1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
/- Arrays/slices -/
import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith
import Base.IList
import Base.Primitives.Scalar
import Base.Primitives.Range
import Base.Arith
import Base.Progress.Base
namespace Primitives
open Result Error
def Array (α : Type u) (n : Usize) := { l : List α // l.length = n.val }
instance (a : Type u) (n : Usize) : Arith.HasIntProp (Array a n) where
prop_ty := λ v => v.val.len = n.val
prop := λ ⟨ _, l ⟩ => by simp[Scalar.max, List.len_eq_length, *]
instance {α : Type u} {n : Usize} (p : Array α n → Prop) : Arith.HasIntProp (Subtype p) where
prop_ty := λ x => p x
prop := λ x => x.property
@[simp]
abbrev Array.length {α : Type u} {n : Usize} (v : Array α n) : Int := v.val.len
@[simp]
abbrev Array.v {α : Type u} {n : Usize} (v : Array α n) : List α := v.val
example {α: Type u} {n : Usize} (v : Array α n) : v.length ≤ Scalar.max ScalarTy.Usize := by
scalar_tac
def Array.make (α : Type u) (n : Usize) (init : List α) (hl : init.len = n.val := by decide) :
Array α n := ⟨ init, by simp [← List.len_eq_length]; apply hl ⟩
example : Array Int (Usize.ofInt 2) := Array.make Int (Usize.ofInt 2) [0, 1]
@[simp]
abbrev Array.index {α : Type u} {n : Usize} [Inhabited α] (v : Array α n) (i : Int) : α :=
v.val.index i
@[simp]
abbrev Array.slice {α : Type u} {n : Usize} [Inhabited α] (v : Array α n) (i j : Int) : List α :=
v.val.slice i j
def Array.index_shared (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Result α :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some x => ret x
-- For initialization
def Array.repeat (α : Type u) (n : Usize) (x : α) : Array α n :=
⟨ List.ireplicate n.val x, by have h := n.hmin; simp_all [Scalar.min] ⟩
@[pspec]
theorem Array.repeat_spec {α : Type u} (n : Usize) (x : α) :
∃ a, Array.repeat α n x = a ∧ a.val = List.ireplicate n.val x := by
simp [Array.repeat]
/- In the theorems below: we don't always need the `∃ ..`, but we use one
so that `progress` introduces an opaque variable and an equality. This
helps control the context.
-/
@[pspec]
theorem Array.index_shared_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize)
(hbound : i.val < v.length) :
∃ x, v.index_shared α n i = ret x ∧ x = v.val.index i.val := by
simp only [index_shared]
-- TODO: dependent rewrite
have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
simp [*]
-- This shouldn't be used
def Array.index_shared_back (α : Type u) (n : Usize) (v: Array α n) (i: Usize) (_: α) : Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
def Array.index_mut (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Result α :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some x => ret x
@[pspec]
theorem Array.index_mut_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize)
(hbound : i.val < v.length) :
∃ x, v.index_mut α n i = ret x ∧ x = v.val.index i.val := by
simp only [index_mut]
-- TODO: dependent rewrite
have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
simp [*]
def Array.index_mut_back (α : Type u) (n : Usize) (v: Array α n) (i: Usize) (x: α) : Result (Array α n) :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some _ =>
.ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
@[pspec]
theorem Array.index_mut_back_spec {α : Type u} {n : Usize} (v: Array α n) (i: Usize) (x : α)
(hbound : i.val < v.length) :
∃ nv, v.index_mut_back α n i x = ret nv ∧
nv.val = v.val.update i.val x
:= by
simp only [index_mut_back]
have h := List.indexOpt_bounds v.val i.val
split
. simp_all [length]; cases h <;> scalar_tac
. simp_all
def Slice (α : Type u) := { l : List α // l.length ≤ Usize.max }
instance (a : Type u) : Arith.HasIntProp (Slice a) where
prop_ty := λ v => 0 ≤ v.val.len ∧ v.val.len ≤ Scalar.max ScalarTy.Usize
prop := λ ⟨ _, l ⟩ => by simp[Scalar.max, List.len_eq_length, *]
instance {α : Type u} (p : Slice α → Prop) : Arith.HasIntProp (Subtype p) where
prop_ty := λ x => p x
prop := λ x => x.property
@[simp]
abbrev Slice.length {α : Type u} (v : Slice α) : Int := v.val.len
@[simp]
abbrev Slice.v {α : Type u} (v : Slice α) : List α := v.val
example {a: Type u} (v : Slice a) : v.length ≤ Scalar.max ScalarTy.Usize := by
scalar_tac
def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩
-- TODO: very annoying that the α is an explicit parameter
def Slice.len (α : Type u) (v : Slice α) : Usize :=
Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac)
@[simp]
theorem Slice.len_val {α : Type u} (v : Slice α) : (Slice.len α v).val = v.length :=
by rfl
@[simp]
abbrev Slice.index {α : Type u} [Inhabited α] (v: Slice α) (i: Int) : α :=
v.val.index i
@[simp]
abbrev Slice.slice {α : Type u} [Inhabited α] (s : Slice α) (i j : Int) : List α :=
s.val.slice i j
def Slice.index_shared (α : Type u) (v: Slice α) (i: Usize) : Result α :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some x => ret x
/- In the theorems below: we don't always need the `∃ ..`, but we use one
so that `progress` introduces an opaque variable and an equality. This
helps control the context.
