1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
|
import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith
import Base.Primitives
/-
TODO:
- we want an easier to use cases:
- keeps in the goal an equation of the shape: `t = case`
- if called on Prop terms, uses Classical.em
Actually, the cases from mathlib seems already quite powerful
(https://leanprover-community.github.io/mathlib_docs/tactics.html#cases)
For instance: cases h : e
Also: cases_matching
- better split tactic
- we need conversions to operate on the head of applications.
Actually, something like this works:
```
conv at Hl =>
apply congr_fun
simp [fix_fuel_P]
```
Maybe we need a rpt ... ; focus?
- simplifier/rewriter have a strange behavior sometimes
-/
/- TODO: this is very useful, but is there more? -/
set_option profiler true
set_option profiler.threshold 100
namespace Diverge
namespace Fix
open Primitives
open Result
variable {a : Type u} {b : a → Type v}
variable {c d : Type w} -- TODO: why do we have to make them both : Type w?
/-! # The least fixed point definition and its properties -/
def least_p (p : Nat → Prop) (n : Nat) : Prop := p n ∧ (∀ m, m < n → ¬ p m)
noncomputable def least (p : Nat → Prop) : Nat :=
Classical.epsilon (least_p p)
-- Auxiliary theorem for [least_spec]: if there exists an `n` satisfying `p`,
-- there there exists a least `m` satisfying `p`.
theorem least_spec_aux (p : Nat → Prop) : ∀ (n : Nat), (hn : p n) → ∃ m, least_p p m := by
apply Nat.strongRec'
intros n hi hn
-- Case disjunction on: is n the smallest n satisfying p?
match Classical.em (∀ m, m < n → ¬ p m) with
| .inl hlt =>
-- Yes: trivial
exists n
| .inr hlt =>
simp at *
let ⟨ m, ⟨ hmlt, hm ⟩ ⟩ := hlt
have hi := hi m hmlt hm
apply hi
-- The specification of [least]: either `p` is never satisfied, or it is satisfied
-- by `least p` and no `n < least p` satisfies `p`.
theorem least_spec (p : Nat → Prop) : (∀ n, ¬ p n) ∨ (p (least p) ∧ ∀ n, n < least p → ¬ p n) := by
-- Case disjunction on the existence of an `n` which satisfies `p`
match Classical.em (∀ n, ¬ p n) with
| .inl h =>
-- There doesn't exist: trivial
apply (Or.inl h)
| .inr h =>
-- There exists: we simply use `least_spec_aux` in combination with the property
-- of the epsilon operator
simp at *
let ⟨ n, hn ⟩ := h
apply Or.inr
have hl := least_spec_aux p n hn
have he := Classical.epsilon_spec hl
apply he
/-! # The fixed point definitions -/
def fix_fuel (n : Nat) (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) :
Result (b x) :=
match n with
| 0 => .div
| n + 1 =>
f (fix_fuel n f) x
@[simp] def fix_fuel_pred (f : ((x:a) → Result (b x)) → (x:a) → Result (b x))
(x : a) (n : Nat) :=
not (div? (fix_fuel n f x))
def fix_fuel_P (f : ((x:a) → Result (b x)) → (x:a) → Result (b x))
(x : a) (n : Nat) : Prop :=
fix_fuel_pred f x n
partial
def fixImpl (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) : Result (b x) :=
f (fixImpl f) x
-- The fact that `fix` is implemented by `fixImpl` allows us to not mark the
-- functions defined with the fixed-point as noncomputable. One big advantage
-- is that it allows us to evaluate those functions, for instance with #eval.
@[implemented_by fixImpl]
def fix (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) : Result (b x) :=
fix_fuel (least (fix_fuel_P f x)) f x
/-! # The validity property -/
-- Monotonicity relation over results
-- TODO: generalize (we should parameterize the definition by a relation over `a`)
def result_rel {a : Type u} (x1 x2 : Result a) : Prop :=
match x1 with
| div => True
| fail _ => x2 = x1
| ret _ => x2 = x1 -- TODO: generalize
-- Monotonicity relation over monadic arrows (i.e., Kleisli arrows)
def karrow_rel (k1 k2 : (x:a) → Result (b x)) : Prop :=
∀ x, result_rel (k1 x) (k2 x)
-- Monotonicity property for function bodies
def is_mono (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) : Prop :=
∀ {{k1 k2}}, karrow_rel k1 k2 → karrow_rel (f k1) (f k2)
-- "Continuity" property.
