1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
|
/- Complementary list functions and lemmas which operate on integers rather
than natural numbers. -/
import Std.Data.Int.Lemmas
import Base.Arith
import Base.Utils
namespace List
def len (ls : List α) : Int :=
match ls with
| [] => 0
| _ :: tl => 1 + len tl
@[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len]
@[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len]
theorem len_pos : 0 ≤ (ls : List α).len := by
induction ls <;> simp [*]
linarith
instance (a : Type u) : Arith.HasIntProp (List a) where
prop_ty := λ ls => 0 ≤ ls.len
prop := λ ls => ls.len_pos
-- Remark: if i < 0, then the result is none
def indexOpt (ls : List α) (i : Int) : Option α :=
match ls with
| [] => none
| hd :: tl => if i = 0 then some hd else indexOpt tl (i - 1)
@[simp] theorem indexOpt_nil : indexOpt ([] : List α) i = none := by simp [indexOpt]
@[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt]
@[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt]
-- Remark: if i < 0, then the result is the defaul element
def index [Inhabited α] (ls : List α) (i : Int) : α :=
match ls with
| [] => Inhabited.default
| x :: tl =>
if i = 0 then x else index tl (i - 1)
@[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index]
@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index]
theorem indexOpt_bounds (ls : List α) (i : Int) :
ls.indexOpt i = none ↔ i < 0 ∨ ls.len ≤ i :=
match ls with
| [] =>
have : ¬ (i < 0) → 0 ≤ i := by int_tac
by simp; tauto
| _ :: tl =>
have := indexOpt_bounds tl (i - 1)
if h: i = 0 then
by
simp [*];
int_tac
else by
simp [*]
constructor <;> intros <;>
casesm* _ ∨ _ <;> -- splits all the disjunctions
first | left; int_tac | right; int_tac
theorem indexOpt_eq_index [Inhabited α] (ls : List α) (i : Int) :
0 ≤ i →
i < ls.len →
ls.indexOpt i = some (ls.index i) :=
match ls with
| [] => by simp; intros; linarith
| hd :: tl =>
if h: i = 0 then
by simp [*]
else
have hi := indexOpt_eq_index tl (i - 1)
by simp [*]; intros; apply hi <;> int_tac
-- Remark: the list is unchanged if the index is not in bounds (in particular
-- if it is < 0)
def update (ls : List α) (i : Int) (y : α) : List α :=
match ls with
| [] => []
| x :: tl => if i = 0 then y :: tl else x :: update tl (i - 1) y
-- Remark: the whole list is dropped if the index is not in bounds (in particular
-- if it is < 0)
def idrop (i : Int) (ls : List α) : List α :=
match ls with
| [] => []
| x :: tl => if i = 0 then x :: tl else idrop (i - 1) tl
def itake (i : Int) (ls : List α) : List α :=
match ls with
| [] => []
| hd :: tl => if i = 0 then [] else hd :: itake (i - 1) tl
def slice (start end_ : Int) (ls : List α) : List α :=
(ls.idrop start).itake (end_ - start)
def replace_slice (start end_ : Int) (l nl : List α) : List α :=
let l_beg := l.itake start
let l_end := l.idrop end_
l_beg ++ nl ++ l_end
def allP {α : Type u} (l : List α) (p: α → Prop) : Prop :=
foldr (fun a r => p a ∧ r) True l
def pairwise_rel
{α : Type u} (rel : α → α → Prop) (l: List α) : Prop
:= match l with
| [] => True
| hd :: tl => allP tl (rel hd) ∧ pairwise_rel rel tl
section Lemmas
variable {α : Type u}
def ireplicate {α : Type u} (i : ℤ) (x : α) : List α :=
if i ≤ 0 then []
