1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
|
import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Base.Utils
import Base.Diverge.Base
import Base.Diverge.ElabBase
namespace Diverge
/- Automating the generation of the encoding and the proofs so as to use nice
syntactic sugar. -/
syntax (name := divergentDef)
declModifiers "divergent" "def" declId ppIndent(optDeclSig) declVal : command
open Lean Elab Term Meta Primitives Lean.Meta
open Utils
def normalize_let_bindings := true
/- The following was copied from the `wfRecursion` function. -/
open WF in
-- TODO: use those
def UnitType := Expr.const ``PUnit [Level.succ .zero]
def UnitValue := Expr.const ``PUnit.unit [Level.succ .zero]
def mkProdType (x y : Expr) : MetaM Expr :=
mkAppM ``Prod #[x, y]
def mkProd (x y : Expr) : MetaM Expr :=
mkAppM ``Prod.mk #[x, y]
def mkInOutTy (x y z : Expr) : MetaM Expr := do
mkAppM ``FixII.mk_in_out_ty #[x, y, z]
-- Return the `a` in `Return a`
def getResultTy (ty : Expr) : MetaM Expr :=
ty.withApp fun f args => do
if ¬ f.isConstOf ``Result ∨ args.size ≠ 1 then
throwError "Invalid argument to getResultTy: {ty}"
else
pure (args.get! 0)
/- Deconstruct a sigma type.
For instance, deconstructs `(a : Type) × List a` into
`Type` and `λ a => List a`.
-/
def getSigmaTypes (ty : Expr) : MetaM (Expr × Expr) := do
ty.withApp fun f args => do
if ¬ f.isConstOf ``Sigma ∨ args.size ≠ 2 then
throwError "Invalid argument to getSigmaTypes: {ty}"
else
pure (args.get! 0, args.get! 1)
/- Make a sigma type.
`x` should be a variable, and `ty` and type which (might) uses `x`
-/
def mkSigmaType (x : Expr) (sty : Expr) : MetaM Expr := do
trace[Diverge.def.sigmas] "mkSigmaType: {x} {sty}"
let alpha ← inferType x
let beta ← mkLambdaFVars #[x] sty
trace[Diverge.def.sigmas] "mkSigmaType: ({alpha}) ({beta})"
mkAppOptM ``Sigma #[some alpha, some beta]
/- Generate a Sigma type from a list of *variables* (all the expressions
must be variables).
Example:
- xl = [(a:Type), (ls:List a), (i:Int)]
Generates:
`(a:Type) × (ls:List a) × (i:Int)`
-/
def mkSigmasType (xl : List Expr) : MetaM Expr :=
match xl with
| [] => do
trace[Diverge.def.sigmas] "mkSigmasType: []"
pure (Expr.const ``PUnit [Level.succ .zero])
| [x] => do
trace[Diverge.def.sigmas] "mkSigmasType: [{x}]"
let ty ← inferType x
pure ty
| x :: xl => do
trace[Diverge.def.sigmas] "mkSigmasType: [{x}::{xl}]"
let sty ← mkSigmasType xl
mkSigmaType x sty
/- Generate a product type from a list of *variables* (this is similar to `mkSigmas`).
Example:
- xl = [(ls:List a), (i:Int)]
Generates:
`List a × Int`
-/
def mkProdsType (xl : List Expr) : MetaM Expr :=
match xl with
| [] => do
trace[Diverge.def.prods] "mkProdsType: []"
pure (Expr.const ``PUnit [Level.succ .zero])
| [x] => do
trace[Diverge.def.prods] "mkProdsType: [{x}]"
let ty ← inferType x
pure ty
| x :: xl => do
trace[Diverge.def.prods] "mkProdsType: [{x}::{xl}]"
let ty ← inferType x
let xl_ty ← mkProdsType xl
mkAppM ``Prod #[ty, xl_ty]
/- Split the input arguments between the types and the "regular" arguments.
We do something simple: we treat an input argument as an
input type iff it appears in the type of the following arguments.
Note that what really matters is that we find the arguments which appear
in the output type.
Also, we stop at the first input that we treat as an
input type.
-/
def splitInputArgs (in_tys : Array Expr) (out_ty : Expr) : MetaM (Array Expr × Array Expr) := do
-- Look for the first parameter which appears in the subsequent parameters
let rec splitAux (in_tys : List Expr) : MetaM (HashSet FVarId × List Expr × List Expr) :=
match in_tys with
| [] => do
let fvars ← getFVarIds (← inferType out_ty)
pure (fvars, [], [])
| ty :: in_tys => do
let (fvars, in_tys, in_args) ← splitAux in_tys
-- Have we already found where to split between type variables/regular
-- variables?
if ¬ in_tys.isEmpty then
-- The fvars set is now useless: no need to update it anymore
pure (fvars, ty :: in_tys, in_args)
else
-- Check if ty appears in the set of free variables:
let ty_id := ty.fvarId!
if fvars.contains ty_id then
-- We must split here. Note that we don't need to update the fvars
-- set: it is not useful anymore
pure (fvars, [ty], in_args)
else
-- We must split later: update the fvars set
let fvars := fvars.insertMany (← getFVarIds (← inferType ty))
pure (fvars, [], ty :: in_args)
let (_, in_tys, in_args) ← splitAux in_tys.data
pure (Array.mk in_tys, Array.mk in_args)
/- Apply a lambda expression to some arguments, simplifying the lambdas -/
def applyLambdaToArgs (e : Expr) (xs : Array Expr) : MetaM Expr := do
lambdaTelescopeN e xs.size fun vars body =>
-- Create the substitution
let s : HashMap FVarId Expr := HashMap.ofList (List.zip (vars.toList.map Expr.fvarId!) xs.toList)
-- Substitute in the body
pure (body.replace fun e =>
match e with
| Expr.fvar fvarId => match s.find? fvarId with
| none => e
| some v => v
| _ => none)
/- Group a list of expressions into a dependent tuple.
Example:
xl = [`a : Type`, `ls : List a`]
returns:
`⟨ (a:Type), (ls: List a) ⟩`
We need the type argument because as the elements in the tuple are
"concrete", we can't in all generality figure out the type of the tuple.
Example:
`⟨ True, 3 ⟩ : (x : Bool) × (if x then Int else Unit)`
-/
def mkSigmasVal (ty : Expr) (xl : List Expr) : MetaM Expr :=
match xl with
| [] => do
trace[Diverge.def.sigmas] "mkSigmasVal: []"
pure (Expr.const ``PUnit.unit [Level.succ .zero])
| [x] => do
trace[Diverge.def.sigmas] "mkSigmasVal: [{x}]"
pure x
| fst :: xl => do
trace[Diverge.def.sigmas] "mkSigmasVal: [{fst}::{xl}]"
-- Deconstruct the type
let (alpha, beta) ← getSigmaTypes ty
-- Compute the "second" field
-- Specialize beta for fst
let nty ← applyLambdaToArgs beta #[fst]
-- Recursive call
let snd ← mkSigmasVal nty xl
-- Put everything together
trace[Diverge.def.sigmas] "mkSigmasVal:\n{alpha}\n{beta}\n{fst}\n{snd}"
mkAppOptM ``Sigma.mk #[some alpha, some beta, some fst, some snd]
/- Group a list of expressions into a (non-dependent) tuple -/
def mkProdsVal (xl : List Expr) : MetaM Expr :=
match xl with
| [] =>
pure (Expr.const ``PUnit.unit [Level.succ .zero])
| [x] => do
pure x
| x :: xl => do
let xl ← mkProdsVal xl
mkAppM ``Prod.mk #[x, xl]
def mkAnonymous (s : String) (i : Nat) : Name :=
.num (.str .anonymous s) i
/- Given a list of values `[x0:ty0, ..., xn:ty1]`, where every `xi` might use the previous
`xj` (j < i) and a value `out` which uses `x0`, ..., `xn`, generate the following
expression:
```
fun x:((x0:ty0) × ... × (xn:tyn) => -- **Dependent** tuple
match x with
| (x0, ..., xn) => out
```
The `index` parameter is used for naming purposes: we use it to numerotate the
bound variables that we introduce.
We use this function to currify functions (the function bodies given to the
fixed-point operator must be unary functions).