-- We need this, and this looks a lot like continuity. Also see this paper:
-- https://inria.hal.science/file/index/docid/216187/filename/tarski.pdf
-- We define our "continuity" criteria so that it gives us what we need to
-- prove the fixed-point equation, and we can also easily manipulate it.
def is_cont (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) : Prop :=
∀ x, (Hdiv : ∀ n, fix_fuel (.succ n) f x = div) → f (fix f) x = div
/-! # The proof of the fixed-point equation -/
theorem fix_fuel_mono {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}
(Hmono : is_mono f) :
∀ {{n m}}, n ≤ m → karrow_rel (fix_fuel n f) (fix_fuel m f) := by
intros n
induction n
case zero => simp [karrow_rel, fix_fuel, result_rel]
case succ n1 Hi =>
intros m Hle x
simp [result_rel]
match m with
| 0 =>
exfalso
zify at *
linarith
| Nat.succ m1 =>
simp_arith at Hle
simp [fix_fuel]
have Hi := Hi Hle
have Hmono := Hmono Hi x
simp [result_rel] at Hmono
apply Hmono
@[simp] theorem neg_fix_fuel_P
{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)} {x : a} {n : Nat} :
¬ fix_fuel_P f x n ↔ (fix_fuel n f x = div) := by
simp [fix_fuel_P, div?]
cases fix_fuel n f x <;> simp
theorem fix_fuel_fix_mono {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)} (Hmono : is_mono f) :
∀ n, karrow_rel (fix_fuel n f) (fix f) := by
intros n x
simp [result_rel]
have Hl := least_spec (fix_fuel_P f x)
simp at Hl
match Hl with
| .inl Hl => simp [*]
| .inr ⟨ Hl, Hn ⟩ =>
match Classical.em (fix_fuel n f x = div) with
| .inl Hd =>
simp [*]
| .inr Hd =>
have Hineq : least (fix_fuel_P f x) ≤ n := by
-- Proof by contradiction
cases Classical.em (least (fix_fuel_P f x) ≤ n) <;> simp [*]
simp at *
rename_i Hineq
have Hn := Hn n Hineq
contradiction
have Hfix : ¬ (fix f x = div) := by
simp [fix]
-- By property of the least upper bound
revert Hd Hl
-- TODO: there is no conversion to select the head of a function!
conv => lhs; apply congr_fun; apply congr_fun; apply congr_fun; simp [fix_fuel_P, div?]
cases fix_fuel (least (fix_fuel_P f x)) f x <;> simp
have Hmono := fix_fuel_mono Hmono Hineq x
simp [result_rel] at Hmono
simp [fix] at *
cases Heq: fix_fuel (least (fix_fuel_P f x)) f x <;>
cases Heq':fix_fuel n f x <;>
simp_all
theorem fix_fuel_P_least {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)} (Hmono : is_mono f) :
∀ {{x n}}, fix_fuel_P f x n → fix_fuel_P f x (least (fix_fuel_P f x)) := by
intros x n Hf
have Hfmono := fix_fuel_fix_mono Hmono n x
-- TODO: there is no conversion to select the head of a function!
conv => apply congr_fun; simp [fix_fuel_P]
simp [fix_fuel_P] at Hf
revert Hf Hfmono
simp [div?, result_rel, fix]
cases fix_fuel n f x <;> simp_all
-- Prove the fixed point equation in the case there exists some fuel for which
-- the execution terminates
theorem fix_fixed_eq_terminates (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (Hmono : is_mono f)
(x : a) (n : Nat) (He : fix_fuel_P f x n) :
fix f x = f (fix f) x := by
have Hl := fix_fuel_P_least Hmono He
-- TODO: better control of simplification
conv at Hl =>
apply congr_fun
simp [fix_fuel_P]
-- The least upper bound is > 0
have ⟨ n, Hsucc ⟩ : ∃ n, least (fix_fuel_P f x) = Nat.succ n := by
revert Hl
simp [div?]
