    .fail arrayOutOfBounds

-- This is actually the backward function
def Vec.insert (α : Type u) (v: Vec α) (i: Usize) (x: α) : Result (Vec α) :=
  if i.val < v.length then
    .ret  v.val.update i.val x, by have := v.property; simp [*] 
  else
    .fail arrayOutOfBounds

@[pspec]
theorem Vec.insert_spec {α : Type u} (v: Vec α) (i: Usize) (x: α)
  (hbound : i.val < v.length) :
   nv, v.insert α i x = ret nv  nv.val = v.val.update i.val x := by
  simp [insert, *]

def Vec.index_shared (α : Type u) (v: Vec α) (i: Usize) : Result α :=
  match v.val.indexOpt i.val with
  | none => fail .arrayOutOfBounds
  | some x => ret x

/- In the theorems below: we don't always need the `∃ ..`, but we use one
   so that `progress` introduces an opaque variable and an equality. This
   helps control the context.
 -/

@[pspec]
theorem Vec.index_shared_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize)
  (hbound : i.val < v.length) :
   x, v.index_shared α i = ret x  x = v.val.index i.val := by
  simp only [index_shared]
  -- TODO: dependent rewrite
  have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
  simp [*]

-- This shouldn't be used
def Vec.index_back (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit :=
  if i.val < List.length v.val then
    .ret ()
  else
    .fail arrayOutOfBounds

def Vec.index_mut (α : Type u) (v: Vec α) (i: Usize) : Result α :=
  match v.val.indexOpt i.val with
  | none => fail .arrayOutOfBounds
  | some x => ret x

@[pspec]
theorem Vec.index_mut_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize)
  (hbound : i.val < v.length) :
   x, v.index_mut α i = ret x  x = v.val.index i.val := by
  simp only [index_mut]
  -- TODO: dependent rewrite
  have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
  simp [*]

def Vec.index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α) : Result (Vec α) :=
  match v.val.indexOpt i.val with
  | none => fail .arrayOutOfBounds
  | some _ =>
    .ret  v.val.update i.val x, by have := v.property; simp [*] 

@[pspec]
theorem Vec.index_mut_back_spec {α : Type u} (v: Vec α) (i: Usize) (x : α)
  (hbound : i.val < v.length) :
   nv, v.index_mut_back α i x = ret nv 
  nv.val = v.val.update i.val x
  := by
  simp only [index_mut_back]
  have h := List.indexOpt_bounds v.val i.val
  split
  . simp_all [length]; cases h <;> scalar_tac
  . simp_all

end Primitives