1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
|
import Lean
import Lean.Meta.Tactic.Simp
import Mathlib.Tactic.Linarith
import Base.Primitives.Base
import Base.Primitives.Core
import Base.Diverge.Base
import Base.Progress.Base
import Base.Arith.Int
namespace Primitives
----------------------
-- MACHINE INTEGERS --
----------------------
-- We redefine our machine integers types.
-- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
-- using the simplifier, meaning that proofs do not depend on the compile-time value of
-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
-- least officially, 16-bit microcontrollers, so this seems like a fine design decision
-- for now.)
-- Note from Chris Bailey: "If there's more than one salient property of your
-- definition then the subtyping strategy might get messy, and the property part
-- of a subtype is less discoverable by the simplifier or tactics like
-- library_search." So, we will not add refinements on the return values of the
-- operations defined on Primitives, but will rather rely on custom lemmas to
-- invert on possible return values of the primitive operations.
-- Machine integer constants, done via `ofNatCore`, which requires a proof that
-- the `Nat` fits within the desired integer type. We provide a custom tactic.
open Result Error
open System.Platform.getNumBits
-- TODO: is there a way of only importing System.Platform.getNumBits?
--
@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
-- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
-- The "structured" bounds
def Isize.smin : Int := - (HPow.hPow 2 (size_num_bits - 1))
def Isize.smax : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
def I8.smin : Int := - (HPow.hPow 2 7)
def I8.smax : Int := HPow.hPow 2 7 - 1
def I16.smin : Int := - (HPow.hPow 2 15)
def I16.smax : Int := HPow.hPow 2 15 - 1
def I32.smin : Int := -(HPow.hPow 2 31)
def I32.smax : Int := HPow.hPow 2 31 - 1
def I64.smin : Int := -(HPow.hPow 2 63)
def I64.smax : Int := HPow.hPow 2 63 - 1
def I128.smin : Int := -(HPow.hPow 2 127)
def I128.smax : Int := HPow.hPow 2 127 - 1
def Usize.smin : Int := 0
def Usize.smax : Int := HPow.hPow 2 size_num_bits - 1
def U8.smin : Int := 0
def U8.smax : Int := HPow.hPow 2 8 - 1
def U16.smin : Int := 0
def U16.smax : Int := HPow.hPow 2 16 - 1
def U32.smin : Int := 0
def U32.smax : Int := HPow.hPow 2 32 - 1
def U64.smin : Int := 0
def U64.smax : Int := HPow.hPow 2 64 - 1
def U128.smin : Int := 0
def U128.smax : Int := HPow.hPow 2 128 - 1
-- The "normalized" bounds, that we use in practice
def I8.min : Int := -128
def I8.max : Int := 127
def I16.min : Int := -32768
def I16.max : Int := 32767
def I32.min : Int := -2147483648
def I32.max : Int := 2147483647
def I64.min : Int := -9223372036854775808
def I64.max : Int := 9223372036854775807
def I128.min : Int := -170141183460469231731687303715884105728
def I128.max : Int := 170141183460469231731687303715884105727
@[simp]
def U8.min : Int := 0
def U8.max : Int := 255
@[simp]
def U16.min : Int := 0
def U16.max : Int := 65535
@[simp]
def U32.min : Int := 0
def U32.max : Int := 4294967295
@[simp]
def U64.min : Int := 0
def U64.max : Int := 18446744073709551615
@[simp]
def U128.min : Int := 0
def U128.max : Int := 340282366920938463463374607431768211455
@[simp]
def Usize.min : Int := 0
def Isize.refined_min : { n:Int // n = I32.min ∨ n = I64.min } :=
⟨ Isize.smin, by
simp [Isize.smin]
cases System.Platform.numBits_eq <;>
unfold System.Platform.numBits at * <;> simp [*] <;> decide ⟩
def Isize.refined_max : { n:Int // n = I32.max ∨ n = I64.max } :=
⟨ Isize.smax, by
simp [Isize.smax]
cases System.Platform.numBits_eq <;>
unfold System.Platform.numBits at * <;> simp [*] <;> decide ⟩
def Usize.refined_max : { n:Int // n = U32.max ∨ n = U64.max } :=
⟨ Usize.smax, by
simp [Usize.smax]
cases System.Platform.numBits_eq <;>
unfold System.Platform.numBits at * <;> simp [*] <;> decide ⟩
def Isize.min := Isize.refined_min.val
def Isize.max := Isize.refined_max.val
def Usize.max := Usize.refined_max.val
inductive ScalarTy :=
| Isize
| I8
| I16
| I32
| I64
| I128
| Usize
| U8
| U16
| U32
| U64
| U128
def ScalarTy.isSigned (ty : ScalarTy) : Bool :=
match ty with
| Isize
| I8
| I16
| I32
| I64
| I128 => true
| Usize
| U8
| U16
| U32
| U64
| U128 => false
-- FIXME(chore): bulk prove them via macro?
instance : Fact (¬ ScalarTy.isSigned .Usize) where
out := by decide
instance : Fact (¬ ScalarTy.isSigned .U8) where
out := by decide
instance : Fact (¬ ScalarTy.isSigned .U16) where
out := by decide
instance : Fact (¬ ScalarTy.isSigned .U32) where
out := by decide
instance : Fact (¬ ScalarTy.isSigned .U64) where
out := by decide
instance : Fact (¬ ScalarTy.isSigned .U128) where
out := by decide
def Scalar.smin (ty : ScalarTy) : Int :=
match ty with
| .Isize => Isize.smin
| .I8 => I8.smin
| .I16 => I16.smin
| .I32 => I32.smin
| .I64 => I64.smin
| .I128 => I128.smin
| .Usize => Usize.smin
| .U8 => U8.smin
| .U16 => U16.smin
| .U32 => U32.smin
| .U64 => U64.smin
| .U128 => U128.smin
def Scalar.smax (ty : ScalarTy) : Int :=
match ty with
| .Isize => Isize.smax
| .I8 => I8.smax
| .I16 => I16.smax
| .I32 => I32.smax
| .I64 => I64.smax
| .I128 => I128.smax
| .Usize => Usize.smax
| .U8 => U8.smax
| .U16 => U16.smax
| .U32 => U32.smax
| .U64 => U64.smax
| .U128 => U128.smax
def Scalar.min (ty : ScalarTy) : Int :=
match ty with
| .Isize => Isize.min
| .I8 => I8.min
| .I16 => I16.min
| .I32 => I32.min
| .I64 => I64.min
| .I128 => I128.min
| .Usize => Usize.min
| .U8 => U8.min
| .U16 => U16.min
| .U32 => U32.min
| .U64 => U64.min
| .U128 => U128.min
def Scalar.max (ty : ScalarTy) : Int :=
match ty with
| .Isize => Isize.max
| .I8 => I8.max
| .I16 => I16.max
| .I32 => I32.max
| .I64 => I64.max
| .I128 => I128.max
| .Usize => Usize.max
| .U8 => U8.max
| .U16 => U16.max
| .U32 => U32.max
| .U64 => U64.max
| .U128 => U128.max
def Scalar.smin_eq (ty : ScalarTy) : Scalar.min ty = Scalar.smin ty := by
cases ty <;> rfl
def Scalar.smax_eq (ty : ScalarTy) : Scalar.max ty = Scalar.smax ty := by
cases ty <;> rfl
-- "Conservative" bounds
-- We use those because we can't compare to the isize bounds (which can't
-- reduce at compile-time). Whenever we perform an arithmetic operation like
-- addition we need to check that the result is in bounds: we first compare
-- to the conservative bounds, which reduce, then compare to the real bounds.