Example:
========
- xl = `[a:Type, ls:List a, i:Int]`
- out = `a`
- index = 0
generates (getting rid of most of the syntactic sugar):
```
λ scrut0 => match scrut0 with
| Sigma.mk x scrut1 =>
match scrut1 with
| Sigma.mk ls i =>
a
```
-/
partial def mkSigmasMatch (xl : List Expr) (out : Expr) (index : Nat := 0) : MetaM Expr :=
match xl with
| [] => do
-- This would be unexpected
throwError "mkSigmasMatch: empty list of input parameters"
| [x] => do
-- In the example given for the explanations: this is the inner match case
trace[Diverge.def.sigmas] "mkSigmasMatch: [{x}]"
mkLambdaFVars #[x] out
| fst :: xl => do
/- In the example given for the explanations: this is the outer match case
Remark: for the naming purposes, we use the same convention as for the
fields and parameters in `Sigma.casesOn` and `Sigma.mk` (looking at
those definitions might help)
We want to build the match expression:
```
λ scrut =>
match scrut with
| Sigma.mk x ... -- the hole is given by a recursive call on the tail
``` -/
trace[Diverge.def.sigmas] "mkSigmasMatch: [{fst}::{xl}]"
let alpha ← inferType fst
let snd_ty ← mkSigmasType xl
let beta ← mkLambdaFVars #[fst] snd_ty
let snd ← mkSigmasMatch xl out (index + 1)
let mk ← mkLambdaFVars #[fst] snd
-- Introduce the "scrut" variable
let scrut_ty ← mkSigmaType fst snd_ty
withLocalDeclD (mkAnonymous "scrut" index) scrut_ty fun scrut => do
trace[Diverge.def.sigmas] "mkSigmasMatch: scrut: ({scrut}) : ({← inferType scrut})"
-- TODO: make the computation of the motive more efficient
let motive ← do
let out_ty ← inferType out
match out_ty with
| .sort _ | .lit _ | .const .. =>
-- The type of the motive doesn't depend on the scrutinee
mkLambdaFVars #[scrut] out_ty
| _ =>
-- The type of the motive *may* depend on the scrutinee
-- TODO: make this more efficient (we could change the output type of
-- mkSigmasMatch
mkSigmasMatch (fst :: xl) out_ty
-- The final expression: putting everything together
trace[Diverge.def.sigmas] "mkSigmasMatch:\n ({alpha})\n ({beta})\n ({motive})\n ({scrut})\n ({mk})"
let sm ← mkAppOptM ``Sigma.casesOn #[some alpha, some beta, some motive, some scrut, some mk]
-- Abstracting the "scrut" variable
let sm ← mkLambdaFVars #[scrut] sm
trace[Diverge.def.sigmas] "mkSigmasMatch: sm: {sm}"
pure sm
/- This is similar to `mkSigmasMatch`, but with non-dependent tuples
Remark: factor out with `mkSigmasMatch`? This is extremely similar.
-/
partial def mkProdsMatch (xl : List Expr) (out : Expr) (index : Nat := 0) : MetaM Expr :=
match xl with
| [] => do
-- This would be unexpected
throwError "mkProdsMatch: empty list of input parameters"
| [x] => do
-- In the example given for the explanations: this is the inner match case
trace[Diverge.def.prods] "mkProdsMatch: [{x}]"
mkLambdaFVars #[x] out
| fst :: xl => do
trace[Diverge.def.prods] "mkProdsMatch: [{fst}::{xl}]"
let alpha ← inferType fst
let beta ← mkProdsType xl
let snd ← mkProdsMatch xl out (index + 1)
let mk ← mkLambdaFVars #[fst] snd
-- Introduce the "scrut" variable
let scrut_ty ← mkProdType alpha beta
withLocalDeclD (mkAnonymous "scrut" index) scrut_ty fun scrut => do
trace[Diverge.def.prods] "mkProdsMatch: scrut: ({scrut}) : ({← inferType scrut})"
-- TODO: make the computation of the motive more efficient
let motive ← do
let out_ty ← inferType out
mkLambdaFVars #[scrut] out_ty
-- The final expression: putting everything together
trace[Diverge.def.prods] "mkProdsMatch:\n ({alpha})\n ({beta})\n ({motive})\n ({scrut})\n ({mk})"
let sm ← mkAppOptM ``Prod.casesOn #[some alpha, some beta, some motive, some scrut, some mk]
-- Abstracting the "scrut" variable
let sm ← mkLambdaFVars #[scrut] sm
trace[Diverge.def.prods] "mkProdsMatch: sm: {sm}"
pure sm
/- Same as `mkSigmasMatch` but also accepts an empty list of inputs, in which case
it generates the expression:
```
λ () => e
``` -/
def mkSigmasMatchOrUnit (xl : List Expr) (out : Expr) : MetaM Expr :=
if xl.isEmpty then do
let scrut_ty := Expr.const ``PUnit [Level.succ .zero]
withLocalDeclD (mkAnonymous "scrut" 0) scrut_ty fun scrut => do
mkLambdaFVars #[scrut] out
else
mkSigmasMatch xl out
/- Same as `mkProdsMatch` but also accepts an empty list of inputs, in which case
it generates the expression:
```
λ () => e
``` -/
def mkProdsMatchOrUnit (xl : List Expr) (out : Expr) : MetaM Expr :=
if xl.isEmpty then do
let scrut_ty := Expr.const ``PUnit [Level.succ .zero]
withLocalDeclD (mkAnonymous "scrut" 0) scrut_ty fun scrut => do
mkLambdaFVars #[scrut] out
else
mkProdsMatch xl out
/- Small tests for list_nth: give a model of what `mkSigmasMatch` should generate -/
private def list_nth_out_ty_inner (a :Type) (scrut1: @Sigma (List a) (fun (_ls : List a) => Int)) :=
@Sigma.casesOn (List a)
(fun (_ls : List a) => Int)
(fun (_scrut1:@Sigma (List a) (fun (_ls : List a) => Int)) => Type)
scrut1
(fun (_ls : List a) (_i : Int) => Primitives.Result a)
private def list_nth_out_ty_outer (scrut0 : @Sigma (Type) (fun (a:Type) =>
@Sigma (List a) (fun (_ls : List a) => Int))) :=
@Sigma.casesOn (Type)
(fun (a:Type) => @Sigma (List a) (fun (_ls : List a) => Int))
(fun (_scrut0:@Sigma (Type) (fun (a:Type) => @Sigma (List a) (fun (_ls : List a) => Int))) => Type)
scrut0
(fun (a : Type) (scrut1: @Sigma (List a) (fun (_ls : List a) => Int)) =>
list_nth_out_ty_inner a scrut1)
/- -/
-- Return the expression: `Fin n`
-- TODO: use more
def mkFin (n : Nat) : Expr :=
mkAppN (.const ``Fin []) #[.lit (.natVal n)]
-- Return the expression: `i : Fin n`
def mkFinVal (n i : Nat) : MetaM Expr := do
let n_lit : Expr := .lit (.natVal (n - 1))
let i_lit : Expr := .lit (.natVal i)
mkAppOptM ``Fin.ofNat #[.some n_lit, .some i_lit]
/- Information about the type of a function in a declaration group.
In the comments about the fields, we take as example the
`list_nth (α : Type) (ls : List α) (i : Int) : Result α` function.
-/
structure TypeInfo where
/- The total number of input arguments.
For list_nth: 3
-/
total_num_args : ℕ
/- The number of type parameters (they should be a prefix of the input arguments).
For `list_nth`: 1
-/
num_params : ℕ
/- The type of the dependent tuple grouping the type parameters.
For `list_nth`: `Type`
-/
params_ty : Expr
/- The type of the tuple grouping the input values. This is a function taking
as input a value of type `params_ty`.
For `list_nth`: `λ a => List a × Int`
-/
in_ty : Expr
/- The output type, without the `Return`. This is a function taking
as input a value of type `params_ty`.
For `list_nth`: `λ a => a`
-/
out_ty : Expr
def mkInOutTyFromTypeInfo (info : TypeInfo) : MetaM Expr := do
mkInOutTy info.params_ty info.in_ty info.out_ty
instance : Inhabited TypeInfo :=
{ default := { total_num_args := 0, num_params := 0, params_ty := UnitType,
in_ty := UnitType, out_ty := UnitType } }
instance : ToMessageData TypeInfo :=
⟨ λ ⟨ total_num_args, num_params, params_ty, in_ty, out_ty ⟩ =>
f!"\{ total_num_args: {total_num_args}, num_params: {num_params}, params_ty: {params_ty}, in_ty: {in_ty}, out_ty: {out_ty} }}"
⟩
/- Generate and declare as individual definitions the bodies for the individual funcions:
- replace the recursive calls with calls to the continutation `k`
- make those bodies take one single dependent tuple as input
We name the declarations: "[original_name].body".
We return the new declarations.
-/
def mkDeclareUnaryBodies (grLvlParams : List Name) (kk_var : Expr)
(paramInOutTys : Array TypeInfo) (preDefs : Array PreDefinition) :
MetaM (Array Expr) := do
let grSize := preDefs.size
/- Compute the map from name to (index, type info).
