blob: 93047a1b1982c379147cdf6a875d170b935b0cb8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
/- Complementary list functions and lemmas which operate on integers rather
than natural numbers. -/
import Std.Data.Int.Lemmas
import Base.Arith
namespace List
def len (ls : List α) : Int :=
match ls with
| [] => 0
| _ :: tl => 1 + len tl
@[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len]
@[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len]
theorem len_pos : 0 ≤ (ls : List α).len := by
induction ls <;> simp [*]
linarith
instance (a : Type u) : Arith.HasIntProp (List a) where
prop_ty := λ ls => 0 ≤ ls.len
prop := λ ls => ls.len_pos
-- Remark: if i < 0, then the result is none
def indexOpt (ls : List α) (i : Int) : Option α :=
match ls with
| [] => none
| hd :: tl => if i = 0 then some hd else indexOpt tl (i - 1)
@[simp] theorem indexOpt_nil : indexOpt ([] : List α) i = none := by simp [indexOpt]
@[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt]
@[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt]
-- Remark: if i < 0, then the result is the defaul element
def index [Inhabited α] (ls : List α) (i : Int) : α :=
match ls with
| [] => Inhabited.default
| x :: tl =>
if i = 0 then x else index tl (i - 1)
@[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index]
@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index]
theorem indexOpt_bounds (ls : List α) (i : Int) :
ls.indexOpt i = none ↔ i < 0 ∨ ls.len ≤ i :=
match ls with
| [] =>
have : ¬ (i < 0) → 0 ≤ i := by int_tac
by simp; tauto
| _ :: tl =>
have := indexOpt_bounds tl (i - 1)
if h: i = 0 then
by
simp [*];
int_tac
else by
simp [*]
constructor <;> intros <;>
casesm* _ ∨ _ <;> -- splits all the disjunctions
first | left; int_tac | right; int_tac
theorem indexOpt_eq_index [Inhabited α] (ls : List α) (i : Int) :
0 ≤ i →
i < ls.len →
ls.indexOpt i = some (ls.index i) :=
match ls with
| [] => by simp; intros; linarith
| hd :: tl =>
if h: i = 0 then
by simp [*]
else
have hi := indexOpt_eq_index tl (i - 1)
by simp [*]; intros; apply hi <;> int_tac
-- Remark: the list is unchanged if the index is not in bounds (in particular
-- if it is < 0)
def update (ls : List α) (i : Int) (y : α) : List α :=
match ls with
| [] => []
| x :: tl => if i = 0 then y :: tl else x :: update tl (i - 1) y
-- Remark: the whole list is dropped if the index is not in bounds (in particular
-- if it is < 0)
def idrop (i : Int) (ls : List α) : List α :=
match ls with
| [] => []
| x :: tl => if i = 0 then x :: tl else idrop (i - 1) tl
section Lemmas
variable {α : Type u}
@[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update]
@[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update]
@[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update]
@[simp] theorem idrop_nil : idrop i ([] : List α) = [] := by simp [idrop]
@[simp] theorem idrop_zero : idrop 0 (ls : List α) = ls := by cases ls <;> simp [idrop]
@[simp] theorem idrop_nzero_cons (hne : i ≠ 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [*, idrop]
theorem len_eq_length (ls : List α) : ls.len = ls.length := by
induction ls
. rfl
. simp [*, Int.ofNat_succ, Int.add_comm]
@[simp] theorem len_append (l1 l2 : List α) : (l1 ++ l2).len = l1.len + l2.len := by
-- Remark: simp loops here because of the following rewritings:
-- @Nat.cast_add: ↑(List.length l1 + List.length l2) ==> ↑(List.length l1) + ↑(List.length l2)
-- Int.ofNat_add_ofNat: ↑(List.length l1) + ↑(List.length l2) ==> ↑(List.length l1 + List.length l2)
-- TODO: post an issue?