-- This is useful for the various #asserts that we want to reduce at
-- type-checking time.
def Scalar.cMin (ty : ScalarTy) : Int :=
match ty with
| .Isize => Scalar.min .I32
| _ => Scalar.min ty
def Scalar.cMax (ty : ScalarTy) : Int :=
match ty with
| .Isize => Scalar.max .I32
| .Usize => Scalar.max .U32
| _ => Scalar.max ty
theorem Scalar.min_lt_max (ty : ScalarTy) : Scalar.min ty < Scalar.max ty := by
cases ty <;> simp [Scalar.min, Scalar.max] <;> try decide
. simp [Isize.min, Isize.max]
have h1 := Isize.refined_min.property
have h2 := Isize.refined_max.property
cases h1 <;> cases h2 <;> simp [*] <;> decide
. simp [Usize.max]
have h := Usize.refined_max.property
cases h <;> simp [*] <;> decide
theorem Scalar.min_le_max (ty : ScalarTy) : Scalar.min ty ≤ Scalar.max ty := by
have := Scalar.min_lt_max ty
int_tac
theorem Scalar.cMin_bound ty : Scalar.min ty ≤ Scalar.cMin ty := by
cases ty <;> (simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at *; try decide)
have h := Isize.refined_min.property
cases h <;> simp [*, Isize.min]
decide
theorem Scalar.cMax_bound ty : Scalar.cMax ty ≤ Scalar.max ty := by
cases ty <;> (simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at *; try decide)
. have h := Isize.refined_max.property
cases h <;> simp [*, Isize.max]; decide
. have h := Usize.refined_max.property
cases h <;> simp [*, Usize.max]; decide
theorem Scalar.cMin_suffices ty (h : Scalar.cMin ty ≤ x) : Scalar.min ty ≤ x := by
have := Scalar.cMin_bound ty
linarith
theorem Scalar.cMax_suffices ty (h : x ≤ Scalar.cMax ty) : x ≤ Scalar.max ty := by
have := Scalar.cMax_bound ty
linarith
/-- The scalar type.
We could use a subtype, but it using a custom structure type allows us
to have more control over the coercions and the simplifications (we tried
using a subtype and it caused issues especially as we had to make the Scalar
type non-reducible, so that we could have more control, but leading to
some natural equalities not being obvious to the simplifier anymore).
-/
structure Scalar (ty : ScalarTy) where
val : Int
hmin : Scalar.min ty ≤ val
hmax : val ≤ Scalar.max ty
deriving Repr
instance (ty : ScalarTy) : CoeOut (Scalar ty) Int where
coe := λ v => v.val
/- Activate the ↑ notation -/
attribute [coe] Scalar.val
theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty ->
Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty
:=
λ h => by
apply And.intro <;> have hmin := Scalar.cMin_bound ty <;> have hmax := Scalar.cMax_bound ty <;> linarith
def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
(h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : Scalar ty :=
{ val := x, hmin := h.left, hmax := h.right }
@[reducible] def Scalar.ofInt {ty : ScalarTy} (x : Int)
(hInBounds : Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty := by decide) : Scalar ty :=
Scalar.ofIntCore x (Scalar.bound_suffices ty x hInBounds)
@[simp] abbrev Scalar.in_bounds (ty : ScalarTy) (x : Int) : Prop :=
Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty
@[simp] abbrev Scalar.check_bounds (ty : ScalarTy) (x : Int) : Bool :=
(Scalar.cMin ty ≤ x || Scalar.min ty ≤ x) ∧ (x ≤ Scalar.cMax ty || x ≤ Scalar.max ty)
/- Discussion:
This coercion can be slightly annoying at times, because if we write
something like `u = 3` (where `u` is, for instance, as `U32`), then instead of
coercing `u` to `Int`, Lean will lift `3` to `U32`).
For now we deactivate it.
-- TODO(raitobezarius): the inbounds constraint is a bit ugly as we can pretty trivially
-- discharge the lhs on ≥ 0.
instance {ty: ScalarTy} [InBounds ty (Int.ofNat n)]: OfNat (Scalar ty) (n: ℕ) where
ofNat := Scalar.ofInt n
-/
theorem Scalar.check_bounds_imp_in_bounds {ty : ScalarTy} {x : Int}
(h: Scalar.check_bounds ty x) :
Scalar.in_bounds ty x := by
simp at *
have ⟨ hmin, hmax ⟩ := h
have hbmin := Scalar.cMin_bound ty
have hbmax := Scalar.cMax_bound ty
cases hmin <;> cases hmax <;> apply And.intro <;> linarith
theorem Scalar.check_bounds_eq_in_bounds (ty : ScalarTy) (x : Int) :
Scalar.check_bounds ty x ↔ Scalar.in_bounds ty x := by
constructor <;> intro h
. apply (check_bounds_imp_in_bounds h)
. simp_all
-- Further thoughts: look at what has been done here:
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
-- and
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
-- which both contain a fair amount of reasoning already!
def Scalar.tryMkOpt (ty : ScalarTy) (x : Int) : Option (Scalar ty) :=
if h:Scalar.check_bounds ty x then
-- If we do:
-- ```
-- let ⟨ hmin, hmax ⟩ := (Scalar.check_bounds_imp_in_bounds h)
-- Scalar.ofIntCore x hmin hmax
-- ```
-- then normalization blocks (for instance, some proofs which use reflexivity fail).