Remark: the continuation has an indexed type; we use the index (a finite number of
type `Fin`) to control which function we call at the recursive call site. -/
let nameToInfo : HashMap Name (Nat × TypeInfo) :=
let bl := preDefs.mapIdx fun i d =>
(d.declName, (i.val, paramInOutTys.get! i.val))
HashMap.ofList bl.toList
trace[Diverge.def.genBody] "nameToId: {nameToInfo.toList}"
-- Auxiliary function to explore the function bodies and replace the
-- recursive calls
let visit_e (i : Nat) (e : Expr) : MetaM Expr := do
trace[Diverge.def.genBody.visit] "visiting expression (dept: {i}): {e}"
let ne ← do
match e with
| .app .. => do
e.withApp fun f args => do
trace[Diverge.def.genBody.visit] "this is an app: {f} {args}"
-- Check if this is a recursive call
if f.isConst then
let name := f.constName!
match nameToInfo.find? name with
| none => pure e
| some (id, type_info) =>
trace[Diverge.def.genBody.visit] "this is a recursive call"
-- This is a recursive call: replace it
-- Compute the index
let i ← mkFinVal grSize id
-- It can happen that there are no input values given to the
-- recursive calls, and only type parameters.
let num_args := args.size
if num_args ≠ type_info.total_num_args ∧ num_args ≠ type_info.num_params then
throwError "Invalid number of arguments for the recursive call: {e}"
-- Split the arguments, and put them in two tuples (the first
-- one is a dependent tuple)
let (param_args, args) := args.toList.splitAt type_info.num_params
trace[Diverge.def.genBody.visit] "param_args: {param_args}, args: {args}"
let param_args ← mkSigmasVal type_info.params_ty param_args
-- Check if there are input values
if num_args = type_info.total_num_args then do
trace[Diverge.def.genBody.visit] "Recursive call with input values"
let args ← mkProdsVal args
mkAppM' kk_var #[i, param_args, args]
else do
trace[Diverge.def.genBody.visit] "Recursive call without input values"
mkAppM' kk_var #[i, param_args]
else
-- Not a recursive call: do nothing
pure e
| .const name _ =>
/- This might refer to the one of the top-level functions if we use
it without arguments (if we give it to a higher-order
function for instance) and there are actually no type parameters.
-/
if (nameToInfo.find? name).isSome then do
-- Checking the type information
match nameToInfo.find? name with
| none => pure e
| some (id, type_info) =>
trace[Diverge.def.genBody.visit] "this is a recursive call"
-- This is a recursive call: replace it
-- Compute the index
let i ← mkFinVal grSize id
-- Check that there are no type parameters
if type_info.num_params ≠ 0 then throwError "mkUnaryBodies: a recursive call was not eliminated"
-- Introduce the call to the continuation
let param_args ← mkSigmasVal type_info.params_ty []
mkAppM' kk_var #[i, param_args]
else pure e
| _ => pure e
trace[Diverge.def.genBody.visit] "done with expression (depth: {i}): {e}"
pure ne
-- Explore the bodies
preDefs.mapM fun preDef => do
-- Replace the recursive calls
trace[Diverge.def.genBody] "About to replace recursive calls in {preDef.declName}"
let body ← mapVisit visit_e preDef.value
trace[Diverge.def.genBody] "Body after replacement of the recursive calls: {body}"
-- Currify the function by grouping the arguments into dependent tuples
-- (over which we match to retrieve the individual arguments).
lambdaTelescope body fun args body => do
-- Split the arguments between the type parameters and the "regular" inputs
let (_, type_info) := nameToInfo.find! preDef.declName
let (param_args, args) := args.toList.splitAt type_info.num_params
let body ← mkProdsMatchOrUnit args body
trace[Diverge.def.genBody] "Body after mkProdsMatchOrUnit: {body}"
let body ← mkSigmasMatchOrUnit param_args body
trace[Diverge.def.genBody] "Body after mkSigmasMatchOrUnit: {body}"
-- Add the declaration
let value ← mkLambdaFVars #[kk_var] body
trace[Diverge.def.genBody] "Body after abstracting kk: {value}"
let name := preDef.declName.append "body"
let levelParams := grLvlParams
let decl := Declaration.defnDecl {
name := name
levelParams := levelParams
type := ← inferType value -- TODO: change the type
value := value
hints := ReducibilityHints.regular (getMaxHeight (← getEnv) value + 1)
safety := .safe
all := [name]
}
trace[Diverge.def.genBody] "About to add decl"
addDecl decl
trace[Diverge.def] "individual body of {preDef.declName}: {body}"
-- Return the constant
let body := Lean.mkConst name (levelParams.map .param)
trace[Diverge.def] "individual body (after decl): {body}"
pure body
/- Generate a unique function body from the bodies of the mutually recursive group,
and add it as a declaration in the context.
We return the list of bodies (of type `FixI.Funs ...`) and the mutually recursive body.
-/
def mkDeclareMutRecBody (grName : Name) (grLvlParams : List Name)
(kk_var i_var : Expr)
(param_ty in_ty out_ty : Expr) (paramInOutTys : Array TypeInfo)
(bodies : Array Expr) : MetaM (Expr × Expr) := do
-- Generate the body
let grSize := bodies.size
let finTypeExpr := mkFin grSize
-- TODO: not very clean
let paramInOutTyType ← do
let info := paramInOutTys.get! 0
inferType (← mkInOutTyFromTypeInfo info)
let rec mkFuns (paramInOutTys : List TypeInfo) (bl : List Expr) : MetaM Expr :=
match paramInOutTys, bl with
| [], [] =>
mkAppOptM ``FixII.Funs.Nil #[finTypeExpr, param_ty, in_ty, out_ty]
| info :: paramInOutTys, b :: bl => do
let pty := info.params_ty
let ity := info.in_ty
let oty := info.out_ty
-- Retrieving ity and oty - this is not very clean
let paramInOutTysExpr ← mkListLit paramInOutTyType
(← paramInOutTys.mapM mkInOutTyFromTypeInfo)
let fl ← mkFuns paramInOutTys bl
mkAppOptM ``FixII.Funs.Cons #[finTypeExpr, param_ty, in_ty, out_ty, pty, ity, oty, paramInOutTysExpr, b, fl]
| _, _ => throwError "mkDeclareMutRecBody: `tys` and `bodies` don't have the same length"
let bodyFuns ← mkFuns paramInOutTys.toList bodies.toList
-- Wrap in `get_fun`
let body ← mkAppM ``FixII.get_fun #[bodyFuns, i_var, kk_var]
-- Add the index `i` and the continuation `k` as a variables
let body ← mkLambdaFVars #[kk_var, i_var] body
trace[Diverge.def] "mkDeclareMutRecBody: body: {body}"
-- Add the declaration
let name := grName.append "mut_rec_body"
let levelParams := grLvlParams
let decl := Declaration.defnDecl {
name := name
levelParams := levelParams
type := ← inferType body
value := body
hints := ReducibilityHints.regular (getMaxHeight (← getEnv) body + 1)
safety := .safe
all := [name]
}
addDecl decl
-- Return the bodies and the constant
pure (bodyFuns, Lean.mkConst name (levelParams.map .param))
def isCasesExpr (e : Expr) : MetaM Bool := do
let e := e.getAppFn
if e.isConst then
return isCasesOnRecursor (← getEnv) e.constName
else return false
structure MatchInfo where
matcherName : Name
matcherLevels : Array Level
params : Array Expr
motive : Expr
scruts : Array Expr
branchesNumParams : Array Nat
branches : Array Expr
instance : ToMessageData MatchInfo where
-- This is not a very clean formatting, but we don't need more
toMessageData := fun me => m!"\n- matcherName: {me.matcherName}\n- params: {me.params}\n- motive: {me.motive}\n- scruts: {me.scruts}\n- branchesNumParams: {me.branchesNumParams}\n- branches: {me.branches}"
/- Small helper: prove that an expression which doesn't use the continuation `kk`
is valid, and return the proof. -/
def proveNoKExprIsValid (k_var : Expr) (e : Expr) : MetaM Expr := do
trace[Diverge.def.valid] "proveNoKExprIsValid: {e}"
let eIsValid ← mkAppM ``FixII.is_valid_p_same #[k_var, e]
trace[Diverge.def.valid] "proveNoKExprIsValid: result:\n{eIsValid}:\n{← inferType eIsValid}"
pure eIsValid
mutual
/- Prove that an expression is valid, and return the proof.