cases least (fix_fuel_P f x) <;> simp [fix_fuel]
simp [Hsucc] at Hl
revert Hl
simp [*, div?, fix, fix_fuel]
-- Use the monotonicity
have Hfixmono := fix_fuel_fix_mono Hmono n
have Hvm := Hmono Hfixmono x
-- Use functional extensionality
simp [result_rel, fix] at Hvm
revert Hvm
split <;> simp [*] <;> intros <;> simp [*]
theorem fix_fixed_eq_forall {{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}}
(Hmono : is_mono f) (Hcont : is_cont f) :
∀ x, fix f x = f (fix f) x := by
intros x
-- Case disjunction: is there a fuel such that the execution successfully execute?
match Classical.em (∃ n, fix_fuel_P f x n) with
| .inr He =>
-- No fuel: the fixed point evaluates to `div`
--simp [fix] at *
simp at *
conv => lhs; simp [fix]
have Hel := He (Nat.succ (least (fix_fuel_P f x))); simp [*, fix_fuel] at *; clear Hel
-- Use the "continuity" of `f`
have He : ∀ n, fix_fuel (.succ n) f x = div := by intros; simp [*]
have Hcont := Hcont x He
simp [Hcont]
| .inl ⟨ n, He ⟩ => apply fix_fixed_eq_terminates f Hmono x n He
-- The final fixed point equation
theorem fix_fixed_eq {{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}}
(Hmono : is_mono f) (Hcont : is_cont f) :
fix f = f (fix f) := by
have Heq := fix_fixed_eq_forall Hmono Hcont
have Heq1 : fix f = (λ x => fix f x) := by simp
rw [Heq1]
conv => lhs; ext; simp [Heq]
/-! # Making the proofs of validity manageable (and automatable) -/
-- Monotonicity property for expressions
def is_mono_p (e : ((x:a) → Result (b x)) → Result c) : Prop :=
∀ {{k1 k2}}, karrow_rel k1 k2 → result_rel (e k1) (e k2)
theorem is_mono_p_same (x : Result c) :
@is_mono_p a b c (λ _ => x) := by
simp [is_mono_p, karrow_rel, result_rel]
split <;> simp
theorem is_mono_p_rec (x : a) :
@is_mono_p a b (b x) (λ f => f x) := by
simp_all [is_mono_p, karrow_rel, result_rel]
-- The important lemma about `is_mono_p`
theorem is_mono_p_bind
(g : ((x:a) → Result (b x)) → Result c)
(h : c → ((x:a) → Result (b x)) → Result d) :
is_mono_p g →
(∀ y, is_mono_p (h y)) →
@is_mono_p a b d (λ k => @Bind.bind Result _ c d (g k) (fun y => h y k)) := by
-- @is_mono_p a b d (λ k => do let (y : c) ← g k; h y k) := by
intro hg hh
simp [is_mono_p]
intro fg fh Hrgh
simp [karrow_rel, result_rel]
have hg := hg Hrgh; simp [result_rel] at hg
cases heq0: g fg <;> simp_all
rename_i y _
have hh := hh y Hrgh; simp [result_rel] at hh
simp_all
-- Continuity property for expressions - note that we take the continuation
-- as parameter
def is_cont_p (k : ((x:a) → Result (b x)) → (x:a) → Result (b x))
(e : ((x:a) → Result (b x)) → Result c) : Prop :=
(Hc : ∀ n, e (fix_fuel n k) = .div) →
e (fix k) = .div
theorem is_cont_p_same (k : ((x:a) → Result (b x)) → (x:a) → Result (b x))
(x : Result c) :
is_cont_p k (λ _ => x) := by
simp [is_cont_p]
theorem is_cont_p_rec (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) :
is_cont_p f (λ f => f x) := by
simp_all [is_cont_p, fix]
-- The important lemma about `is_cont_p`
theorem is_cont_p_bind
(k : ((x:a) → Result (b x)) → (x:a) → Result (b x))
(Hkmono : is_mono k)
(g : ((x:a) → Result (b x)) → Result c)
(h : c → ((x:a) → Result (b x)) → Result d) :
is_mono_p g →
is_cont_p k g →
(∀ y, is_mono_p (h y)) →
(∀ y, is_cont_p k (h y)) →
is_cont_p k (λ k => do let y ← g k; h y k) := by
intro Hgmono Hgcont Hhmono Hhcont
simp [is_cont_p]
intro Hdiv
-- Case on `g (fix... k)`: is there an n s.t. it terminates?