-- However, the version below doesn't block reduction (TODO: investigate):
some (Scalar.ofIntCore x (Scalar.check_bounds_imp_in_bounds h))
else none
def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
Result.ofOption (tryMkOpt ty x) integerOverflow
theorem Scalar.tryMk_eq (ty : ScalarTy) (x : Int) :
match tryMk ty x with
| ok y => y.val = x ∧ in_bounds ty x
| fail _ => ¬ (in_bounds ty x)
| _ => False := by
simp [tryMk, ofOption, tryMkOpt, ofIntCore]
have h := check_bounds_eq_in_bounds ty x
split_ifs <;> simp_all
@[simp] theorem Scalar.tryMk_eq_div (ty : ScalarTy) (x : Int) :
tryMk ty x = div ↔ False := by
simp [tryMk, ofOption, tryMkOpt]
split_ifs <;> simp
@[simp] theorem zero_in_cbounds {ty : ScalarTy} : Scalar.cMin ty ≤ 0 ∧ 0 ≤ Scalar.cMax ty := by
cases ty <;> simp [Scalar.cMax, Scalar.cMin, Scalar.max, Scalar.min] <;> decide
def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
-- Our custom remainder operation, which satisfies the semantics of Rust
-- TODO: is there a better way?
def scalar_rem (x y : Int) : Int :=
if 0 ≤ x then x % y
else - (|x| % |y|)
@[simp]
def scalar_rem_nonneg {x y : Int} (hx : 0 ≤ x) : scalar_rem x y = x % y := by
intros
simp [*, scalar_rem]
-- Our custom division operation, which satisfies the semantics of Rust
-- TODO: is there a better way?
def scalar_div (x y : Int) : Int :=
if 0 ≤ x && 0 ≤ y then x / y
else if 0 ≤ x && y < 0 then - (|x| / |y|)
else if x < 0 && 0 ≤ y then - (|x| / |y|)
else |x| / |y|
@[simp]
def scalar_div_nonneg {x y : Int} (hx : 0 ≤ x) (hy : 0 ≤ y) : scalar_div x y = x / y := by
intros
simp [*, scalar_div]
-- Checking that the remainder operation is correct
#assert scalar_rem 1 2 = 1
#assert scalar_rem (-1) 2 = -1
#assert scalar_rem 1 (-2) = 1
#assert scalar_rem (-1) (-2) = -1
#assert scalar_rem 7 3 = (1:Int)
#assert scalar_rem (-7) 3 = -1
#assert scalar_rem 7 (-3) = 1
#assert scalar_rem (-7) (-3) = -1
-- Checking that the division operation is correct
#assert scalar_div 3 2 = 1
#assert scalar_div (-3) 2 = -1
#assert scalar_div 3 (-2) = -1
#assert scalar_div (-3) (-2) = 1
#assert scalar_div 7 3 = 2
#assert scalar_div (-7) 3 = -2
#assert scalar_div 7 (-3) = -2
#assert scalar_div (-7) (-3) = 2
def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
if y.val != 0 then Scalar.tryMk ty (scalar_div x.val y.val) else fail divisionByZero
def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
if y.val != 0 then Scalar.tryMk ty (scalar_rem x.val y.val) else fail divisionByZero
def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
Scalar.tryMk ty (x.val + y.val)
def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
Scalar.tryMk ty (x.val - y.val)
def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
Scalar.tryMk ty (x.val * y.val)
-- TODO: shift left
def Scalar.shiftl {ty0 ty1 : ScalarTy} (x : Scalar ty0) (y : Scalar ty1) : Result (Scalar ty0) :=
sorry
-- TODO: shift right
def Scalar.shiftr {ty0 ty1 : ScalarTy} (x : Scalar ty0) (y : Scalar ty1) : Result (Scalar ty0) :=
sorry
-- TODO: xor
def Scalar.xor {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Scalar ty :=
sorry
-- TODO: and
def Scalar.and {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Scalar ty :=
sorry
-- TODO: or
def Scalar.or {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Scalar ty :=
sorry
-- Cast an integer from a [src_ty] to a [tgt_ty]
-- TODO: double-check the semantics of casts in Rust
def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
Scalar.tryMk tgt_ty x.val
-- This can't fail, but for now we make all casts faillible (easier for the translation)
def Scalar.cast_bool (tgt_ty : ScalarTy) (x : Bool) : Result (Scalar tgt_ty) :=
Scalar.tryMk tgt_ty (if x then 1 else 0)
-- The scalar types
-- We declare the definitions as reducible so that Lean can unfold them (useful
-- for type class resolution for instance).
@[reducible] def Isize := Scalar .Isize
@[reducible] def I8 := Scalar .I8
@[reducible] def I16 := Scalar .I16
@[reducible] def I32 := Scalar .I32
@[reducible] def I64 := Scalar .I64
@[reducible] def I128 := Scalar .I128
@[reducible] def Usize := Scalar .Usize
@[reducible] def U8 := Scalar .U8
@[reducible] def U16 := Scalar .U16
@[reducible] def U32 := Scalar .U32
@[reducible] def U64 := Scalar .U64
@[reducible] def U128 := Scalar .U128
instance (ty : ScalarTy) : Inhabited (Scalar ty) := by
constructor; cases ty <;> apply (Scalar.ofInt 0)
-- TODO: reducible?
@[reducible] def core_isize_min : Isize := Scalar.ofIntCore Isize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize))
@[reducible] def core_isize_max : Isize := Scalar.ofIntCore Isize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize))
@[reducible] def core_i8_min : I8 := Scalar.ofInt I8.min
@[reducible] def core_i8_max : I8 := Scalar.ofInt I8.max
@[reducible] def core_i16_min : I16 := Scalar.ofInt I16.min
@[reducible] def core_i16_max : I16 := Scalar.ofInt I16.max
@[reducible] def core_i32_min : I32 := Scalar.ofInt I32.min
@[reducible] def core_i32_max : I32 := Scalar.ofInt I32.max
@[reducible] def core_i64_min : I64 := Scalar.ofInt I64.min
@[reducible] def core_i64_max : I64 := Scalar.ofInt I64.max
@[reducible] def core_i128_min : I128 := Scalar.ofInt I128.min
@[reducible] def core_i128_max : I128 := Scalar.ofInt I128.max
-- TODO: reducible?
@[reducible] def core_usize_min : Usize := Scalar.ofIntCore Usize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize))
@[reducible] def core_usize_max : Usize := Scalar.ofIntCore Usize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize))
@[reducible] def core_u8_min : U8 := Scalar.ofInt U8.min
@[reducible] def core_u8_max : U8 := Scalar.ofInt U8.max
@[reducible] def core_u16_min : U16 := Scalar.ofInt U16.min
@[reducible] def core_u16_max : U16 := Scalar.ofInt U16.max
@[reducible] def core_u32_min : U32 := Scalar.ofInt U32.min
@[reducible] def core_u32_max : U32 := Scalar.ofInt U32.max
@[reducible] def core_u64_min : U64 := Scalar.ofInt U64.min
@[reducible] def core_u64_max : U64 := Scalar.ofInt U64.max
@[reducible] def core_u128_min : U128 := Scalar.ofInt U128.min
@[reducible] def core_u128_max : U128 := Scalar.ofInt U128.max
-- TODO: below: not sure this is the best way.
-- Should we rather overload operations like +, -, etc.?
-- Also, it is possible to automate the generation of those definitions
-- with macros (but would it be a good idea? It would be less easy to
-- read the file, which is not supposed to change a lot)
-- Negation
/--
Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
one here.
The notation typeclass for heterogeneous negation.
-/
class HNeg (α : Type u) (β : outParam (Type v)) where
/-- `- a` computes the negation of `a`.
The meaning of this notation is type-dependent. -/
hNeg : α → β
/- Notation for heterogeneous negation.
We initially used the notation "-" but it conflicted with the homogeneous
negation too much. In particular, it made terms like `-10` ambiguous,
and seemingly caused to backtracking in elaboration, leading to definitions
like arrays of constants to take an unreasonable time to get elaborated
and type-checked.