More precisely, if `e` is an expression which potentially uses the continution
`kk`, return an expression of type:
```
is_valid_p k (λ kk => e)
```
-/
partial def proveExprIsValid (k_var kk_var : Expr) (e : Expr) : MetaM Expr := do
trace[Diverge.def.valid] "proveExprIsValid: {e}"
-- Normalize to eliminate the lambdas - TODO: this is slightly dangerous.
let e ← do
if e.isLet ∧ normalize_let_bindings then do
let updt_config (config : Lean.Meta.Config) :=
{ config with transparency := .reducible }
let e ← withConfig updt_config (whnf e)
trace[Diverge.def.valid] "e (after normalization): {e}"
pure e
else pure e
match e with
| .const _ _ => throwError "Unimplemented" -- Shouldn't get there?
| .bvar _
| .fvar _
| .lit _
| .mvar _
| .sort _ => throwError "Unreachable"
| .lam .. => throwError "Unimplemented" -- TODO
| .forallE .. => throwError "Unreachable" -- Shouldn't get there
| .letE .. => do
-- Remark: this branch is not taken if we normalize the expressions (above)
-- Telescope all the let-bindings (remark: this also telescopes the lambdas)
lambdaLetTelescope e fun xs body => do
-- Note that we don't visit the bound values: there shouldn't be
-- recursive calls, lambda expressions, etc. inside
-- Prove that the body is valid
let isValid ← proveExprIsValid k_var kk_var body
-- Add the let-bindings around.
-- Rem.: the let-binding should be *inside* the `is_valid_p`, not outside,
-- but because it reduces in the end it doesn't matter. More precisely:
-- `P (let x := v in y)` and `let x := v in P y` reduce to the same expression.
mkLambdaFVars xs isValid (usedLetOnly := false)
| .mdata _ b => proveExprIsValid k_var kk_var b
| .proj _ _ _ =>
-- The projection shouldn't use the continuation
proveNoKExprIsValid k_var e
| .app .. =>
e.withApp fun f args => do
proveAppIsValid k_var kk_var e f args
partial def proveAppIsValid (k_var kk_var : Expr) (e : Expr) (f : Expr) (args : Array Expr): MetaM Expr := do
trace[Diverge.def.valid] "proveAppIsValid: {e}\nDecomposed: {f} {args}"
/- There are several cases: first, check if this is a match/if
Check if the expression is a (dependent) if then else.
We treat the if then else expressions differently from the other matches,
and have dedicated theorems for them. -/
let isIte := e.isIte
if isIte || e.isDIte then do
e.withApp fun f args => do
trace[Diverge.def.valid] "ite/dite: {f}:\n{args}"
if args.size ≠ 5 then
throwError "Wrong number of parameters for {f}: {args}"
let cond := args.get! 1
let dec := args.get! 2
-- Prove that the branches are valid
let br0 := args.get! 3
let br1 := args.get! 4
let proveBranchValid (br : Expr) : MetaM Expr :=
if isIte then proveExprIsValid k_var kk_var br
else do
-- There is a lambda
lambdaOne br fun x br => do
let brValid ← proveExprIsValid k_var kk_var br
mkLambdaFVars #[x] brValid
let br0Valid ← proveBranchValid br0
let br1Valid ← proveBranchValid br1
let const := if isIte then ``FixII.is_valid_p_ite else ``FixII.is_valid_p_dite
let eIsValid ←
mkAppOptM const #[none, none, none, none, none,
some k_var, some cond, some dec, none, none,
some br0Valid, some br1Valid]
trace[Diverge.def.valid] "ite/dite: result:\n{eIsValid}:\n{← inferType eIsValid}"
pure eIsValid
/- Check if the expression is a match (this case is for when the elaborator
introduces auxiliary definitions to hide the match behind syntactic
sugar): -/
else if let some me := ← matchMatcherApp? e then do
trace[Diverge.def.valid]
"matcherApp:
- params: {me.params}
- motive: {me.motive}
- discrs: {me.discrs}
- altNumParams: {me.altNumParams}
- alts: {me.alts}
- remaining: {me.remaining}"
-- matchMatcherApp does all the work for us: we simply need to gather
-- the information and call the auxiliary helper `proveMatchIsValid`
if me.remaining.size ≠ 0 then
throwError "MatcherApp: non empty remaining array: {me.remaining}"
let me : MatchInfo := {
matcherName := me.matcherName
matcherLevels := me.matcherLevels
params := me.params
motive := me.motive
scruts := me.discrs
branchesNumParams := me.altNumParams
branches := me.alts
}
proveMatchIsValid k_var kk_var me
/- Check if the expression is a raw match (this case is for when the expression
is a direct call to the primitive `casesOn` function, without syntactic sugar).
We have to check this case because functions like `mkSigmasMatch`, which we
use to currify function bodies, introduce such raw matches. -/
else if ← isCasesExpr f then do
trace[Diverge.def.valid] "rawMatch: {e}"
/- Deconstruct the match, and call the auxiliary helper `proveMatchIsValid`.
The casesOn definition is always of the following shape:
- input parameters (implicit parameters)
- motive (implicit), -- the motive gives the return type of the match
- scrutinee (explicit)
- branches (explicit).
In particular, we notice that the scrutinee is the first *explicit*
parameter - this is how we spot it.
-/
let matcherName := f.constName!
let matcherLevels := f.constLevels!.toArray
-- Find the first explicit parameter: this is the scrutinee
forallTelescope (← inferType f) fun xs _ => do
let rec findFirstExplicit (i : Nat) : MetaM Nat := do
if i ≥ xs.size then throwError "Unexpected: could not find an explicit parameter"
else
let x := xs.get! i
let xFVarId := x.fvarId!
let localDecl ← xFVarId.getDecl
match localDecl.binderInfo with
| .default => pure i
| _ => findFirstExplicit (i + 1)
let scrutIdx ← findFirstExplicit 0
-- Split the arguments
let params := args.extract 0 (scrutIdx - 1)
let motive := args.get! (scrutIdx - 1)
let scrut := args.get! scrutIdx
let branches := args.extract (scrutIdx + 1) args.size
/- Compute the number of parameters for the branches: for this we use
the type of the uninstantiated casesOn constant (we can't just
destruct the lambdas in the branch expressions because the result
of a match might be a lambda expression). -/
let branchesNumParams : Array Nat ← do
let env ← getEnv
let decl := env.constants.find! matcherName
let ty := decl.type
forallTelescope ty fun xs _ => do
let xs := xs.extract (scrutIdx + 1) xs.size
xs.mapM fun x => do
let xty ← inferType x
forallTelescope xty fun ys _ => do
pure ys.size
let me : MatchInfo := {
matcherName,
matcherLevels,
params,
motive,
scruts := #[scrut],
branchesNumParams,
branches,
}
proveMatchIsValid k_var kk_var me
-- Check if this is a monadic let-binding
else if f.isConstOf ``Bind.bind then do
trace[Diverge.def.valid] "bind:\n{args}"
-- We simply need to prove that the subexpressions are valid, and call
-- the appropriate lemma.
let x := args.get! 4
let y := args.get! 5
-- Prove that the subexpressions are valid
let xValid ← proveExprIsValid k_var kk_var x
trace[Diverge.def.valid] "bind: xValid:\n{xValid}:\n{← inferType xValid}"
let yValid ← do
-- This is a lambda expression
lambdaOne y fun x y => do
trace[Diverge.def.valid] "bind: y: {y}"
let yValid ← proveExprIsValid k_var kk_var y
trace[Diverge.def.valid] "bind: yValid (no forall): {yValid}"
trace[Diverge.def.valid] "bind: yValid: x: {x}"
let yValid ← mkLambdaFVars #[x] yValid
trace[Diverge.def.valid] "bind: yValid (forall): {yValid}: {← inferType yValid}"
pure yValid
-- Put everything together
trace[Diverge.def.valid] "bind:\n- xValid: {xValid}: {← inferType xValid}\n- yValid: {yValid}: {← inferType yValid}"
mkAppM ``FixII.is_valid_p_bind #[xValid, yValid]
-- Check if this is a recursive call, i.e., a call to the continuation `kk`
else if f.isFVarOf kk_var.fvarId! then do
trace[Diverge.def.valid] "rec: args: \n{args}"
if args.size ≠ 3 then throwError "Recursive call with invalid number of parameters: {args}"
let i_arg := args.get! 0
let t_arg := args.get! 1
let x_arg := args.get! 2
let eIsValid ← mkAppM ``FixII.is_valid_p_rec #[k_var, i_arg, t_arg, x_arg]
trace[Diverge.def.valid] "rec: result: \n{eIsValid}"
pure eIsValid
else do
/- Remaining case: normal application.