else x :: ireplicate (i - 1) x
termination_by ireplicate i x => i.toNat
decreasing_by
simp_wf
-- TODO: simplify this kind of proofs
simp at *
have : 0 ≤ i := by linarith
have : 1 ≤ i := by linarith
simp [Int.toNat_sub_of_le, *]
@[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update]
@[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update]
@[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update]
@[simp] theorem idrop_nil : idrop i ([] : List α) = [] := by simp [idrop]
@[simp] theorem idrop_zero : idrop 0 (ls : List α) = ls := by cases ls <;> simp [idrop]
@[simp] theorem idrop_nzero_cons (hne : i ≠ 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [*, idrop]
@[simp] theorem itake_nil : itake i ([] : List α) = [] := by simp [itake]
@[simp] theorem itake_zero : itake 0 (ls : List α) = [] := by cases ls <;> simp [itake]
@[simp] theorem itake_nzero_cons (hne : i ≠ 0) : itake i ((x :: tl) : List α) = x :: itake (i - 1) tl := by simp [*, itake]
@[simp] theorem slice_nil : slice i j ([] : List α) = [] := by simp [slice]
@[simp] theorem slice_zero : slice 0 0 (ls : List α) = [] := by cases ls <;> simp [slice]
@[simp] theorem ireplicate_zero : ireplicate 0 x = [] := by rw [ireplicate]; simp
@[simp] theorem ireplicate_nzero_cons (hne : 0 < i) : ireplicate i x = x :: ireplicate (i - 1) x := by
rw [ireplicate]; simp [*]; intro; linarith
@[simp]
theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : slice i j ((x :: tl) : List α) = slice (i - 1) (j - 1) tl :=
match tl with
| [] => by simp [slice]; simp [*]
| hd :: tl =>
if h: i - 1 = 0 then by
have : i = 1 := by int_tac
simp [*, slice]
else
have := slice_nzero_cons (i - 1) (j - 1) hd tl h
by
conv => lhs; simp [slice, *]
conv at this => lhs; simp [slice, *]
simp [*, slice]
@[simp]
theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) :
ireplicate l x = replicate l.toNat x :=
if hz: l = 0 then by
simp [*]
else by
have : 0 < l := by int_tac
have hr := ireplicate_replicate (l - 1) x (by int_tac)
simp [*]
have hl : l.toNat = .succ (l.toNat - 1) := by
cases hl: l.toNat <;> simp_all
conv => rhs; rw[hl]
termination_by ireplicate_replicate l x h => l.toNat
decreasing_by
simp_wf
-- TODO: simplify this kind of proofs
simp at *
have : 0 ≤ l := by linarith
have : 1 ≤ l := by linarith
simp [Int.toNat_sub_of_le, *]
@[simp]
theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) :
(ireplicate l x).len = l :=
if hz: l = 0 then by
simp [*]
else by
have : 0 < l := by int_tac
have hr := ireplicate_len (l - 1) x (by int_tac)
simp [*]
termination_by ireplicate_len l x h => l.toNat
decreasing_by
simp_wf
-- TODO: simplify this kind of proofs
simp at *
have : 0 ≤ l := by linarith
have : 1 ≤ l := by linarith
simp [Int.toNat_sub_of_le, *]
theorem len_eq_length (ls : List α) : ls.len = ls.length := by
induction ls
. rfl
. simp [*, Int.ofNat_succ, Int.add_comm]
@[simp] theorem len_append (l1 l2 : List α) : (l1 ++ l2).len = l1.len + l2.len := by
-- Remark: simp loops here because of the following rewritings:
-- @Nat.cast_add: ↑(List.length l1 + List.length l2) ==> ↑(List.length l1) + ↑(List.length l2)
-- Int.ofNat_add_ofNat: ↑(List.length l1) + ↑(List.length l2) ==> ↑(List.length l1 + List.length l2)
-- TODO: post an issue?