-/
@[pspec]
theorem Slice.index_shared_spec {α : Type u} [Inhabited α] (v: Slice α) (i: Usize)
(hbound : i.val < v.length) :
∃ x, v.index_shared α i = ret x ∧ x = v.val.index i.val := by
simp only [index_shared]
-- TODO: dependent rewrite
have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
simp [*]
-- This shouldn't be used
def Slice.index_shared_back (α : Type u) (v: Slice α) (i: Usize) (_: α) : Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
def Slice.index_mut (α : Type u) (v: Slice α) (i: Usize) : Result α :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some x => ret x
@[pspec]
theorem Slice.index_mut_spec {α : Type u} [Inhabited α] (v: Slice α) (i: Usize)
(hbound : i.val < v.length) :
∃ x, v.index_mut α i = ret x ∧ x = v.val.index i.val := by
simp only [index_mut]
-- TODO: dependent rewrite
have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
simp [*]
def Slice.index_mut_back (α : Type u) (v: Slice α) (i: Usize) (x: α) : Result (Slice α) :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some _ =>
.ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩
@[pspec]
theorem Slice.index_mut_back_spec {α : Type u} (v: Slice α) (i: Usize) (x : α)
(hbound : i.val < v.length) :
∃ nv, v.index_mut_back α i x = ret nv ∧
nv.val = v.val.update i.val x
:= by
simp only [index_mut_back]
have h := List.indexOpt_bounds v.val i.val
split
. simp_all [length]; cases h <;> scalar_tac
. simp_all
/- Array to slice/subslices -/
/- We could make this function not use the `Result` type. By making it monadic, we
push the user to use the `Array.to_slice_shared_spec` spec theorem below (through the
`progress` tactic), meaning `Array.to_slice_shared` should be considered as opaque.
All what the spec theorem reveals is that the "representative" lists are the same. -/
def Array.to_slice_shared (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) :=
ret ⟨ v.val, by simp [← List.len_eq_length]; scalar_tac ⟩
@[pspec]
theorem Array.to_slice_shared_spec {α : Type u} {n : Usize} (v : Array α n) :
∃ s, to_slice_shared α n v = ret s ∧ v.val = s.val := by simp [to_slice_shared]
def Array.to_slice_mut (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) :=
to_slice_shared α n v
@[pspec]
theorem Array.to_slice_mut_spec {α : Type u} {n : Usize} (v : Array α n) :
∃ s, Array.to_slice_shared α n v = ret s ∧ v.val = s.val := to_slice_shared_spec v
def Array.to_slice_mut_back (α : Type u) (n : Usize) (_ : Array α n) (s : Slice α) : Result (Array α n) :=
if h: s.val.len = n.val then
ret ⟨ s.val, by simp [← List.len_eq_length, *] ⟩
else fail panic
@[pspec]
theorem Array.to_slice_mut_back_spec {α : Type u} {n : Usize} (a : Array α n) (ns : Slice α) (h : ns.val.len = n.val) :
∃ na, to_slice_mut_back α n a ns = ret na ∧ na.val = ns.val
:= by simp [to_slice_mut_back, *]
def Array.subslice_shared (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) :=
-- TODO: not completely sure here
if r.start.val < r.end_.val ∧ r.end_.val ≤ a.val.len then
ret ⟨ a.val.slice r.start.val r.end_.val,
by
simp [← List.len_eq_length]
have := a.val.slice_len_le r.start.val r.end_.val
scalar_tac ⟩
else
fail panic
@[pspec]
theorem Array.subslice_shared_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize)
(h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) :
∃ s, subslice_shared α n a r = ret s ∧
s.val = a.val.slice r.start.val r.end_.val ∧
(∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i))
:= by
simp [subslice_shared, *]
intro i _ _
have := List.index_slice r.start.val r.end_.val i a.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac)
simp [*]
def Array.subslice_mut (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) :=
Array.subslice_shared α n a r
@[pspec]
theorem Array.subslice_mut_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize)
(h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) :
∃ s, subslice_mut α n a r = ret s ∧
s.val = a.slice r.start.val r.end_.val ∧
(∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i))
:= subslice_shared_spec a r h0 h1
def Array.subslice_mut_back (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) (s : Slice α) : Result (Array α n) :=
-- TODO: not completely sure here
if h: r.start.val < r.end_.val ∧ r.end_.val ≤ a.length ∧ s.val.len = r.end_.val - r.start.val then
let s_beg := a.val.itake r.start.val
let s_end := a.val.idrop r.end_.val
have : s_beg.len = r.start.val := by
apply List.itake_len
. simp_all; scalar_tac
. scalar_tac
have : s_end.len = a.val.len - r.end_.val := by
apply List.idrop_len
. scalar_tac
. scalar_tac
let na := s_beg.append (s.val.append s_end)
have : na.len = a.val.len := by simp [*]
ret ⟨ na, by simp_all [← List.len_eq_length]; scalar_tac ⟩
else
fail panic
-- TODO: it is annoying to write `.val` everywhere. We could leverage coercions,
-- but: some symbols like `+` are already overloaded to be notations for monadic
-- operations/
-- We should introduce special symbols for the monadic arithmetic operations
-- (the use will never write those symbols directly).