TODO: PR to replace Neg with HNeg in Lean?
-/
prefix:75 "-." => HNeg.hNeg
/- We need this, otherwise we break pattern matching like in:
```
def is_minus_one (x : Int) : Bool :=
match x with
| -1 => true
| _ => false
```
-/
attribute [match_pattern] HNeg.hNeg
instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
-- Addition
instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
hAdd x y := Scalar.add x y
-- Substraction
instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
hSub x y := Scalar.sub x y
-- Multiplication
instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
hMul x y := Scalar.mul x y
-- Division
instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
hDiv x y := Scalar.div x y
-- Remainder
instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
hMod x y := Scalar.rem x y
-- Shift left
instance {ty0 ty1} : HShiftLeft (Scalar ty0) (Scalar ty1) (Result (Scalar ty0)) where
hShiftLeft x y := Scalar.shiftl x y
-- Shift right
instance {ty0 ty1} : HShiftRight (Scalar ty0) (Scalar ty1) (Result (Scalar ty0)) where
hShiftRight x y := Scalar.shiftr x y
-- Xor
instance {ty} : HXor (Scalar ty) (Scalar ty) (Scalar ty) where
hXor x y := Scalar.xor x y
-- Or
instance {ty} : HOr (Scalar ty) (Scalar ty) (Scalar ty) where
hOr x y := Scalar.or x y
-- And
instance {ty} : HAnd (Scalar ty) (Scalar ty) (Scalar ty) where
hAnd x y := Scalar.and x y
-- core checked arithmetic operations
/- A helper function that converts failure to none and success to some
TODO: move up to Base module? -/
def Option.ofResult {a : Type u} (x : Result a) :
Option a :=
match x with
| ok x => some x
| _ => none
/- [core::num::{T}::checked_add] -/
def core.num.checked_add (x y : Scalar ty) : Option (Scalar ty) :=
Option.ofResult (x + y)
def U8.checked_add (x y : U8) : Option U8 := core.num.checked_add x y
def U16.checked_add (x y : U16) : Option U16 := core.num.checked_add x y
def U32.checked_add (x y : U32) : Option U32 := core.num.checked_add x y
def U64.checked_add (x y : U64) : Option U64 := core.num.checked_add x y
def U128.checked_add (x y : U128) : Option U128 := core.num.checked_add x y
def Usize.checked_add (x y : Usize) : Option Usize := core.num.checked_add x y
def I8.checked_add (x y : I8) : Option I8 := core.num.checked_add x y
def I16.checked_add (x y : I16) : Option I16 := core.num.checked_add x y
def I32.checked_add (x y : I32) : Option I32 := core.num.checked_add x y
def I64.checked_add (x y : I64) : Option I64 := core.num.checked_add x y
def I128.checked_add (x y : I128) : Option I128 := core.num.checked_add x y
def Isize.checked_add (x y : Isize) : Option Isize := core.num.checked_add x y
/- [core::num::{T}::checked_sub] -/
def core.num.checked_sub (x y : Scalar ty) : Option (Scalar ty) :=
Option.ofResult (x - y)
def U8.checked_sub (x y : U8) : Option U8 := core.num.checked_sub x y
def U16.checked_sub (x y : U16) : Option U16 := core.num.checked_sub x y
def U32.checked_sub (x y : U32) : Option U32 := core.num.checked_sub x y
def U64.checked_sub (x y : U64) : Option U64 := core.num.checked_sub x y
def U128.checked_sub (x y : U128) : Option U128 := core.num.checked_sub x y
def Usize.checked_sub (x y : Usize) : Option Usize := core.num.checked_sub x y
def I8.checked_sub (x y : I8) : Option I8 := core.num.checked_sub x y
def I16.checked_sub (x y : I16) : Option I16 := core.num.checked_sub x y
def I32.checked_sub (x y : I32) : Option I32 := core.num.checked_sub x y
def I64.checked_sub (x y : I64) : Option I64 := core.num.checked_sub x y
def I128.checked_sub (x y : I128) : Option I128 := core.num.checked_sub x y
def Isize.checked_sub (x y : Isize) : Option Isize := core.num.checked_sub x y
/- [core::num::{T}::checked_mul] -/
def core.num.checked_mul (x y : Scalar ty) : Option (Scalar ty) :=
Option.ofResult (x * y)
def U8.checked_mul (x y : U8) : Option U8 := core.num.checked_mul x y
def U16.checked_mul (x y : U16) : Option U16 := core.num.checked_mul x y
def U32.checked_mul (x y : U32) : Option U32 := core.num.checked_mul x y
def U64.checked_mul (x y : U64) : Option U64 := core.num.checked_mul x y
def U128.checked_mul (x y : U128) : Option U128 := core.num.checked_mul x y
def Usize.checked_mul (x y : Usize) : Option Usize := core.num.checked_mul x y
def I8.checked_mul (x y : I8) : Option I8 := core.num.checked_mul x y
def I16.checked_mul (x y : I16) : Option I16 := core.num.checked_mul x y
def I32.checked_mul (x y : I32) : Option I32 := core.num.checked_mul x y
def I64.checked_mul (x y : I64) : Option I64 := core.num.checked_mul x y
def I128.checked_mul (x y : I128) : Option I128 := core.num.checked_mul x y
def Isize.checked_mul (x y : Isize) : Option Isize := core.num.checked_mul x y
/- [core::num::{T}::checked_div] -/
def core.num.checked_div (x y : Scalar ty) : Option (Scalar ty) :=
Option.ofResult (x / y)
def U8.checked_div (x y : U8) : Option U8 := core.num.checked_div x y
def U16.checked_div (x y : U16) : Option U16 := core.num.checked_div x y
def U32.checked_div (x y : U32) : Option U32 := core.num.checked_div x y
def U64.checked_div (x y : U64) : Option U64 := core.num.checked_div x y
def U128.checked_div (x y : U128) : Option U128 := core.num.checked_div x y
def Usize.checked_div (x y : Usize) : Option Usize := core.num.checked_div x y
def I8.checked_div (x y : I8) : Option I8 := core.num.checked_div x y
def I16.checked_div (x y : I16) : Option I16 := core.num.checked_div x y
def I32.checked_div (x y : I32) : Option I32 := core.num.checked_div x y
def I64.checked_div (x y : I64) : Option I64 := core.num.checked_div x y
def I128.checked_div (x y : I128) : Option I128 := core.num.checked_div x y
def Isize.checked_div (x y : Isize) : Option Isize := core.num.checked_div x y
/- [core::num::{T}::checked_rem] -/
def core.num.checked_rem (x y : Scalar ty) : Option (Scalar ty) :=
Option.ofResult (x % y)
def U8.checked_rem (x y : U8) : Option U8 := core.num.checked_rem x y
def U16.checked_rem (x y : U16) : Option U16 := core.num.checked_rem x y
def U32.checked_rem (x y : U32) : Option U32 := core.num.checked_rem x y
def U64.checked_rem (x y : U64) : Option U64 := core.num.checked_rem x y
def U128.checked_rem (x y : U128) : Option U128 := core.num.checked_rem x y
def Usize.checked_rem (x y : Usize) : Option Usize := core.num.checked_rem x y
def I8.checked_rem (x y : I8) : Option I8 := core.num.checked_rem x y
def I16.checked_rem (x y : I16) : Option I16 := core.num.checked_rem x y
def I32.checked_rem (x y : I32) : Option I32 := core.num.checked_rem x y
def I64.checked_rem (x y : I64) : Option I64 := core.num.checked_rem x y