Check if the arguments use the continuation:
- if no: this is simple
- if yes: we have to lookup theorems in div spec database and continue -/
trace[Diverge.def.valid] "regular app: {e}, f: {f}, args: {args}"
let argsFVars ← args.mapM getFVarIds
let allArgsFVars := argsFVars.foldl (fun hs fvars => hs.insertMany fvars) HashSet.empty
trace[Diverge.def.valid] "allArgsFVars: {allArgsFVars.toList.map mkFVar}"
if ¬ allArgsFVars.contains kk_var.fvarId! then do
-- Simple case
trace[Diverge.def.valid] "kk doesn't appear in the arguments"
proveNoKExprIsValid k_var e
else do
-- Lookup in the database for suitable theorems
trace[Diverge.def.valid] "kk appears in the arguments"
let thms ← divspecAttr.find? e
trace[Diverge.def.valid] "Looked up theorems: {thms}"
-- Try the theorems one by one
proveAppIsValidApplyThms k_var kk_var e f args thms.toList
partial def proveAppIsValidApplyThms (k_var kk_var : Expr) (e : Expr)
(f : Expr) (args : Array Expr) (thms : List Name) : MetaM Expr := do
match thms with
| [] => throwError "Could not prove that the following expression is valid: {e}"
| thName :: thms =>
-- Lookup the theorem itself
let env ← getEnv
let thDecl := env.constants.find! thName
-- Introduce fresh meta-variables for the universes
let ul : List (Name × Level) ←
thDecl.levelParams.mapM (λ x => do pure (x, ← mkFreshLevelMVar))
let ulMap : HashMap Name Level := HashMap.ofList ul
let thTy := thDecl.type.instantiateLevelParamsCore (λ x => ulMap.find! x)
trace[Diverge.def.valid] "Trying with theorem {thName}: {thTy}"
-- Introduce meta variables for the universally quantified variables
let (mvars, _binders, thTyBody) ← forallMetaTelescope thTy
let thTermToMatch := thTyBody
trace[Diverge.def.valid] "thTermToMatch: {thTermToMatch}"
-- Create the term: `is_valid_p k (λ kk => e)`
let termToMatch ← mkLambdaFVars #[kk_var] e
let termToMatch ← mkAppM ``FixII.is_valid_p #[k_var, termToMatch]
trace[Diverge.def.valid] "termToMatch: {termToMatch}"
-- Attempt to match
trace[Diverge.def.valid] "Matching terms:\n\n{termToMatch}\n\n{thTermToMatch}"
let ok ← isDefEq termToMatch thTermToMatch
if ¬ ok then
-- Failure: attempt with the other theorems
proveAppIsValidApplyThms k_var kk_var e f args thms
else do
/- Success: continue with this theorem
Instantiate the meta variables (some of them will not be instantiated:
they are new subgoals)
-/
let mvars ← mvars.mapM instantiateMVars
let th ← mkAppOptM thName (Array.map some mvars)
trace[Diverge.def.valid] "Instantiated theorem: {th}\n{← inferType th}"
-- Filter the instantiated meta variables
let mvars := mvars.filter (fun v => v.isMVar)
let mvars := mvars.map (fun v => v.mvarId!)
trace[Diverge.def.valid] "Remaining subgoals: {mvars}"
for mvarId in mvars do
-- Prove the subgoal (i.e., the precondition of the theorem)
let mvarDecl ← mvarId.getDecl
let declType ← instantiateMVars mvarDecl.type
-- Reduce the subgoal before diving in, if necessary
trace[Diverge.def.valid] "Subgoal: {declType}"
-- Dive in the type
forallTelescope declType fun forall_vars mvar_e => do
trace[Diverge.def.valid] "forall_vars: {forall_vars}"
-- `mvar_e` should have the shape `is_valid_p k (λ kk => ...)`
-- We need to retrieve the new `k` variable, and dive into the
-- `λ kk => ...`
mvar_e.consumeMData.withApp fun is_valid args => do
if is_valid.constName? ≠ ``FixII.is_valid_p ∨ args.size ≠ 7 then
throwError "Invalid precondition: {mvar_e}"
else do
let k_var := args.get! 5
let e_lam := args.get! 6
trace[Diverge.def.valid] "k_var: {k_var}\ne_lam: {e_lam}"
-- The outer lambda should be for the kk_var
lambdaOne e_lam.consumeMData fun kk_var e => do
-- Continue
trace[Diverge.def.valid] "kk_var: {kk_var}\ne: {e}"
-- We sometimes need to reduce the term - TODO: this is really dangerous
let e ← do
let updt_config config :=
{ config with transparency := .reducible }
withConfig updt_config (whnf e)
trace[Diverge.def.valid] "e (after normalization): {e}"
let e_valid ← proveExprIsValid k_var kk_var e
trace[Diverge.def.valid] "e_valid (for e): {e_valid}"
let e_valid ← mkLambdaFVars forall_vars e_valid
trace[Diverge.def.valid] "e_valid (with foralls): {e_valid}"
let _ ← inferType e_valid -- Sanity check
-- Assign the meta variable
mvarId.assign e_valid
pure th
-- Prove that a match expression is valid.
partial def proveMatchIsValid (k_var kk_var : Expr) (me : MatchInfo) : MetaM Expr := do
trace[Diverge.def.valid] "proveMatchIsValid: {me}"
-- Prove the validity of the branch expressions
let branchesValid:Array Expr ← me.branches.mapIdxM fun idx br => do
/- Go inside the lambdas - note that we have to be careful: some of the
binders might come from the match, and some of the binders might come
from the fact that the expression in the match is a lambda expression:
we use the branchesNumParams field for this reason. -/
let numParams := me.branchesNumParams.get! idx
lambdaTelescopeN br numParams fun xs br => do
-- Prove that the branch expression is valid
let brValid ← proveExprIsValid k_var kk_var br
-- Reconstruct the lambda expression
mkLambdaFVars xs brValid
trace[Diverge.def.valid] "branchesValid:\n{branchesValid}"
/- Compute the motive, which has the following shape:
```
λ scrut => is_valid_p k (λ k => match scrut with ...)
^^^^^^^^^^^^^^^^^^^^
this is the original match expression, with the
the difference that the scrutinee(s) is a variable
```
-/
let validMotive : Expr ← do
-- The motive is a function of the scrutinees (i.e., a lambda expression):
-- introduce binders for the scrutinees
let declInfos := me.scruts.mapIdx fun idx scrut =>
let name : Name := mkAnonymous "scrut" idx
let ty := λ (_ : Array Expr) => inferType scrut
(name, ty)
withLocalDeclsD declInfos fun scrutVars => do
-- Create a match expression but where the scrutinees have been replaced
-- by variables
let params : Array (Option Expr) := me.params.map some
let motive : Option Expr := some me.motive
let scruts : Array (Option Expr) := scrutVars.map some
let branches : Array (Option Expr) := me.branches.map some
let args := params ++ [motive] ++ scruts ++ branches
let matchE ← mkAppOptM me.matcherName args
-- Wrap in the `is_valid_p` predicate
let matchE ← mkLambdaFVars #[kk_var] matchE
let validMotive ← mkAppM ``FixII.is_valid_p #[k_var, matchE]
-- Abstract away the scrutinee variables
mkLambdaFVars scrutVars validMotive
trace[Diverge.def.valid] "valid motive: {validMotive}"
-- Put together
let valid ← do
-- We let Lean infer the parameters
let params : Array (Option Expr) := me.params.map (λ _ => none)
let motive := some validMotive
let scruts := me.scruts.map some
let branches := branchesValid.map some
let args := params ++ [motive] ++ scruts ++ branches
mkAppOptM me.matcherName args
trace[Diverge.def.valid] "proveMatchIsValid:\n{valid}:\n{← inferType valid}"
pure valid
end
/- Prove that a single body (in the mutually recursive group) is valid.