@[pspec]
theorem Array.subslice_mut_back_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (s : Slice α)
(_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : s.length = r.end_.val - r.start.val) :
∃ na, subslice_mut_back α n a r s = ret na ∧
(∀ i, 0 ≤ i → i < r.start.val → na.index i = a.index i) ∧
(∀ i, r.start.val ≤ i → i < r.end_.val → na.index i = s.index (i - r.start.val)) ∧
(∀ i, r.end_.val ≤ i → i < n.val → na.index i = a.index i) := by
simp [subslice_mut_back, *]
have h := List.replace_slice_index r.start.val r.end_.val a.val s.val
(by scalar_tac) (by scalar_tac) (by scalar_tac) (by scalar_tac)
simp [List.replace_slice] at h
have ⟨ h0, h1, h2 ⟩ := h
clear h
split_conjs
. intro i _ _
have := h0 i (by int_tac) (by int_tac)
simp [*]
. intro i _ _
have := h1 i (by int_tac) (by int_tac)
simp [*]
. intro i _ _
have := h2 i (by int_tac) (by int_tac)
simp [*]
def Slice.subslice_shared (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) :=
-- TODO: not completely sure here
if r.start.val < r.end_.val ∧ r.end_.val ≤ s.length then
ret ⟨ s.val.slice r.start.val r.end_.val,
by
simp [← List.len_eq_length]
have := s.val.slice_len_le r.start.val r.end_.val
scalar_tac ⟩
else
fail panic
@[pspec]
theorem Slice.subslice_shared_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize)
(h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) :
∃ ns, subslice_shared α s r = ret ns ∧
ns.val = s.slice r.start.val r.end_.val ∧
(∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index i = s.index (r.start.val + i))
:= by
simp [subslice_shared, *]
intro i _ _
have := List.index_slice r.start.val r.end_.val i s.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac)
simp [*]
def Slice.subslice_mut (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) :=
Slice.subslice_shared α s r
@[pspec]
theorem Slice.subslice_mut_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize)
(h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) :
∃ ns, subslice_mut α s r = ret ns ∧
ns.val = s.slice r.start.val r.end_.val ∧
(∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index i = s.index (r.start.val + i))
:= subslice_shared_spec s r h0 h1
attribute [pp_dot] List.len List.length List.index -- use the dot notation when printing
set_option pp.coercions false -- do not print coercions with ↑ (this doesn't parse)
def Slice.subslice_mut_back (α : Type u) (s : Slice α) (r : Range Usize) (ss : Slice α) : Result (Slice α) :=
-- TODO: not completely sure here
if h: r.start.val < r.end_.val ∧ r.end_.val ≤ s.length ∧ ss.val.len = r.end_.val - r.start.val then
let s_beg := s.val.itake r.start.val
let s_end := s.val.idrop r.end_.val
have : s_beg.len = r.start.val := by
apply List.itake_len
. simp_all; scalar_tac
. scalar_tac
have : s_end.len = s.val.len - r.end_.val := by
apply List.idrop_len
. scalar_tac
. scalar_tac
let ns := s_beg.append (ss.val.append s_end)
have : ns.len = s.val.len := by simp [*]
ret ⟨ ns, by simp_all [← List.len_eq_length]; scalar_tac ⟩
else
fail panic
@[pspec]
theorem Slice.subslice_mut_back_spec {α : Type u} [Inhabited α] (a : Slice α) (r : Range Usize) (ss : Slice α)
(_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : ss.length = r.end_.val - r.start.val) :
∃ na, subslice_mut_back α a r ss = ret na ∧
(∀ i, 0 ≤ i → i < r.start.val → na.index i = a.index i) ∧
(∀ i, r.start.val ≤ i → i < r.end_.val → na.index i = ss.index (i - r.start.val)) ∧
(∀ i, r.end_.val ≤ i → i < a.length → na.index i = a.index i) := by
simp [subslice_mut_back, *]
have h := List.replace_slice_index r.start.val r.end_.val a.val ss.val
(by scalar_tac) (by scalar_tac) (by scalar_tac) (by scalar_tac)
simp [List.replace_slice, *] at h
have ⟨ h0, h1, h2 ⟩ := h
clear h
split_conjs
. intro i _ _
have := h0 i (by int_tac) (by int_tac)
simp [*]
. intro i _ _
have := h1 i (by int_tac) (by int_tac)
simp [*]
. intro i _ _
have := h2 i (by int_tac) (by int_tac)
simp [*]
end Primitives
|