def I128.checked_rem (x y : I128) : Option I128 := core.num.checked_rem x y
def Isize.checked_rem (x y : Isize) : Option Isize := core.num.checked_rem x y
theorem Scalar.add_equiv {ty} {x y : Scalar ty} :
match x + y with
| ok z => Scalar.in_bounds ty (↑x + ↑y) ∧ (↑z : Int) = ↑x + ↑y
| fail _ => ¬ (Scalar.in_bounds ty (↑x + ↑y))
| _ => ⊥ := by
-- Applying the unfoldings only inside the match
conv in _ + _ => unfold HAdd.hAdd instHAddScalarResult; simp [add]
have h := tryMk_eq ty (↑x + ↑y)
simp [in_bounds] at h
split at h <;> simp_all [check_bounds_eq_in_bounds]
-- Generic theorem - shouldn't be used much
@[pspec]
theorem Scalar.add_spec {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ ↑x + y.val)
(hmax : ↑x + ↑y ≤ Scalar.max ty) :
(∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y) := by
have h := @add_equiv ty x y
split at h <;> simp_all
apply h
theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
(hmax : ↑x + ↑y ≤ Scalar.max ty) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
have hmin : Scalar.min ty ≤ ↑x + ↑y := by
have hx := x.hmin
have hy := y.hmin
cases ty <;> simp [min, ScalarTy.isSigned] at * <;> linarith
apply add_spec <;> assumption
/- Fine-grained theorems -/
@[pspec] theorem Usize.add_spec {x y : Usize} (hmax : ↑x + ↑y ≤ Usize.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U8.add_spec {x y : U8} (hmax : ↑x + ↑y ≤ U8.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U16.add_spec {x y : U16} (hmax : ↑x + ↑y ≤ U16.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U32.add_spec {x y : U32} (hmax : ↑x + ↑y ≤ U32.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U64.add_spec {x y : U64} (hmax : ↑x + ↑y ≤ U64.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem U128.add_spec {x y : U128} (hmax : ↑x + ↑y ≤ U128.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem Isize.add_spec {x y : Isize}
(hmin : Isize.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ Isize.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I8.add_spec {x y : I8}
(hmin : I8.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I8.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I16.add_spec {x y : I16}
(hmin : I16.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I16.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I32.add_spec {x y : I32}
(hmin : I32.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I32.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I64.add_spec {x y : I64}
(hmin : I64.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I64.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I128.add_spec {x y : I128}
(hmin : I128.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I128.max) :
∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
theorem core.num.checked_add_spec {ty} {x y : Scalar ty} :
match core.num.checked_add x y with
| some z => Scalar.in_bounds ty (↑x + ↑y) ∧ ↑z = (↑x + ↑y : Int)
| none => ¬ (Scalar.in_bounds ty (↑x + ↑y)) := by
have h := Scalar.tryMk_eq ty (↑x + ↑y)
simp only [checked_add, Option.ofResult]
cases heq: x + y <;> simp_all <;> simp [HAdd.hAdd, Scalar.add] at heq
<;> simp [Add.add] at heq
<;> simp_all
theorem Scalar.sub_equiv {ty} {x y : Scalar ty} :
match x - y with
| ok z => Scalar.in_bounds ty (↑x - ↑y) ∧ (↑z : Int) = ↑x - ↑y
| fail _ => ¬ (Scalar.in_bounds ty (↑x - ↑y))
| _ => ⊥ := by
-- Applying the unfoldings only inside the match
conv in _ - _ => unfold HSub.hSub instHSubScalarResult; simp [sub]
have h := tryMk_eq ty (↑x - ↑y)
simp [in_bounds] at h
split at h <;> simp_all [check_bounds_eq_in_bounds]
-- Generic theorem - shouldn't be used much
@[pspec]
theorem Scalar.sub_spec {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ Scalar.max ty) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
have h := @sub_equiv ty x y
split at h <;> simp_all
apply h
theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned)
{x y : Scalar ty} (hmin : Scalar.min ty ≤ ↑x - ↑y) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
have : ↑x - ↑y ≤ Scalar.max ty := by
have hx := x.hmin
have hxm := x.hmax
have hy := y.hmin
cases ty <;> simp [min, max, ScalarTy.isSigned] at * <;> linarith
intros
apply sub_spec <;> assumption
/- Fine-grained theorems -/
@[pspec] theorem Usize.sub_spec {x y : Usize} (hmin : Usize.min ≤ ↑x - ↑y) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U8.sub_spec {x y : U8} (hmin : U8.min ≤ ↑x - ↑y) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U16.sub_spec {x y : U16} (hmin : U16.min ≤ ↑x - ↑y) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U32.sub_spec {x y : U32} (hmin : U32.min ≤ ↑x - ↑y) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U64.sub_spec {x y : U64} (hmin : U64.min ≤ ↑x - ↑y) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem U128.sub_spec {x y : U128} (hmin : U128.min ≤ ↑x - ↑y) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
@[pspec] theorem Isize.sub_spec {x y : Isize} (hmin : Isize.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ Isize.max) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I8.sub_spec {x y : I8} (hmin : I8.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I8.max) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I16.sub_spec {x y : I16} (hmin : I16.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I16.max) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I32.sub_spec {x y : I32} (hmin : I32.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I32.max) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I64.sub_spec {x y : I64} (hmin : I64.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I64.max) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
@[pspec] theorem I128.sub_spec {x y : I128} (hmin : I128.min ≤ ↑x - ↑y)
(hmax : ↑x - ↑y ≤ I128.max) :
∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
-- Generic theorem - shouldn't be used much
theorem Scalar.mul_spec {ty} {x y : Scalar ty}
(hmin : Scalar.min ty ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ Scalar.max ty) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
conv => congr; ext; lhs; simp [HMul.hMul]
simp [mul, tryMk, tryMkOpt, ofOption]
split_ifs
. simp [pure]
rfl
. tauto
theorem core.num.checked_sub_spec {ty} {x y : Scalar ty} :
match core.num.checked_sub x y with
| some z => Scalar.in_bounds ty (↑x - ↑y) ∧ ↑z = (↑x - ↑y : Int)
| none => ¬ (Scalar.in_bounds ty (↑x - ↑y)) := by
have h := Scalar.tryMk_eq ty (↑x - ↑y)
simp only [checked_sub, Option.ofResult]
have add_neg_eq : x.val + (-y.val) = x.val - y.val := by omega -- TODO: why do we need this??