cases Classical.em (∀ n, g (fix_fuel n k) = .div) <;> rename_i Hn
. -- Case 1: g diverges
have Hgcont := Hgcont Hn
simp_all
. -- Case 2: g doesn't diverge
simp at Hn
let ⟨ n, Hn ⟩ := Hn
have Hdivn := Hdiv n
have Hffmono := fix_fuel_fix_mono Hkmono n
have Hgeq := Hgmono Hffmono
simp [result_rel] at Hgeq
cases Heq: g (fix_fuel n k) <;> rename_i y <;> simp_all
-- Remains the .ret case
-- Use Hdiv to prove that: ∀ n, h y (fix_fuel n f) = div
-- We do this in two steps: first we prove it for m ≥ n
have Hhdiv: ∀ m, h y (fix_fuel m k) = .div := by
have Hhdiv : ∀ m, n ≤ m → h y (fix_fuel m k) = .div := by
-- We use the fact that `g (fix_fuel n f) = .div`, combined with Hdiv
intro m Hle
have Hdivm := Hdiv m
-- Monotonicity of g
have Hffmono := fix_fuel_mono Hkmono Hle
have Hgmono := Hgmono Hffmono
-- We need to clear Hdiv because otherwise simp_all rewrites Hdivm with Hdiv
clear Hdiv
simp_all [result_rel]
intro m
-- TODO: we shouldn't need the excluded middle here because it is decidable
cases Classical.em (n ≤ m) <;> rename_i Hl
. apply Hhdiv; assumption
. simp at Hl
-- Make a case disjunction on `h y (fix_fuel m k)`: if it is not equal
-- to div, use the monotonicity of `h y`
have Hle : m ≤ n := by linarith
have Hffmono := fix_fuel_mono Hkmono Hle
have Hmono := Hhmono y Hffmono
simp [result_rel] at Hmono
cases Heq: h y (fix_fuel m k) <;> simp_all
-- We can now use the continuity hypothesis for h
apply Hhcont; assumption
-- The validity property for an expression
def is_valid_p (k : ((x:a) → Result (b x)) → (x:a) → Result (b x))
(e : ((x:a) → Result (b x)) → Result c) : Prop :=
is_mono_p e ∧
(is_mono k → is_cont_p k e)
@[simp] theorem is_valid_p_same
(k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : Result c) :
is_valid_p k (λ _ => x) := by
simp [is_valid_p, is_mono_p_same, is_cont_p_same]
@[simp] theorem is_valid_p_rec
(k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) :
is_valid_p k (λ k => k x) := by
simp_all [is_valid_p, is_mono_p_rec, is_cont_p_rec]
theorem is_valid_p_ite
(k : ((x:a) → Result (b x)) → (x:a) → Result (b x))
(cond : Prop) [h : Decidable cond]
{e1 e2 : ((x:a) → Result (b x)) → Result c}
(he1: is_valid_p k e1) (he2 : is_valid_p k e2) :
is_valid_p k (ite cond e1 e2) := by
split <;> assumption
theorem is_valid_p_dite
(k : ((x:a) → Result (b x)) → (x:a) → Result (b x))
(cond : Prop) [h : Decidable cond]
{e1 : cond → ((x:a) → Result (b x)) → Result c}
{e2 : Not cond → ((x:a) → Result (b x)) → Result c}
(he1: ∀ x, is_valid_p k (e1 x)) (he2 : ∀ x, is_valid_p k (e2 x)) :
is_valid_p k (dite cond e1 e2) := by
split <;> simp [*]
-- Lean is good at unification: we can write a very general version
-- (in particular, it will manage to figure out `g` and `h` when we
-- apply the lemma)
theorem is_valid_p_bind
{{k : ((x:a) → Result (b x)) → (x:a) → Result (b x)}}
{{g : ((x:a) → Result (b x)) → Result c}}
{{h : c → ((x:a) → Result (b x)) → Result d}}
(Hgvalid : is_valid_p k g)
(Hhvalid : ∀ y, is_valid_p k (h y)) :
is_valid_p k (λ k => do let y ← g k; h y k) := by
let ⟨ Hgmono, Hgcont ⟩ := Hgvalid
simp [is_valid_p, forall_and] at Hhvalid
have ⟨ Hhmono, Hhcont ⟩ := Hhvalid
simp [← imp_forall_iff] at Hhcont
simp [is_valid_p]; constructor
. -- Monotonicity
apply is_mono_p_bind <;> assumption
. -- Continuity
intro Hkmono
have Hgcont := Hgcont Hkmono
have Hhcont := Hhcont Hkmono
apply is_cont_p_bind <;> assumption
def is_valid (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) : Prop :=
∀ k x, is_valid_p k (λ k => f k x)
theorem is_valid_p_imp_is_valid {{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}}
(Hvalid : is_valid f) :
is_mono f ∧ is_cont f := by
have Hmono : is_mono f := by
intro f h Hr x
have Hmono := Hvalid (λ _ _ => .div) x
have Hmono := Hmono.left
apply Hmono; assumption
have Hcont : is_cont f := by
intro x Hdiv
have Hcont := (Hvalid f x).right Hmono
simp [is_cont_p] at Hcont
apply Hcont
intro n
have Hdiv := Hdiv n
simp [fix_fuel] at Hdiv
simp [*]
simp [*]
theorem is_valid_fix_fixed_eq {{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}}
(Hvalid : is_valid f) :
fix f = f (fix f) := by
have ⟨ Hmono, Hcont ⟩ := is_valid_p_imp_is_valid Hvalid
exact fix_fixed_eq Hmono Hcont
end Fix
namespace FixI
/- Indexed fixed-point: definitions with indexed types, convenient to use for mutually
recursive definitions. We simply port the definitions and proofs from Fix to a more
specific case.