simp only [len_eq_length]
simp only [length_append]
simp only [Int.ofNat_add]
@[simp]
theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length = ls.length := by
revert i
induction ls <;> simp_all [length, update]
intro; split <;> simp [*]
@[simp]
theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by
simp [len_eq_length]
@[simp]
theorem len_map (ls : List α) (f : α → β) : (ls.map f).len = ls.len := by
simp [len_eq_length]
theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) :
l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
revert l1'
induction l1
. intro l1'; cases l1' <;> simp [*]
. intro l1'; cases l1' <;> simp_all; tauto
theorem right_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.length = l2'.length) :
l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
have := left_length_eq_append_eq l1 l2 l1' l2'
constructor <;> intro heq2 <;>
have : l1.length + l2.length = l1'.length + l2'.length := by
have : (l1 ++ l2).length = (l1' ++ l2').length := by simp [*]
simp only [length_append] at this
apply this
. simp [heq] at this
tauto
. tauto
theorem left_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.len = l1'.len) :
l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
simp [len_eq_length] at heq
apply left_length_eq_append_eq
assumption
theorem right_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.len = l2'.len) :
l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
simp [len_eq_length] at heq
apply right_length_eq_append_eq
assumption
@[simp]
theorem index_append_beg [Inhabited α] (i : Int) (l0 l1 : List α)
(_ : 0 ≤ i) (_ : i < l0.len) :
(l0 ++ l1).index i = l0.index i :=
match l0 with
| [] => by simp_all; int_tac
| hd :: tl =>
if hi : i = 0 then by simp_all
else by
have := index_append_beg (i - 1) tl l1 (by int_tac) (by simp_all; int_tac)
simp_all
@[simp]
theorem index_append_end [Inhabited α] (i : Int) (l0 l1 : List α)
(_ : l0.len ≤ i) (_ : i < l0.len + l1.len) :
(l0 ++ l1).index i = l1.index (i - l0.len) :=
match l0 with
| [] => by simp_all
| hd :: tl =>
have : ¬ i = 0 := by simp_all; int_tac
have := index_append_end (i - 1) tl l1 (by simp_all; int_tac) (by simp_all; int_tac)
-- TODO: canonize arith expressions
have : i - 1 - len tl = i - (1 + len tl) := by int_tac
by simp_all
open Arith in
@[simp] theorem idrop_eq_nil_of_le (hineq : ls.len ≤ i) : idrop i ls = [] := by
revert i
induction ls <;> simp [*]
rename_i hd tl hi
intro i hineq
if heq: i = 0 then
simp [*] at *
have := tl.len_pos
linarith
else
simp at hineq
have : 0 < i := by int_tac
simp [*]
apply hi
linarith
theorem idrop_len_le (i : Int) (ls : List α) : (ls.idrop i).len ≤ ls.len :=
match ls with
| [] => by simp
| hd :: tl =>
if h: i = 0 then by simp [*]
else
have := idrop_len_le (i - 1) tl
by simp [*]; linarith
@[simp]
theorem idrop_len (i : Int) (ls : List α) (_ : 0 ≤ i) (_ : i ≤ ls.len) :
(ls.idrop i).len = ls.len - i :=
match ls with
| [] => by simp_all; linarith
| hd :: tl =>
if h: i = 0 then by simp [*]
else
have := idrop_len (i - 1) tl (by int_tac) (by simp at *; int_tac)
by simp [*] at *; int_tac
theorem itake_len_le (i : Int) (ls : List α) : (ls.itake i).len ≤ ls.len :=
match ls with
| [] => by simp
| hd :: tl =>
if h: i = 0 then by simp [*]; int_tac
else
have := itake_len_le (i - 1) tl
by simp [*]
@[simp]
theorem itake_len (i : Int) (ls : List α) (_ : 0 ≤ i) (_ : i ≤ ls.len) : (ls.itake i).len = i :=
match ls with
| [] => by simp_all; int_tac
| hd :: tl =>
if h: i = 0 then by simp [*]
else
have := itake_len (i - 1) tl (by int_tac) (by simp at *; int_tac)
by simp [*]
theorem slice_len_le (i j : Int) (ls : List α) : (ls.slice i j).len ≤ ls.len := by
simp [slice]
have := ls.idrop_len_le i
have := (ls.idrop i).itake_len_le (j - i)
int_tac
@[simp]
theorem index_idrop [Inhabited α] (i : Int) (j : Int) (ls : List α)
(_ : 0 ≤ i) (_ : 0 ≤ j) (_ : i + j < ls.len) :
(ls.idrop i).index j = ls.index (i + j) :=
match ls with
| [] => by simp at *; int_tac
| hd :: tl =>
if h: i = 0 then by simp [*]
else by
have : ¬ i + j = 0 := by int_tac
simp [*]
-- TODO: rewriting rule: ¬ i = 0 → 0 ≤ i → 0 < i ?