cases heq: x - y <;> simp_all <;> simp only [HSub.hSub, Scalar.sub, Sub.sub, Int.sub] at heq
<;> simp_all
theorem Scalar.mul_equiv {ty} {x y : Scalar ty} :
match x * y with
| ok z => Scalar.in_bounds ty (↑x * ↑y) ∧ (↑z : Int) = ↑x * ↑y
| fail _ => ¬ (Scalar.in_bounds ty (↑x * ↑y))
| _ => ⊥ := by
-- Applying the unfoldings only inside the match
conv in _ * _ => unfold HMul.hMul instHMulScalarResult; simp [mul]
have h := tryMk_eq ty (↑x * ↑y)
simp [in_bounds] at h
split at h <;> simp_all [check_bounds_eq_in_bounds]
theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
(hmax : ↑x * ↑y ≤ Scalar.max ty) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
have : Scalar.min ty ≤ ↑x * ↑y := by
have hx := x.hmin
have hy := y.hmin
cases ty <;> simp [ScalarTy.isSigned] at * <;> apply mul_nonneg hx hy
apply mul_spec <;> assumption
/- Fine-grained theorems -/
@[pspec] theorem Usize.mul_spec {x y : Usize} (hmax : ↑x * ↑y ≤ Usize.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U8.mul_spec {x y : U8} (hmax : ↑x * ↑y ≤ U8.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U16.mul_spec {x y : U16} (hmax : ↑x * ↑y ≤ U16.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U32.mul_spec {x y : U32} (hmax : ↑x * ↑y ≤ U32.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U64.mul_spec {x y : U64} (hmax : ↑x * ↑y ≤ U64.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem U128.mul_spec {x y : U128} (hmax : ↑x * ↑y ≤ U128.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
@[pspec] theorem Isize.mul_spec {x y : Isize} (hmin : Isize.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ Isize.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I8.mul_spec {x y : I8} (hmin : I8.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I8.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I16.mul_spec {x y : I16} (hmin : I16.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I16.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I32.mul_spec {x y : I32} (hmin : I32.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I32.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I64.mul_spec {x y : I64} (hmin : I64.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I64.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
@[pspec] theorem I128.mul_spec {x y : I128} (hmin : I128.min ≤ ↑x * ↑y)
(hmax : ↑x * ↑y ≤ I128.max) :
∃ z, x * y = ok z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
theorem core.num.checked_mul_spec {ty} {x y : Scalar ty} :
match core.num.checked_mul x y with
| some z => Scalar.in_bounds ty (↑x * ↑y) ∧ ↑z = (↑x * ↑y : Int)
| none => ¬ (Scalar.in_bounds ty (↑x * ↑y)) := by
have h := Scalar.tryMk_eq ty (↑x * ↑y)
simp only [checked_mul, Option.ofResult]
have : Int.mul ↑x ↑y = ↑x * ↑y := by simp -- TODO: why do we need this??
cases heq: x * y <;> simp_all <;> simp only [HMul.hMul, Scalar.mul, Mul.mul] at heq
<;> simp_all
theorem Scalar.div_equiv {ty} {x y : Scalar ty} :
match x / y with
| ok z => y.val ≠ 0 ∧ Scalar.in_bounds ty (scalar_div ↑x ↑y) ∧ (↑z : Int) = scalar_div ↑x ↑y
| fail _ => ¬ (y.val ≠ 0 ∧ Scalar.in_bounds ty (scalar_div ↑x ↑y))
| _ => ⊥ := by
-- Applying the unfoldings only inside the match
conv in _ / _ => unfold HDiv.hDiv instHDivScalarResult; simp [div]
have h := tryMk_eq ty (scalar_div ↑x ↑y)
simp [in_bounds] at h
split_ifs <;> simp <;>
split at h <;> simp_all [check_bounds_eq_in_bounds]
-- Generic theorem - shouldn't be used much
@[pspec]
theorem Scalar.div_spec {ty} {x y : Scalar ty}
(hnz : ↑y ≠ (0 : Int))
(hmin : Scalar.min ty ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ Scalar.max ty) :
∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y := by
simp [HDiv.hDiv, div, Div.div]
simp [tryMk, tryMkOpt, ofOption, *]
rfl
theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty}
(hnz : ↑y ≠ (0 : Int)) :
∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at *
have hx := x.hmin
have hy := y.hmin
simp [h] at hx hy
have hmin : 0 ≤ ↑x / ↑y := Int.ediv_nonneg hx hy
have hmax : ↑x / ↑y ≤ Scalar.max ty := by
have := Int.ediv_le_self ↑y hx
have := x.hmax
linarith
have hs := @div_spec ty x y hnz
simp [*] at hs
apply hs
/- Fine-grained theorems -/
@[pspec] theorem Usize.div_spec (x : Usize) {y : Usize} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U8.div_spec (x : U8) {y : U8} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U16.div_spec (x : U16) {y : U16} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U32.div_spec (x : U32) {y : U32} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U64.div_spec (x : U64) {y : U64} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U128.div_spec (x : U128) {y : U128} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x / y = ok z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem Isize.div_spec (x : Isize) {y : Isize}
(hnz : ↑y ≠ (0 : Int))
(hmin : Isize.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ Isize.max):
∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I8.div_spec (x : I8) {y : I8}
(hnz : ↑y ≠ (0 : Int))
(hmin : I8.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I8.max):
∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I16.div_spec (x : I16) {y : I16}
(hnz : ↑y ≠ (0 : Int))
(hmin : I16.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I16.max):
∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I32.div_spec (x : I32) {y : I32}
(hnz : ↑y ≠ (0 : Int))
(hmin : I32.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I32.max):
∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I64.div_spec (x : I64) {y : I64}
(hnz : ↑y ≠ (0 : Int))
(hmin : I64.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I64.max):
∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I128.div_spec (x : I128) {y : I128}
(hnz : ↑y ≠ (0 : Int))
(hmin : I128.min ≤ scalar_div ↑x ↑y)
(hmax : scalar_div ↑x ↑y ≤ I128.max):
∃ z, x / y = ok z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
theorem core.num.checked_div_spec {ty} {x y : Scalar ty} :
match core.num.checked_div x y with
| some z => y.val ≠ 0 ∧ Scalar.in_bounds ty (scalar_div ↑x ↑y) ∧ ↑z = (scalar_div ↑x ↑y : Int)
| none => ¬ (y.val ≠ 0 ∧ Scalar.in_bounds ty (scalar_div ↑x ↑y)) := by
have h := Scalar.tryMk_eq ty (scalar_div ↑x ↑y)
simp only [checked_div, Option.ofResult]
cases heq0: (y.val = 0 : Bool) <;>
cases heq1: x / y <;> simp_all <;> simp only [HDiv.hDiv, Scalar.div, Div.div] at heq1
<;> simp_all
theorem Scalar.rem_equiv {ty} {x y : Scalar ty} :
match x % y with
| ok z => y.val ≠ 0 ∧ Scalar.in_bounds ty (scalar_rem ↑x ↑y) ∧ (↑z : Int) = scalar_rem ↑x ↑y
| fail _ => ¬ (y.val ≠ 0 ∧ Scalar.in_bounds ty (scalar_rem ↑x ↑y))