-/
open Primitives Fix
-- The index type
variable {id : Type u}
-- The input/output types
variable {a : id → Type v} {b : (i:id) → a i → Type w}
-- Monotonicity relation over monadic arrows (i.e., Kleisli arrows)
def karrow_rel (k1 k2 : (i:id) → (x:a i) → Result (b i x)) : Prop :=
∀ i x, result_rel (k1 i x) (k2 i x)
def kk_to_gen (k : (i:id) → (x:a i) → Result (b i x)) :
(x: (i:id) × a i) → Result (b x.fst x.snd) :=
λ ⟨ i, x ⟩ => k i x
def kk_of_gen (k : (x: (i:id) × a i) → Result (b x.fst x.snd)) :
(i:id) → (x:a i) → Result (b i x) :=
λ i x => k ⟨ i, x ⟩
def k_to_gen (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) :
((x: (i:id) × a i) → Result (b x.fst x.snd)) → (x: (i:id) × a i) → Result (b x.fst x.snd) :=
λ kk => kk_to_gen (k (kk_of_gen kk))
def k_of_gen (k : ((x: (i:id) × a i) → Result (b x.fst x.snd)) → (x: (i:id) × a i) → Result (b x.fst x.snd)) :
((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x) :=
λ kk => kk_of_gen (k (kk_to_gen kk))
def e_to_gen (e : ((i:id) → (x:a i) → Result (b i x)) → Result c) :
((x: (i:id) × a i) → Result (b x.fst x.snd)) → Result c :=
λ k => e (kk_of_gen k)
def is_valid_p (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x))
(e : ((i:id) → (x:a i) → Result (b i x)) → Result c) : Prop :=
Fix.is_valid_p (k_to_gen k) (e_to_gen e)
def is_valid (f : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) : Prop :=
∀ k i x, is_valid_p k (λ k => f k i x)
def fix
(f : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) :
(i:id) → (x:a i) → Result (b i x) :=
kk_of_gen (Fix.fix (k_to_gen f))
theorem is_valid_fix_fixed_eq
{{f : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)}}
(Hvalid : is_valid f) :
fix f = f (fix f) := by
have Hvalid' : Fix.is_valid (k_to_gen f) := by
intro k x
simp only [is_valid, is_valid_p] at Hvalid
let ⟨ i, x ⟩ := x
have Hvalid := Hvalid (k_of_gen k) i x
simp only [k_to_gen, k_of_gen, kk_to_gen, kk_of_gen] at Hvalid
refine Hvalid
have Heq := Fix.is_valid_fix_fixed_eq Hvalid'
simp [fix]
conv => lhs; rw [Heq]
/- Some utilities to define the mutually recursive functions -/
-- TODO: use more
abbrev kk_ty (id : Type u) (a : id → Type v) (b : (i:id) → (x:a i) → Type w) :=
(i:id) → (x:a i) → Result (b i x)
abbrev k_ty (id : Type u) (a : id → Type v) (b : (i:id) → (x:a i) → Type w) :=
kk_ty id a b → kk_ty id a b
abbrev in_out_ty : Type (imax (u + 1) (v + 1)) := (in_ty : Type u) × ((x:in_ty) → Type v)
-- TODO: remove?
abbrev mk_in_out_ty (in_ty : Type u) (out_ty : in_ty → Type v) :
in_out_ty :=
Sigma.mk in_ty out_ty
-- Initially, we had left out the parameters id, a and b.