For instance, if we define the mutually recursive group [`is_even`, `is_odd`],
we prove that `is_even.body` and `is_odd.body` are valid. -/
partial def proveSingleBodyIsValid
(k_var : Expr) (preDef : PreDefinition) (bodyConst : Expr) :
MetaM Expr := do
trace[Diverge.def.valid] "proveSingleBodyIsValid: bodyConst: {bodyConst}"
-- Lookup the definition (`bodyConst` is a const, we want to retrieve its
-- definition to dive inside)
let name := bodyConst.constName!
let env ← getEnv
let body := (env.constants.find! name).value!
trace[Diverge.def.valid] "body: {body}"
lambdaTelescope body fun xs body => do
trace[Diverge.def.valid] "xs: {xs}"
if xs.size ≠ 3 then throwError "Invalid number of lambdas: {xs} (expected 3)"
let kk_var := xs.get! 0
let t_var := xs.get! 1
let x_var := xs.get! 2
-- State the type of the theorem to prove
trace[Diverge.def.valid] "bodyConst: {bodyConst} : {← inferType bodyConst}"
let bodyApp ← mkAppOptM' bodyConst #[.some kk_var, .some t_var, .some x_var]
trace[Diverge.def.valid] "bodyApp: {bodyApp}"
let bodyApp ← mkLambdaFVars #[kk_var] bodyApp
trace[Diverge.def.valid] "bodyApp: {bodyApp}"
let thmTy ← mkAppM ``FixII.is_valid_p #[k_var, bodyApp]
trace[Diverge.def.valid] "thmTy: {thmTy}"
-- Prove that the body is valid
trace[Diverge.def.valid] "body: {body}"
let proof ← proveExprIsValid k_var kk_var body
let proof ← mkLambdaFVars #[k_var, t_var, x_var] proof
trace[Diverge.def.valid] "proveSingleBodyIsValid: proof:\n{proof}:\n{← inferType proof}"
-- The target type (we don't have to do this: this is simply a sanity check,
-- and this allows a nicer debugging output)
let thmTy ← do
let ty ← mkAppM ``FixII.is_valid_p #[k_var, bodyApp]
mkForallFVars #[k_var, t_var, x_var] ty
trace[Diverge.def.valid] "proveSingleBodyIsValid: thmTy\n{thmTy}:\n{← inferType thmTy}"
-- Save the theorem
let name := preDef.declName ++ "body_is_valid"
let decl := Declaration.thmDecl {
name
levelParams := preDef.levelParams
type := thmTy
value := proof
all := [name]
}
addDecl decl
trace[Diverge.def.valid] "proveSingleBodyIsValid: added thm: {name}"
-- Return the theorem
pure (Expr.const name (preDef.levelParams.map .param))
/- Prove that the list of bodies are valid.
For instance, if we define the mutually recursive group [`is_even`, `is_odd`],
we prove that `Funs.Cons is_even.body (Funs.Cons is_odd.body Funs.Nil)` is
valid. -/
partial def proveFunsBodyIsValid (paramInOutTys: Expr) (bodyFuns : Expr)
(k_var : Expr) (bodiesValid : Array Expr) : MetaM Expr := do
-- Create the big "and" expression, which groups the validity proof of the individual bodies
let rec mkValidConj (i : Nat) : MetaM Expr := do
if i = bodiesValid.size then
-- We reached the end
mkAppM ``FixII.Funs.is_valid_p_Nil #[k_var]
else do
-- We haven't reached the end: introduce a conjunction
let valid := bodiesValid.get! i
let valid ← mkAppM' valid #[k_var]
mkAppM ``And.intro #[valid, ← mkValidConj (i + 1)]
let andExpr ← mkValidConj 0
-- Wrap in the `is_valid_p_is_valid_p` theorem, and abstract the continuation
let isValid ← mkAppM ``FixII.Funs.is_valid_p_is_valid_p #[paramInOutTys, k_var, bodyFuns, andExpr]
mkLambdaFVars #[k_var] isValid
/- Prove that the mut rec body (i.e., the unary body which groups the bodies
of all the functions in the mutually recursive group and on which we will
apply the fixed-point operator) is valid.
We save the proof in the theorem "[GROUP_NAME]."mut_rec_body_is_valid",
which we return.
TODO: maybe this function should introduce k_var itself -/
def proveMutRecIsValid
(grName : Name) (grLvlParams : List Name)
(paramInOutTys : Expr) (bodyFuns mutRecBodyConst : Expr)
(k_var : Expr) (preDefs : Array PreDefinition)
(bodies : Array Expr) : MetaM Expr := do
-- First prove that the individual bodies are valid
let bodiesValid ←
bodies.mapIdxM fun idx body => do
let preDef := preDefs.get! idx
trace[Diverge.def.valid] "## Proving that the body {body} is valid"
proveSingleBodyIsValid k_var preDef body
-- Then prove that the mut rec body is valid
trace[Diverge.def.valid] "## Proving that the 'Funs' body is valid"
let isValid ← proveFunsBodyIsValid paramInOutTys bodyFuns k_var bodiesValid
trace[Diverge.def.valid] "Generated the term: {isValid}"
-- Save the theorem
let thmTy ← mkAppM ``FixII.is_valid #[mutRecBodyConst]
let name := grName ++ "mut_rec_body_is_valid"
let decl := Declaration.thmDecl {
name
levelParams := grLvlParams
type := thmTy
value := isValid
all := [name]
}
addDecl decl
trace[Diverge.def.valid] "proveFunsBodyIsValid: added thm: {name}:\n{thmTy}"
-- Return the theorem
pure (Expr.const name (grLvlParams.map .param))
/- Generate the final definions by using the mutual body and the fixed point operator.
For instance:
```
def is_even (i : Int) : Result Bool := mut_rec_body 0 i
def is_odd (i : Int) : Result Bool := mut_rec_body 1 i
```
-/
def mkDeclareFixDefs (mutRecBody : Expr) (paramInOutTys : Array TypeInfo) (preDefs : Array PreDefinition) :
TermElabM (Array Name) := do
let grSize := preDefs.size
let defs ← preDefs.mapIdxM fun idx preDef => do
lambdaTelescope preDef.value fun xs _ => do
-- Retrieve the parameters info
let type_info := paramInOutTys.get! idx.val
-- Create the index
let idx ← mkFinVal grSize idx.val
-- Group the inputs into two tuples
let (params_args, input_args) := xs.toList.splitAt type_info.num_params
let params ← mkSigmasVal type_info.params_ty params_args
let input ← mkProdsVal input_args
-- Apply the fixed point
let fixedBody ← mkAppM ``FixII.fix #[mutRecBody, idx, params, input]
let fixedBody ← mkLambdaFVars xs fixedBody
-- Create the declaration
let name := preDef.declName
let decl := Declaration.defnDecl {
name := name
levelParams := preDef.levelParams
type := preDef.type
value := fixedBody
hints := ReducibilityHints.regular (getMaxHeight (← getEnv) fixedBody + 1)
safety := .safe
all := [name]
}
addDecl decl
pure name
pure defs
-- Prove the equations that we will use as unfolding theorems
partial def proveUnfoldingThms (isValidThm : Expr)
(paramInOutTys : Array TypeInfo)
(preDefs : Array PreDefinition) (decls : Array Name) : MetaM Unit := do
let grSize := preDefs.size
let proveIdx (i : Nat) : MetaM Unit := do
let preDef := preDefs.get! i
let defName := decls.get! i
-- Retrieve the arguments
lambdaTelescope preDef.value fun xs body => do
trace[Diverge.def.unfold] "proveUnfoldingThms: xs: {xs}"
trace[Diverge.def.unfold] "proveUnfoldingThms: body: {body}"
-- The theorem statement
let thmTy ← do
-- The equation: the declaration gives the lhs, the pre-def gives the rhs
let lhs ← mkAppOptM defName (xs.map some)
let rhs := body
let eq ← mkAppM ``Eq #[lhs, rhs]
mkForallFVars xs eq
trace[Diverge.def.unfold] "proveUnfoldingThms: thm statement: {thmTy}"
-- The proof
-- Use the fixed-point equation
let proof ← mkAppM ``FixII.is_valid_fix_fixed_eq #[isValidThm]
-- Add the index
let idx ← mkFinVal grSize i
let proof ← mkAppM ``congr_fun #[proof, idx]
-- Add the input arguments
let type_info := paramInOutTys.get! i
let (params, args) := xs.toList.splitAt type_info.num_params
let params ← mkSigmasVal type_info.params_ty params
let args ← mkProdsVal args
let proof ← mkAppM ``congr_fun #[proof, params]
let proof ← mkAppM ``congr_fun #[proof, args]
-- Abstract all the arguments away
let proof ← mkLambdaFVars xs proof
trace[Diverge.def.unfold] "proveUnfoldingThms: proof: {proof}:\n{← inferType proof}"
-- Declare the theorem
let name := preDef.declName ++ "unfold"
let decl := Declaration.thmDecl {
name
levelParams := preDef.levelParams
type := thmTy
value := proof
all := [name]
}
addDecl decl
-- Add the unfolding theorem to the equation compiler
eqnsAttribute.add preDef.declName #[name]
trace[Diverge.def.unfold] "proveUnfoldingThms: added thm: {name}:\n{thmTy}"
let rec prove (i : Nat) : MetaM Unit := do
if i = preDefs.size then pure ()
else do
proveIdx i
prove (i + 1)
--
prove 0
def divRecursion (preDefs : Array PreDefinition) : TermElabM Unit := do
let msg := toMessageData <| preDefs.map fun pd => (pd.declName, pd.levelParams, pd.type, pd.value)
trace[Diverge.def] ("divRecursion: defs:\n" ++ msg)
-- Apply all the "attribute" functions (for instance, the function which
-- registers the theorem in the simp database if there is the `simp` attribute,
-- etc.)