| _ => ⊥ := by
-- Applying the unfoldings only inside the match
conv in _ % _ => unfold HMod.hMod instHModScalarResult; simp [rem]
have h := tryMk_eq ty (scalar_rem ↑x ↑y)
simp [in_bounds] at h
split_ifs <;> simp <;>
split at h <;> simp_all [check_bounds_eq_in_bounds]
-- Generic theorem - shouldn't be used much
@[pspec]
theorem Scalar.rem_spec {ty} {x y : Scalar ty}
(hnz : ↑y ≠ (0 : Int))
(hmin : Scalar.min ty ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ Scalar.max ty) :
∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y := by
simp [HMod.hMod, rem]
simp [tryMk, tryMkOpt, ofOption, *]
rfl
theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty}
(hnz : ↑y ≠ (0 : Int)) :
∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at *
have hx := x.hmin
have hy := y.hmin
simp [h] at hx hy
have hmin : (0 : Int) ≤ x % y := Int.emod_nonneg ↑x hnz
have hmax : ↑x % ↑y ≤ Scalar.max ty := by
have h : (0 : Int) < y := by int_tac
have h := Int.emod_lt_of_pos ↑x h
have := y.hmax
linarith
have hs := @rem_spec ty x y hnz
simp [*] at hs
simp [*]
@[pspec] theorem Usize.rem_spec (x : Usize) {y : Usize} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U8.rem_spec (x : U8) {y : U8} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U16.rem_spec (x : U16) {y : U16} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U32.rem_spec (x : U32) {y : U32} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U64.rem_spec (x : U64) {y : U64} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem U128.rem_spec (x : U128) {y : U128} (hnz : ↑y ≠ (0 : Int)) :
∃ z, x % y = ok z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem I8.rem_spec (x : I8) {y : I8}
(hnz : ↑y ≠ (0 : Int))
(hmin : I8.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I8.max):
∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I16.rem_spec (x : I16) {y : I16}
(hnz : ↑y ≠ (0 : Int))
(hmin : I16.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I16.max):
∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I32.rem_spec (x : I32) {y : I32}
(hnz : ↑y ≠ (0 : Int))
(hmin : I32.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I32.max):
∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I64.rem_spec (x : I64) {y : I64}
(hnz : ↑y ≠ (0 : Int))
(hmin : I64.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I64.max):
∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I128.rem_spec (x : I128) {y : I128}
(hnz : ↑y ≠ (0 : Int))
(hmin : I128.min ≤ scalar_rem ↑x ↑y)
(hmax : scalar_rem ↑x ↑y ≤ I128.max):
∃ z, x % y = ok z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
theorem core.num.checked_rem_spec {ty} {x y : Scalar ty} :
match core.num.checked_rem x y with
| some z => y.val ≠ 0 ∧ Scalar.in_bounds ty (scalar_rem ↑x ↑y) ∧ ↑z = (scalar_rem ↑x ↑y : Int)
| none => ¬ (y.val ≠ 0 ∧ Scalar.in_bounds ty (scalar_rem ↑x ↑y)) := by
have h := Scalar.tryMk_eq ty (scalar_rem ↑x ↑y)
simp only [checked_rem, Option.ofResult]
cases heq0: (y.val = 0 : Bool) <;>
cases heq1: x % y <;> simp_all <;> simp only [HMod.hMod, Scalar.rem, Mod.mod] at heq1
<;> simp_all
-- ofIntCore
-- TODO: typeclass?
def Isize.ofIntCore := @Scalar.ofIntCore .Isize
def I8.ofIntCore := @Scalar.ofIntCore .I8
def I16.ofIntCore := @Scalar.ofIntCore .I16
def I32.ofIntCore := @Scalar.ofIntCore .I32
def I64.ofIntCore := @Scalar.ofIntCore .I64
def I128.ofIntCore := @Scalar.ofIntCore .I128
def Usize.ofIntCore := @Scalar.ofIntCore .Usize
def U8.ofIntCore := @Scalar.ofIntCore .U8
def U16.ofIntCore := @Scalar.ofIntCore .U16
def U32.ofIntCore := @Scalar.ofIntCore .U32
def U64.ofIntCore := @Scalar.ofIntCore .U64
def U128.ofIntCore := @Scalar.ofIntCore .U128
-- ofInt
-- TODO: typeclass?
abbrev Isize.ofInt := @Scalar.ofInt .Isize
abbrev I8.ofInt := @Scalar.ofInt .I8
abbrev I16.ofInt := @Scalar.ofInt .I16
abbrev I32.ofInt := @Scalar.ofInt .I32
abbrev I64.ofInt := @Scalar.ofInt .I64
abbrev I128.ofInt := @Scalar.ofInt .I128
abbrev Usize.ofInt := @Scalar.ofInt .Usize
abbrev U8.ofInt := @Scalar.ofInt .U8
abbrev U16.ofInt := @Scalar.ofInt .U16
abbrev U32.ofInt := @Scalar.ofInt .U32
abbrev U64.ofInt := @Scalar.ofInt .U64
abbrev U128.ofInt := @Scalar.ofInt .U128
-- TODO: factor those lemmas out
@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofIntCore x h).val = x := by
simp [Scalar.ofInt, Scalar.ofIntCore]
@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-- Comparisons
instance {ty} : LT (Scalar ty) where
lt a b := LT.lt a.val b.val
instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
-- Not marking this one with @[simp] on purpose
theorem Scalar.eq_equiv {ty : ScalarTy} (x y : Scalar ty) :
x = y ↔ (↑x : Int) = ↑y := by
cases x; cases y; simp_all
-- This is sometimes useful when rewriting the goal with the local assumptions
@[simp] theorem Scalar.eq_imp {ty : ScalarTy} (x y : Scalar ty) :
(↑x : Int) = ↑y → x = y := (eq_equiv x y).mpr
theorem Scalar.lt_equiv {ty : ScalarTy} (x y : Scalar ty) :
x < y ↔ (↑x : Int) < ↑y := by simp [LT.lt]
@[simp] theorem Scalar.lt_imp {ty : ScalarTy} (x y : Scalar ty) :
(↑x : Int) < (↑y) → x < y := (lt_equiv x y).mpr
theorem Scalar.le_equiv {ty : ScalarTy} (x y : Scalar ty) :
x ≤ y ↔ (↑x : Int) ≤ ↑y := by simp [LE.le]
@[simp] theorem Scalar.le_imp {ty : ScalarTy} (x y : Scalar ty) :
(↑x : Int) ≤ ↑y → x ≤ y := (le_equiv x y).mpr
instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
| ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
h ▸ rfl
theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
fun h' => absurd (val_eq_of_eq h') h
instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
fun i j =>
match decEq i.val j.val with
| isTrue h => isTrue (Scalar.eq_of_val_eq h)
| isFalse h => isFalse (Scalar.ne_of_val_ne h)
@[simp] theorem Scalar.neq_to_neq_val {ty} : ∀ {i j : Scalar ty}, (¬ i = j) ↔ ¬ i.val = j.val := by
simp [eq_equiv]
instance (ty: ScalarTy) : Preorder (Scalar ty) where
le_refl := fun a => by simp
le_trans := fun a b c => by
intro Hab Hbc
exact (le_trans ((Scalar.le_equiv _ _).1 Hab) ((Scalar.le_equiv _ _).1 Hbc))
lt_iff_le_not_le := fun a b => by
trans (a: Int) < (b: Int); exact (Scalar.lt_equiv _ _)
trans (a: Int) ≤ (b: Int) ∧ ¬ (b: Int) ≤ (a: Int); exact lt_iff_le_not_le
repeat rewrite [← Scalar.le_equiv]; rfl
instance (ty: ScalarTy) : PartialOrder (Scalar ty) where
le_antisymm := fun a b Hab Hba => Scalar.eq_imp _ _ ((@le_antisymm Int _ _ _ ((Scalar.le_equiv a b).1 Hab) ((Scalar.le_equiv b a).1 Hba)))
instance ScalarDecidableLE (ty: ScalarTy) : DecidableRel (· ≤ · : Scalar ty -> Scalar ty -> Prop) := by
simp [instLEScalar]
-- Lift this to the decidability of the Int version.