-- However, by parameterizing Funs with those parameters, we can state
-- and prove lemmas like Funs.is_valid_p_is_valid_p
inductive Funs (id : Type u) (a : id → Type v) (b : (i:id) → (x:a i) → Type w) :
List in_out_ty.{v, w} → Type (max (u + 1) (max (v + 1) (w + 1))) :=
| Nil : Funs id a b []
| Cons {ity : Type v} {oty : ity → Type w} {tys : List in_out_ty}
(f : kk_ty id a b → (x:ity) → Result (oty x)) (tl : Funs id a b tys) :
Funs id a b (⟨ ity, oty ⟩ :: tys)
def get_fun {tys : List in_out_ty} (fl : Funs id a b tys) :
(i : Fin tys.length) → kk_ty id a b → (x : (tys.get i).fst) →
Result ((tys.get i).snd x) :=
match fl with
| .Nil => λ i => by have h:= i.isLt; simp at h
| @Funs.Cons id a b ity oty tys1 f tl =>
λ ⟨ i, iLt ⟩ =>
match i with
| 0 =>
Eq.mp (by simp [List.get]) f
| .succ j =>
have jLt: j < tys1.length := by
simp at iLt
revert iLt
simp_arith
let j: Fin tys1.length := ⟨ j, jLt ⟩
Eq.mp (by simp) (get_fun tl j)
-- TODO: move
theorem add_one_le_iff_le_ne (n m : Nat) (h1 : m ≤ n) (h2 : m ≠ n) : m + 1 ≤ n := by
-- Damn, those proofs on natural numbers are hard - I wish Omega was in mathlib4...
simp [Nat.add_one_le_iff]
simp [Nat.lt_iff_le_and_ne]
simp_all
def for_all_fin_aux {n : Nat} (f : Fin n → Prop) (m : Nat) (h : m ≤ n) : Prop :=
if heq: m = n then True
else
f ⟨ m, by simp_all [Nat.lt_iff_le_and_ne] ⟩ ∧
for_all_fin_aux f (m + 1) (by simp_all [add_one_le_iff_le_ne])
termination_by for_all_fin_aux n _ m h => n - m
decreasing_by
simp_wf
apply Nat.sub_add_lt_sub <;> simp
simp_all [add_one_le_iff_le_ne]
def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp)
theorem for_all_fin_aux_imp_forall {n : Nat} (f : Fin n → Prop) (m : Nat) :
(h : m ≤ n) →
for_all_fin_aux f m h → ∀ i, m ≤ i.val → f i
:= by
generalize h: (n - m) = k
revert m
induction k -- TODO: induction h rather?
case zero =>
simp_all
intro m h1 h2
have h: n = m := by
linarith
unfold for_all_fin_aux; simp_all
simp_all
-- There is no i s.t. m ≤ i
intro i h3; cases i; simp_all
linarith
case succ k hi =>
simp_all
intro m hk hmn
intro hf i hmi
have hne: m ≠ n := by
have hineq := Nat.lt_of_sub_eq_succ hk
linarith
-- m = i?