simp only [len_eq_length]
simp only [length_append]
simp only [Int.ofNat_add]
@[simp]
theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length = ls.length := by
revert i
induction ls <;> simp_all [length, update]
intro; split <;> simp [*]
@[simp]
theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by
simp [len_eq_length]
@[simp]
theorem len_map (ls : List α) (f : α → β) : (ls.map f).len = ls.len := by
simp [len_eq_length]
theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) :
l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
revert l1'
induction l1
. intro l1'; cases l1' <;> simp [*]
. intro l1'; cases l1' <;> simp_all; tauto
theorem right_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.length = l2'.length) :
l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
have := left_length_eq_append_eq l1 l2 l1' l2'
constructor <;> intro heq2 <;>
have : l1.length + l2.length = l1'.length + l2'.length := by
have : (l1 ++ l2).length = (l1' ++ l2').length := by simp [*]
simp only [length_append] at this
apply this
. simp [heq] at this
tauto
. tauto
theorem left_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.len = l1'.len) :
l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
simp [len_eq_length] at heq
apply left_length_eq_append_eq
assumption
theorem right_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.len = l2'.len) :
l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by
simp [len_eq_length] at heq
apply right_length_eq_append_eq
assumption
open Arith in
theorem idrop_eq_nil_of_le (hineq : ls.len ≤ i) : idrop i ls = [] := by
revert i
induction ls <;> simp [*]
rename_i hd tl hi
intro i hineq
if heq: i = 0 then
simp [*] at *
have := tl.len_pos
linarith
else
simp at hineq
have : 0 < i := by int_tac
simp [*]
apply hi
linarith
@[simp]
theorem index_ne
{α : Type u} [Inhabited α] (l: List α) (i: ℤ) (j: ℤ) (x: α) :
0 ≤ i → i < l.len → 0 ≤ j → j < l.len → j ≠ i →
(l.update i x).index j = l.index j
:=
λ _ _ _ _ _ => match l with
| [] => by simp at *
| hd :: tl =>
if h: i = 0 then
have : j ≠ 0 := by scalar_tac
by simp [*]
else if h : j = 0 then
have : i ≠ 0 := by scalar_tac
by simp [*]
else
by
simp [*]
simp at *
apply index_ne <;> scalar_tac
@[simp]
theorem index_eq
{α : Type u} [Inhabited α] (l: List α) (i: ℤ) (x: α) :
0 ≤ i → i < l.len →
(l.update i x).index i = x
:=
fun _ _ => match l with
| [] => by simp at *; scalar_tac
| hd :: tl =>
if h: i = 0 then
by
simp [*]
else
by
simp [*]
simp at *
apply index_eq <;> scalar_tac
theorem update_map_eq {α : Type u} {β : Type v} (ls : List α) (i : Int) (x : α) (f : α → β) :
(ls.update i x).map f = (ls.map f).update i (f x) :=
match ls with
| [] => by simp
| hd :: tl =>
if h : i = 0 then by simp [*]
else
have hi := update_map_eq tl (i - 1) x f
by simp [*]
theorem len_flatten_update_eq {α : Type u} (ls : List (List α)) (i : Int) (x : List α)
(h0 : 0 ≤ i) (h1 : i < ls.len) :
(ls.update i x).flatten.len = ls.flatten.len + x.len - (ls.index i).len :=
match ls with
| [] => by simp at h1; int_tac
| hd :: tl => by
simp at h1
if h : i = 0 then simp [*]; int_tac
else
have hi := len_flatten_update_eq tl (i - 1) x (by int_tac) (by int_tac)
simp [*]
int_tac
@[simp]
theorem index_map_eq {α : Type u} {β : Type v} [Inhabited α] [Inhabited β] (ls : List α) (i : Int) (f : α → β)
(h0 : 0 ≤ i) (h1 : i < ls.len) :
(ls.map f).index i = f (ls.index i) :=
match ls with
| [] => by simp at h1; int_tac
| hd :: tl =>
if h : i = 0 then by
simp [*]
else
have hi := index_map_eq tl (i - 1) f (by int_tac) (by simp at h1; int_tac)
by
simp [*]
def allP {α : Type u} (l : List α) (p: α → Prop) : Prop :=
foldr (fun a r => p a ∧ r) True l
@[simp]
theorem allP_nil {α : Type u} (p: α → Prop) : allP [] p :=
by simp [allP, foldr]
@[simp]
theorem allP_cons {α : Type u} (hd: α) (tl : List α) (p: α → Prop) :
allP (hd :: tl) p ↔ p hd ∧ allP tl p
:= by simp [allP, foldr]
def pairwise_rel
{α : Type u} (rel : α → α → Prop) (l: List α) : Prop
:= match l with
| [] => True
| hd :: tl => allP tl (rel hd) ∧ pairwise_rel rel tl
@[simp]
theorem pairwise_rel_nil {α : Type u} (rel : α → α → Prop) :
pairwise_rel rel []
:= by simp [pairwise_rel]
@[simp]
theorem pairwise_rel_cons {α : Type u} (rel : α → α → Prop) (hd: α) (tl: List α) :
pairwise_rel rel (hd :: tl) ↔ allP tl (rel hd) ∧ pairwise_rel rel tl
:= by simp [pairwise_rel]
end Lemmas
end List
|