infer_instance
instance (ty: ScalarTy) : LinearOrder (Scalar ty) where
le_total := fun a b => by
rcases (Int.le_total a b) with H | H
left; exact (Scalar.le_equiv _ _).2 H
right; exact (Scalar.le_equiv _ _).2 H
decidableLE := ScalarDecidableLE ty
-- Coercion theorems
-- This is helpful whenever you want to "push" casts to the innermost nodes
-- and make the cast normalization happen more magically.
@[simp, norm_cast]
theorem coe_max {ty: ScalarTy} (a b: Scalar ty): ↑(Max.max a b) = (Max.max (↑a) (↑b): ℤ) := by
-- TODO: there should be a shorter way to prove this.
rw [max_def, max_def]
split_ifs <;> simp_all
refine' absurd _ (lt_irrefl a)
exact lt_of_le_of_lt (by assumption) ((Scalar.lt_equiv _ _).2 (by assumption))
-- Max theory
-- TODO: do the min theory later on.
theorem Scalar.zero_le_unsigned {ty} (s: ¬ ty.isSigned) (x: Scalar ty): Scalar.ofInt 0 (by simp) ≤ x := by
apply (Scalar.le_equiv _ _).2
convert x.hmin
cases ty <;> simp [ScalarTy.isSigned] at s <;> simp [Scalar.min]
@[simp]
theorem Scalar.max_unsigned_left_zero_eq {ty} [s: Fact (¬ ty.isSigned)] (x: Scalar ty):
Max.max (Scalar.ofInt 0 (by simp)) x = x := max_eq_right (Scalar.zero_le_unsigned s.out x)
@[simp]
theorem Scalar.max_unsigned_right_zero_eq {ty} [s: Fact (¬ ty.isSigned)] (x: Scalar ty):
Max.max x (Scalar.ofInt 0 (by simp)) = x := max_eq_left (Scalar.zero_le_unsigned s.out x)
-- Leading zeros
def core.num.Usize.leading_zeros (x : Usize) : U32 := sorry
def core.num.U8.leading_zeros (x : U8) : U32 := sorry
def core.num.U16.leading_zeros (x : U16) : U32 := sorry
def core.num.U32.leading_zeros (x : U32) : U32 := sorry
def core.num.U64.leading_zeros (x : U64) : U32 := sorry
def core.num.U128.leading_zeros (x : U128) : U32 := sorry
def core.num.Isize.leading_zeros (x : Isize) : U32 := sorry
def core.num.I8.leading_zeros (x : I8) : U32 := sorry
def core.num.I16.leading_zeros (x : I16) : U32 := sorry
def core.num.I32.leading_zeros (x : I32) : U32 := sorry
def core.num.I64.leading_zeros (x : I64) : U32 := sorry
def core.num.I128.leading_zeros (x : I128) : U32 := sorry
-- Clone
def core.clone.impls.CloneUsize.clone (x : Usize) : Usize := x
def core.clone.impls.CloneU8.clone (x : U8) : U8 := x
def core.clone.impls.CloneU16.clone (x : U16) : U16 := x
def core.clone.impls.CloneU32.clone (x : U32) : U32 := x
def core.clone.impls.CloneU64.clone (x : U64) : U64 := x
def core.clone.impls.CloneU128.clone (x : U128) : U128 := x
def core.clone.impls.CloneIsize.clone (x : Isize) : Isize := x
def core.clone.impls.CloneI8.clone (x : I8) : I8 := x
def core.clone.impls.CloneI16.clone (x : I16) : I16 := x
def core.clone.impls.CloneI32.clone (x : I32) : I32 := x
def core.clone.impls.CloneI64.clone (x : I64) : I64 := x
def core.clone.impls.CloneI128.clone (x : I128) : I128 := x
def core.clone.CloneUsize : core.clone.Clone Usize := {
clone := fun x => ok (core.clone.impls.CloneUsize.clone x)
}
def core.clone.CloneU8 : core.clone.Clone U8 := {
clone := fun x => ok (core.clone.impls.CloneU8.clone x)
}
def core.clone.CloneU16 : core.clone.Clone U16 := {
clone := fun x => ok (core.clone.impls.CloneU16.clone x)
}
def core.clone.CloneU32 : core.clone.Clone U32 := {
clone := fun x => ok (core.clone.impls.CloneU32.clone x)
}
def core.clone.CloneU64 : core.clone.Clone U64 := {
clone := fun x => ok (core.clone.impls.CloneU64.clone x)
}
def core.clone.CloneU128 : core.clone.Clone U128 := {
clone := fun x => ok (core.clone.impls.CloneU128.clone x)
}
def core.clone.CloneIsize : core.clone.Clone Isize := {
clone := fun x => ok (core.clone.impls.CloneIsize.clone x)
}
def core.clone.CloneI8 : core.clone.Clone I8 := {
clone := fun x => ok (core.clone.impls.CloneI8.clone x)
}
def core.clone.CloneI16 : core.clone.Clone I16 := {
clone := fun x => ok (core.clone.impls.CloneI16.clone x)
}
def core.clone.CloneI32 : core.clone.Clone I32 := {
clone := fun x => ok (core.clone.impls.CloneI32.clone x)
}
def core.clone.CloneI64 : core.clone.Clone I64 := {
clone := fun x => ok (core.clone.impls.CloneI64.clone x)
}
def core.clone.CloneI128 : core.clone.Clone I128 := {
clone := fun x => ok (core.clone.impls.CloneI128.clone x)
}
end Primitives
|