for preDef in preDefs do
applyAttributesOf #[preDef] AttributeApplicationTime.afterCompilation
-- Retrieve the name of the first definition, that we will use as the namespace
-- for the definitions common to the group
let def0 := preDefs[0]!
let grName := def0.declName
trace[Diverge.def] "group name: {grName}"
/- # Compute the input/output types of the continuation `k`. -/
let grLvlParams := def0.levelParams
trace[Diverge.def] "def0 universe levels: {def0.levelParams}"
/- We first compute the tuples: (type parameters × input type × output type)
- type parameters: this is a sigma type
- input type: λ params_type => product type
- output type: λ params_type => output type
For instance, on the function:
`list_nth (α : Type) (ls : List α) (i : Int) : Result α`:
we generate:
`(Type, λ α => List α × i, λ α => Result α)`
-/
let paramInOutTys : Array TypeInfo ←
preDefs.mapM (fun preDef => do
-- Check the universe parameters - TODO: I'm not sure what the best thing
-- to do is. In practice, all the type parameters should be in Type 0, so
-- we shouldn't have universe issues.
if preDef.levelParams ≠ grLvlParams then
throwError "Non-uniform polymorphism in the universes"
forallTelescope preDef.type (fun in_tys out_ty => do
let total_num_args := in_tys.size
let (params, in_tys) ← splitInputArgs in_tys out_ty
trace[Diverge.def] "Decomposed arguments: {preDef.declName}: {params}, {in_tys}, {out_ty}"
let num_params := params.size
let params_ty ← mkSigmasType params.data
let in_ty ← mkSigmasMatchOrUnit params.data (← mkProdsType in_tys.data)
-- Retrieve the type in the "Result"
let out_ty ← getResultTy out_ty
let out_ty ← mkSigmasMatchOrUnit params.data out_ty
trace[Diverge.def] "inOutTy: {preDef.declName}: {params_ty}, {in_tys}, {out_ty}"
pure ⟨ total_num_args, num_params, params_ty, in_ty, out_ty ⟩))
trace[Diverge.def] "paramInOutTys: {paramInOutTys}"
-- Turn the list of input types/input args/output type tuples into expressions
let paramInOutTysExpr ← liftM (paramInOutTys.mapM mkInOutTyFromTypeInfo)
let paramInOutTysExpr ← mkListLit (← inferType (paramInOutTysExpr.get! 0)) paramInOutTysExpr.toList
trace[Diverge.def] "paramInOutTys: {paramInOutTys}"
/- From the list of pairs of input/output types, actually compute the
type of the continuation `k`.
We first introduce the index `i : Fin n` where `n` is the number of
functions in the group.
-/
let i_var_ty := mkFin preDefs.size
withLocalDeclD (mkAnonymous "i" 0) i_var_ty fun i_var => do
let param_in_out_ty ← mkAppM ``List.get #[paramInOutTysExpr, i_var]
trace[Diverge.def] "param_in_out_ty := {param_in_out_ty} : {← inferType param_in_out_ty}"
-- Add an auxiliary definition for `param_in_out_ty` (this is a potentially big term)
let param_in_out_ty ← do
let value ← mkLambdaFVars #[i_var] param_in_out_ty
let name := grName.append "param_in_out_ty"
let levelParams := grLvlParams
let decl := Declaration.defnDecl {
name := name
levelParams := levelParams
type := ← inferType value
value := value
hints := .abbrev
safety := .safe
all := [name]
}
addDecl decl
-- Return the constant
let param_in_out_ty := Lean.mkConst name (levelParams.map .param)
mkAppM' param_in_out_ty #[i_var]
trace[Diverge.def] "param_in_out_ty (after decl) := {param_in_out_ty} : {← inferType param_in_out_ty}"
-- Decompose between: param_ty, in_ty, out_ty
let param_ty ← mkAppM ``Sigma.fst #[param_in_out_ty]
let in_out_ty ← mkAppM ``Sigma.snd #[param_in_out_ty]
let in_ty ← mkAppM ``Prod.fst #[in_out_ty]
let out_ty ← mkAppM ``Prod.snd #[in_out_ty]
trace[Diverge.def] "param_ty: {param_ty}"
trace[Diverge.def] "in_ty: {in_ty}"
trace[Diverge.def] "out_ty: {out_ty}"
withLocalDeclD (mkAnonymous "t" 1) param_ty fun param => do
let in_ty ← mkAppM' in_ty #[param]
let out_ty ← mkAppM' out_ty #[param]
trace[Diverge.def] "in_ty: {in_ty}"
trace[Diverge.def] "out_ty: {out_ty}"
-- Introduce the continuation `k`
let param_ty ← mkLambdaFVars #[i_var] param_ty
let in_ty ← mkLambdaFVars #[i_var, param] in_ty
let out_ty ← mkLambdaFVars #[i_var, param] out_ty
let kk_var_ty ← mkAppM ``FixII.kk_ty #[i_var_ty, param_ty, in_ty, out_ty]
trace[Diverge.def] "kk_var_ty: {kk_var_ty}"
withLocalDeclD (mkAnonymous "kk" 2) kk_var_ty fun kk_var => do
trace[Diverge.def] "kk_var: {kk_var}"
-- Replace the recursive calls in all the function bodies by calls to the
-- continuation `k` and and generate for those bodies declarations
trace[Diverge.def] "# Generating the unary bodies"
let bodies ← mkDeclareUnaryBodies grLvlParams kk_var paramInOutTys preDefs
trace[Diverge.def] "Unary bodies (after decl): {bodies}"
-- Generate the mutually recursive body
trace[Diverge.def] "# Generating the mut rec body"
let (bodyFuns, mutRecBody) ← mkDeclareMutRecBody grName grLvlParams kk_var i_var param_ty in_ty out_ty paramInOutTys bodies
trace[Diverge.def] "mut rec body (after decl): {mutRecBody}"
-- Prove that the mut rec body satisfies the validity criteria required by
-- our fixed-point
let k_var_ty ← mkAppM ``FixII.k_ty #[i_var_ty, param_ty, in_ty, out_ty]
withLocalDeclD (mkAnonymous "k" 3) k_var_ty fun k_var => do
trace[Diverge.def] "# Proving that the mut rec body is valid"
let isValidThm ← proveMutRecIsValid grName grLvlParams paramInOutTysExpr bodyFuns mutRecBody k_var preDefs bodies
-- Generate the final definitions
trace[Diverge.def] "# Generating the final definitions"
let decls ← mkDeclareFixDefs mutRecBody paramInOutTys preDefs
-- Prove the unfolding theorems
trace[Diverge.def] "# Proving the unfolding theorems"
proveUnfoldingThms isValidThm paramInOutTys preDefs decls
-- Generating code
addAndCompilePartialRec preDefs
-- The following function is copy&pasted from Lean.Elab.PreDefinition.Main
-- This is the only part where we make actual changes and hook into the equation compiler.
-- (I've removed all the well-founded stuff to make it easier to read though.)
open private ensureNoUnassignedMVarsAtPreDef betaReduceLetRecApps partitionPreDefs
addAndCompilePartial addAsAxioms from Lean.Elab.PreDefinition.Main
def addPreDefinitions (preDefs : Array PreDefinition) : TermElabM Unit := withLCtx {} {} do
for preDef in preDefs do
trace[Diverge.elab] "{preDef.declName} : {preDef.type} :=\n{preDef.value}"
let preDefs ← preDefs.mapM ensureNoUnassignedMVarsAtPreDef
let preDefs ← betaReduceLetRecApps preDefs
let cliques := partitionPreDefs preDefs
let mut hasErrors := false
for preDefs in cliques do
trace[Diverge.elab] "{preDefs.map (·.declName)}"
try
withRef (preDefs[0]!.ref) do
divRecursion preDefs
catch ex =>
-- If it failed, we add the functions as partial functions
hasErrors := true
logException ex
let s ← saveState
try
if preDefs.all fun preDef => preDef.kind == DefKind.def ||
preDefs.all fun preDef => preDef.kind == DefKind.abbrev then
-- try to add as partial definition
try
addAndCompilePartial preDefs (useSorry := true)
catch _ =>
-- Compilation failed try again just as axiom
s.restore
addAsAxioms preDefs
else return ()
catch _ => s.restore
-- The following two functions are copy-pasted from Lean.Elab.MutualDef
open private elabHeaders levelMVarToParamHeaders getAllUserLevelNames withFunLocalDecls elabFunValues
instantiateMVarsAtHeader instantiateMVarsAtLetRecToLift checkLetRecsToLiftTypes withUsed from Lean.Elab.MutualDef
def Term.elabMutualDef (vars : Array Expr) (views : Array DefView) : TermElabM Unit := do
let scopeLevelNames ← getLevelNames
let headers ← elabHeaders views
let headers ← levelMVarToParamHeaders views headers
let allUserLevelNames := getAllUserLevelNames headers
withFunLocalDecls headers fun funFVars => do
for view in views, funFVar in funFVars do
addLocalVarInfo view.declId funFVar
-- Add fake use site to prevent "unused variable" warning (if the
-- function is actually not recursive, Lean would print this warning).