have := index_idrop (i - 1) j tl (by int_tac) (by simp at *; int_tac) (by simp at *; int_tac)
-- TODO: canonize add/subs?
have : i - 1 + j = i + j - 1 := by int_tac
simp [*]
@[simp]
theorem index_itake [Inhabited α] (i : Int) (j : Int) (ls : List α)
(_ : 0 ≤ j) (_ : j < i) (_ : j < ls.len) :
(ls.itake i).index j = ls.index j :=
match ls with
| [] => by simp at *
| hd :: tl =>
have : ¬ 0 = i := by int_tac -- TODO: this is slightly annoying
if h: j = 0 then by simp [*] at *
else by
simp [*]
-- TODO: rewriting rule: ¬ i = 0 → 0 ≤ i → 0 < i ?
have := index_itake (i - 1) (j - 1) tl (by simp at *; int_tac) (by simp at *; int_tac) (by simp at *; int_tac)
simp [*]
@[simp]
theorem index_slice [Inhabited α] (i j k : Int) (ls : List α)
(_ : 0 ≤ i) (_ : j ≤ ls.len) (_ : 0 ≤ k) (_ : i + k < j) :
(ls.slice i j).index k = ls.index (i + k) :=
match ls with
| [] => by simp at *; int_tac
| hd :: tl =>
if h: i = 0 then by
simp [*, slice] at *
apply index_itake <;> simp_all
int_tac
else by
have : ¬ i + k = 0 := by int_tac
simp [*]
-- TODO: tactics simp_int_tac/simp_scalar_tac?
have := index_slice (i - 1) (j - 1) k tl (by simp at *; int_tac) (by simp at *; int_tac)
(by simp at *; int_tac) (by simp at *; int_tac)
have : (i - 1 + k) = (i + k - 1) := by int_tac -- TODO: canonize add/sub
simp [*]
@[simp]
theorem index_itake_append_beg [Inhabited α] (i j : Int) (l0 l1 : List α)
(_ : 0 ≤ j) (_ : j < i) (_ : i ≤ l0.len) :
((l0 ++ l1).itake i).index j = l0.index j :=
match l0 with
| [] => by
simp at *
int_tac
| hd :: tl =>
have : ¬ i = 0 := by simp at *; int_tac
if hj : j = 0 then by simp [*]
else by
have := index_itake_append_beg (i - 1) (j - 1) tl l1 (by simp_all; int_tac) (by simp_all) (by simp_all; int_tac)
simp [*]
@[simp]
theorem index_itake_append_end [Inhabited α] (i j : Int) (l0 l1 : List α)
(_ : l0.len ≤ j) (_ : j < i) (_ : i ≤ l0.len + l1.len) :
((l0 ++ l1).itake i).index j = l1.index (j - l0.len) :=
match l0 with
| [] => by
simp at *
have := index_itake i j l1 (by simp_all) (by simp_all) (by simp_all; int_tac)
simp [*]
| hd :: tl =>
have : ¬ i = 0 := by simp at *; int_tac
if hj : j = 0 then by simp_all; int_tac -- Contradiction
else by
have := index_itake_append_end (i - 1) (j - 1) tl l1 (by simp_all; int_tac) (by simp_all) (by simp_all; int_tac)
-- TODO: normalization of add/sub
have : j - 1 - len tl = j - (1 + len tl) := by int_tac
simp_all
@[simp]
theorem index_ne
{α : Type u} [Inhabited α] (l: List α) (i: ℤ) (j: ℤ) (x: α) :
0 ≤ i → i < l.len → 0 ≤ j → j < l.len → j ≠ i →
(l.update i x).index j = l.index j
:=
λ _ _ _ _ _ => match l with
| [] => by simp at *
| hd :: tl =>
if h: i = 0 then
have : j ≠ 0 := by scalar_tac
by simp [*]
else if h : j = 0 then
have : i ≠ 0 := by scalar_tac
by simp [*]
else
by
simp [*]
simp at *
apply index_ne <;> scalar_tac
@[simp]
theorem index_eq
{α : Type u} [Inhabited α] (l: List α) (i: ℤ) (x: α) :
0 ≤ i → i < l.len →
