summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Primitives/Vec.lean
blob: be3a0e5b7af1b53a1d675b710f681a683c57714e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith
import Base.IList
import Base.Primitives.Scalar
import Base.Arith
import Base.Progress.Base

namespace Primitives

open Result Error

-------------
-- VECTORS --
-------------

def Vec (α : Type u) := { l : List α // List.length l  Usize.max }

-- TODO: do we really need it? It should be with Subtype by default
instance Vec.cast (a : Type): Coe (Vec a) (List a)  where coe := λ v => v.val

instance (a : Type) : Arith.HasIntProp (Vec a) where
  prop_ty := λ v => v.val.length  Scalar.max ScalarTy.Usize
  prop := λ  _, l  => l

example {a: Type} (v : Vec a) : v.val.length  Scalar.max ScalarTy.Usize := by
  intro_has_int_prop_instances
  simp_all [Scalar.max, Scalar.min]

example {a: Type} (v : Vec a) : v.val.length  Scalar.max ScalarTy.Usize := by
  scalar_tac

def Vec.new (α : Type u): Vec α :=  [], by apply Scalar.cMax_suffices .Usize; simp 

def Vec.len (α : Type u) (v : Vec α) : Usize :=
  let  v, l  := v
  Usize.ofIntCore (List.length v) (by simp [Scalar.min, Usize.min]) l

@[simp]
abbrev Vec.length {α : Type u} (v : Vec α) : Int := v.val.len

-- This shouldn't be used
def Vec.push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()

-- This is actually the backward function
def Vec.push (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
  :=
  let nlen := List.length v.val + 1
  if h : nlen  U32.max || nlen  Usize.max then
    have h : nlen  Usize.max := by
      simp [Usize.max] at *
      have hm := Usize.refined_max.property
      cases h <;> cases hm <;> simp [U32.max, U64.max] at * <;> try linarith
    return  List.concat v.val x, by simp at *; assumption 
  else
    fail maximumSizeExceeded

-- This shouldn't be used
def Vec.insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit :=
  if i.val < v.length then
    .ret ()
  else
    .fail arrayOutOfBounds

-- This is actually the backward function
def Vec.insert (α : Type u) (v: Vec α) (i: Usize) (x: α) : Result (Vec α) :=
  if i.val < v.length then
    .ret  v.val.update i.val x, by have := v.property; simp [*] 
  else
    .fail arrayOutOfBounds

@[pspec]
theorem Vec.insert_spec {α : Type u} (v: Vec α) (i: Usize) (x: α) :
  i.val < v.length 
   nv, v.insert α i x = ret nv  nv.val = v.val.update i.val x := by
  intro h
  simp [insert, *]

def Vec.index (α : Type u) (v: Vec α) (i: Usize) : Result α :=
  match v.val.indexOpt i.val with
  | none => fail .arrayOutOfBounds
  | some x => ret x

@[pspec]
theorem Vec.index_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize) :
  i.val < v.length 
  v.index α i = ret (v.val.index i.val) := by
  intro
  simp only [index]
  -- TODO: dependent rewrite
  have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
  simp only [*]

-- This shouldn't be used
def Vec.index_back (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit :=
  if i.val < List.length v.val then
    .ret ()
  else
    .fail arrayOutOfBounds

def Vec.index_mut (α : Type u) (v: Vec α) (i: Usize) : Result α :=
  match v.val.indexOpt i.val with
  | none => fail .arrayOutOfBounds
  | some x => ret x

@[pspec]
theorem Vec.index_mut_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize) :
  i.val < v.length 
  v.index_mut α i = ret (v.val.index i.val) := by
  intro
  simp only [index_mut]
  -- TODO: dependent rewrite
  have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
  simp only [*]

def Vec.index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α) : Result (Vec α) :=
  match v.val.indexOpt i.val with
  | none => fail .arrayOutOfBounds
  | some _ =>
    -- TODO: int_tac: introduce the refinements in the context?
    .ret  v.val.update i.val x, by have := v.property; simp [*] 

@[pspec]
theorem Vec.index_mut_back_spec {α : Type u} (v: Vec α) (i: Usize) (x : α) :
  i.val < v.length 
   nv, v.index_mut_back α i x = ret nv 
  nv.val = v.val.update i.val x
  := by
  intro
  simp only [index_mut_back]
  have h := List.indexOpt_bounds v.val i.val
  split
  . simp_all [length]; cases h <;> scalar_tac
  . simp_all

end Primitives