-- Remark: we could detect this case and encode the function without
-- using the fixed-point. In practice it shouldn't happen however:
-- we define non-recursive functions with the `divergent` keyword
-- only for testing purposes.
addTermInfo' view.declId funFVar
let values ←
try
let values ← elabFunValues headers
Term.synthesizeSyntheticMVarsNoPostponing
values.mapM (instantiateMVars ·)
catch ex =>
logException ex
headers.mapM fun header => mkSorry header.type (synthetic := true)
let headers ← headers.mapM instantiateMVarsAtHeader
let letRecsToLift ← getLetRecsToLift
let letRecsToLift ← letRecsToLift.mapM instantiateMVarsAtLetRecToLift
checkLetRecsToLiftTypes funFVars letRecsToLift
withUsed vars headers values letRecsToLift fun vars => do
let preDefs ← MutualClosure.main vars headers funFVars values letRecsToLift
for preDef in preDefs do
trace[Diverge.elab] "{preDef.declName} : {preDef.type} :=\n{preDef.value}"
let preDefs ← withLevelNames allUserLevelNames <| levelMVarToParamPreDecls preDefs
let preDefs ← instantiateMVarsAtPreDecls preDefs
let preDefs ← fixLevelParams preDefs scopeLevelNames allUserLevelNames
for preDef in preDefs do
trace[Diverge.elab] "after eraseAuxDiscr, {preDef.declName} : {preDef.type} :=\n{preDef.value}"
checkForHiddenUnivLevels allUserLevelNames preDefs
addPreDefinitions preDefs
open Command in
def Command.elabMutualDef (ds : Array Syntax) : CommandElabM Unit := do
let views ← ds.mapM fun d => do
let `($mods:declModifiers divergent def $id:declId $sig:optDeclSig $val:declVal) := d
| throwUnsupportedSyntax
let modifiers ← elabModifiers mods
let (binders, type) := expandOptDeclSig sig
let deriving? := none
pure { ref := d, kind := DefKind.def, modifiers,
declId := id, binders, type? := type, value := val, deriving? }
runTermElabM fun vars => Term.elabMutualDef vars views
-- Special command so that we don't fall back to the built-in mutual when we produce an error.
local syntax "_divergent" Parser.Command.mutual : command
elab_rules : command | `(_divergent mutual $decls* end) => Command.elabMutualDef decls
macro_rules
| `(mutual $decls* end) => do
unless !decls.isEmpty && decls.all (·.1.getKind == ``divergentDef) do
Macro.throwUnsupported
`(command| _divergent mutual $decls* end)
open private setDeclIdName from Lean.Elab.Declaration
elab_rules : command
| `($mods:declModifiers divergent%$tk def $id:declId $sig:optDeclSig $val:declVal) => do
let (name, _) := expandDeclIdCore id
if (`_root_).isPrefixOf name then throwUnsupportedSyntax
let view := extractMacroScopes name
let .str ns shortName := view.name | throwUnsupportedSyntax
let shortName' := { view with name := shortName }.review
let cmd ← `(mutual $mods:declModifiers divergent%$tk def $(⟨setDeclIdName id shortName'⟩):declId $sig:optDeclSig $val:declVal end)
if ns matches .anonymous then
Command.elabCommand cmd
else
Command.elabCommand <| ← `(namespace $(mkIdentFrom id ns) $cmd end $(mkIdentFrom id ns))
namespace Tests
/- Some examples of partial functions -/
--set_option trace.Diverge.def true
--set_option trace.Diverge.def.genBody true
--set_option trace.Diverge.def.valid true
--set_option trace.Diverge.def.genBody.visit true
divergent def list_nth {a: Type u} (ls : List a) (i : Int) : Result a :=
match ls with
| [] => .fail .panic
| x :: ls =>
if i = 0 then return x
else return (← list_nth ls (i - 1))
--set_option trace.Diverge false
#check list_nth.unfold
example {a: Type} (ls : List a) :
∀ (i : Int),
0 ≤ i → i < ls.length →
∃ x, list_nth ls i = .ret x := by
induction ls
. intro i hpos h; simp at h; linarith
. rename_i hd tl ih
intro i hpos h
-- We can directly use `rw [list_nth]`
rw [list_nth]; simp
split <;> try simp [*]
. tauto
. -- We don't have to do this if we use scalar_tac
have hneq : 0 < i := by cases i <;> rename_i a _ <;> simp_all; cases a <;> simp_all
simp at h
have ⟨ x, ih ⟩ := ih (i - 1) (by linarith) (by linarith)
simp [ih]
tauto
-- Return a continuation
divergent def list_nth_with_back {a: Type} (ls : List a) (i : Int) :
Result (a × (a → Result (List a))) :=
match ls with
| [] => .fail .panic
| x :: ls =>
if i = 0 then return (x, (λ ret => return (ret :: ls)))
else do
let (x, back) ← list_nth_with_back ls (i - 1)
return (x,
(λ ret => do
let ls ← back ret
return (x :: ls)))
#check list_nth_with_back.unfold
mutual
divergent def is_even (i : Int) : Result Bool :=
if i = 0 then return true else return (← is_odd (i - 1))
divergent def is_odd (i : Int) : Result Bool :=
if i = 0 then return false else return (← is_even (i - 1))
end
#check is_even.unfold
#check is_odd.unfold
mutual
divergent def foo (i : Int) : Result Nat :=
if i > 10 then return (← foo (i / 10)) + (← bar i) else bar 10
divergent def bar (i : Int) : Result Nat :=
if i > 20 then foo (i / 20) else .ret 42
end
#check foo.unfold
#check bar.unfold
-- Testing dependent branching and let-bindings
divergent def isNonZero (i : Int) : Result Bool :=
if _h:i = 0 then return false
else
let b := true
return b
#check isNonZero.unfold
-- Testing let-bindings
divergent def iInBounds {a : Type} (ls : List a) (i : Int) : Result Bool :=
let i0 := ls.length
if i < i0
then Result.ret True
else Result.ret False
#check iInBounds.unfold
divergent def isCons
{a : Type} (ls : List a) : Result Bool :=
let ls1 := ls
match ls1 with
| [] => Result.ret False
| _ :: _ => Result.ret True
#check isCons.unfold
-- Testing what happens when we use concrete arguments in dependent tuples
divergent def test1
(_ : Option Bool) (_ : Unit) :
Result Unit
:=
test1 Option.none ()
#check test1.unfold
/- Tests with higher-order functions -/
section HigherOrder
open Ex8
inductive Tree (a : Type u) :=
| leaf (x : a)
| node (tl : List (Tree a))
divergent def id {a : Type u} (t : Tree a) : Result (Tree a) :=
match t with
| .leaf x => .ret (.leaf x)
| .node tl =>
do
let tl ← map id tl
.ret (.node tl)
#check id.unfold
divergent def id1 {a : Type u} (t : Tree a) : Result (Tree a) :=
match t with
| .leaf x => .ret (.leaf x)
| .node tl =>
do
let tl ← map (fun x => id1 x) tl
.ret (.node tl)
#check id1.unfold
divergent def id2 {a : Type u} (t : Tree a) : Result (Tree a) :=
match t with
| .leaf x => .ret (.leaf x)
| .node tl =>
do
let tl ← map (fun x => do let _ ← id2 x; id2 x) tl
.ret (.node tl)
#check id2.unfold
divergent def incr (t : Tree Nat) : Result (Tree Nat) :=
match t with
| .leaf x => .ret (.leaf (x + 1))
| .node tl =>
do
let tl ← map incr tl
.ret (.node tl)
-- We handle this by inlining the let-binding
divergent def id3 (t : Tree Nat) : Result (Tree Nat) :=
match t with
| .leaf x => .ret (.leaf (x + 1))
| .node tl =>
do
let f := id3
let tl ← map f tl
.ret (.node tl)
#check id3.unfold
/-
-- This is not handled yet: we can only do it if we introduce "general"
-- relations for the input types and output types (result_rel should
-- be parameterized by something).
divergent def id4 (t : Tree Nat) : Result (Tree Nat) :=
match t with
| .leaf x => .ret (.leaf (x + 1))
| .node tl =>
do
let f ← .ret id4
let tl ← map f tl
.ret (.node tl)
#check id4.unfold
-/
end HigherOrder
end Tests
end Diverge
|