(l.update i x).index i = x
:=
fun _ _ => match l with
| [] => by simp at *; scalar_tac
| hd :: tl =>
if h: i = 0 then
by
simp [*]
else
by
simp [*]
simp at *
apply index_eq <;> scalar_tac
theorem update_map_eq {α : Type u} {β : Type v} (ls : List α) (i : Int) (x : α) (f : α → β) :
(ls.update i x).map f = (ls.map f).update i (f x) :=
match ls with
| [] => by simp
| hd :: tl =>
if h : i = 0 then by simp [*]
else
have hi := update_map_eq tl (i - 1) x f
by simp [*]
theorem len_flatten_update_eq {α : Type u} (ls : List (List α)) (i : Int) (x : List α)
(h0 : 0 ≤ i) (h1 : i < ls.len) :
(ls.update i x).flatten.len = ls.flatten.len + x.len - (ls.index i).len :=
match ls with
| [] => by simp at h1; int_tac
| hd :: tl => by
simp at h1
if h : i = 0 then simp [*]; int_tac
else
have hi := len_flatten_update_eq tl (i - 1) x (by int_tac) (by int_tac)
simp [*]
int_tac
@[simp]
theorem index_map_eq {α : Type u} {β : Type v} [Inhabited α] [Inhabited β] (ls : List α) (i : Int) (f : α → β)
(h0 : 0 ≤ i) (h1 : i < ls.len) :
(ls.map f).index i = f (ls.index i) :=
match ls with
| [] => by simp at h1; int_tac
| hd :: tl =>
if h : i = 0 then by
simp [*]
else
have hi := index_map_eq tl (i - 1) f (by int_tac) (by simp at h1; int_tac)
by
simp [*]
theorem replace_slice_index [Inhabited α] (start end_ : Int) (l nl : List α)
(_ : 0 ≤ start) (_ : start < end_) (_ : end_ ≤ l.len) (_ : nl.len = end_ - start) :
let l1 := l.replace_slice start end_ nl
(∀ i, 0 ≤ i → i < start → l1.index i = l.index i) ∧
(∀ i, start ≤ i → i < end_ → l1.index i = nl.index (i - start)) ∧
(∀ i, end_ ≤ i → i < l.len → l1.index i = l.index i)
:= by
-- let s_end := s.val ++ a.val.idrop r.end_.val
-- We need those assumptions everywhere
-- have : 0 ≤ start := by scalar_tac
have : start ≤ l.len := by int_tac
simp only [replace_slice]
split_conjs
. intro i _ _
-- Introducing exactly the assumptions we need to make the rewriting work
have : i < l.len := by int_tac
simp_all
. intro i _ _
have : (List.itake start l).len ≤ i := by simp_all
have : i < (List.itake start l).len + (nl ++ List.idrop end_ l).len := by
simp_all; int_tac
simp_all
. intro i _ _
have : 0 ≤ end_ := by scalar_tac
have : end_ ≤ l.len := by int_tac
have : (List.itake start l).len ≤ i := by simp_all; int_tac
have : i < (List.itake start l).len + (nl ++ List.idrop end_ l).len := by simp_all
simp_all
@[simp]
theorem allP_nil {α : Type u} (p: α → Prop) : allP [] p :=
by simp [allP, foldr]
@[simp]
theorem allP_cons {α : Type u} (hd: α) (tl : List α) (p: α → Prop) :
allP (hd :: tl) p ↔ p hd ∧ allP tl p
:= by simp [allP, foldr]
@[simp]
theorem pairwise_rel_nil {α : Type u} (rel : α → α → Prop) :
pairwise_rel rel []
:= by simp [pairwise_rel]
@[simp]
theorem pairwise_rel_cons {α : Type u} (rel : α → α → Prop) (hd: α) (tl: List α) :
pairwise_rel rel (hd :: tl) ↔ allP tl (rel hd) ∧ pairwise_rel rel tl
:= by simp [pairwise_rel]
end Lemmas
end List
|