if heq: m = i then
-- Yes: simply use the `for_all_fin_aux` hyp
unfold for_all_fin_aux at hf
simp_all
tauto
else
-- No: use the induction hypothesis
have hlt: m < i := by simp_all [Nat.lt_iff_le_and_ne]
have hineq: m + 1 ≤ n := by
have hineq := Nat.lt_of_sub_eq_succ hk
simp [*, Nat.add_one_le_iff]
have heq1: n - (m + 1) = k := by
-- TODO: very annoying arithmetic proof
simp [Nat.sub_eq_iff_eq_add hineq]
have hineq1: m ≤ n := by linarith
simp [Nat.sub_eq_iff_eq_add hineq1] at hk
simp_arith [hk]
have hi := hi (m + 1) heq1 hineq
apply hi <;> simp_all
. unfold for_all_fin_aux at hf
simp_all
. simp_all [add_one_le_iff_le_ne]
-- TODO: this is not necessary anymore
theorem for_all_fin_imp_forall (n : Nat) (f : Fin n → Prop) :
for_all_fin f → ∀ i, f i
:= by
intro Hf i
apply for_all_fin_aux_imp_forall <;> try assumption
simp
/- Automating the proofs -/
@[simp] theorem is_valid_p_same
(k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) (x : Result c) :
is_valid_p k (λ _ => x) := by
simp [is_valid_p, k_to_gen, e_to_gen]
@[simp] theorem is_valid_p_rec
(k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) (i : id) (x : a i) :
is_valid_p k (λ k => k i x) := by
simp [is_valid_p, k_to_gen, e_to_gen, kk_to_gen, kk_of_gen]
theorem is_valid_p_ite
(k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x))
(cond : Prop) [h : Decidable cond]
{e1 e2 : ((i:id) → (x:a i) → Result (b i x)) → Result c}
(he1: is_valid_p k e1) (he2 : is_valid_p k e2) :
is_valid_p k (λ k => ite cond (e1 k) (e2 k)) := by
split <;> assumption
theorem is_valid_p_dite
(k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x))
(cond : Prop) [h : Decidable cond]
{e1 : ((i:id) → (x:a i) → Result (b i x)) → cond → Result c}
{e2 : ((i:id) → (x:a i) → Result (b i x)) → Not cond → Result c}
(he1: ∀ x, is_valid_p k (λ k => e1 k x))
(he2 : ∀ x, is_valid_p k (λ k => e2 k x)) :
is_valid_p k (λ k => dite cond (e1 k) (e2 k)) := by
split <;> simp [*]
theorem is_valid_p_bind
{{k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)}}
{{g : ((i:id) → (x:a i) → Result (b i x)) → Result c}}
{{h : c → ((i:id) → (x:a i) → Result (b i x)) → Result d}}
(Hgvalid : is_valid_p k g)
(Hhvalid : ∀ y, is_valid_p k (h y)) :
is_valid_p k (λ k => do let y ← g k; h y k) := by
apply Fix.is_valid_p_bind
. apply Hgvalid
. apply Hhvalid
def Funs.is_valid_p
(k : k_ty id a b)
(fl : Funs id a b tys) :
Prop :=
match fl with
| .Nil => True
| .Cons f fl => (∀ x, FixI.is_valid_p k (λ k => f k x)) ∧ fl.is_valid_p k
theorem Funs.is_valid_p_Nil (k : k_ty id a b) :
Funs.is_valid_p k Funs.Nil := by simp [Funs.is_valid_p]
def Funs.is_valid_p_is_valid_p_aux
{k : k_ty id a b}
{tys : List in_out_ty}
(fl : Funs id a b tys) (Hvalid : is_valid_p k fl) :
∀ (i : Fin tys.length) (x : (tys.get i).fst), FixI.is_valid_p k (fun k => get_fun fl i k x) := by
-- Prepare the induction
have ⟨ n, Hn ⟩ : { n : Nat // tys.length = n } := ⟨ tys.length, by rfl ⟩
revert tys fl Hvalid
induction n
--
case zero =>
intro tys fl Hvalid Hlen;
have Heq: tys = [] := by cases tys <;> simp_all
intro i x
simp_all
have Hi := i.isLt
simp_all
case succ n Hn =>
intro tys fl Hvalid Hlen i x;
cases fl <;> simp at Hlen i x Hvalid
rename_i ity oty tys f fl
have ⟨ Hvf, Hvalid ⟩ := Hvalid
have Hvf1: is_valid_p k fl := by
simp [Hvalid, Funs.is_valid_p]
have Hn := @Hn tys fl Hvf1 (by simp [*])
-- Case disjunction on i
match i with
| ⟨ 0, _ ⟩ =>
simp at x
simp [get_fun]
apply (Hvf x)
| ⟨ .succ j, HiLt ⟩ =>
simp_arith at HiLt
simp at x
let j : Fin (List.length tys) := ⟨ j, by simp_arith [HiLt] ⟩
have Hn := Hn j x
apply Hn
def Funs.is_valid_p_is_valid_p
(tys : List in_out_ty)
(k : k_ty (Fin (List.length tys)) (λ i => (tys.get i).fst) (fun i x => (List.get tys i).snd x))
(fl : Funs (Fin tys.length) (λ i => (tys.get i).fst) (λ i x => (tys.get i).snd x) tys) :
fl.is_valid_p k →
∀ (i : Fin tys.length) (x : (tys.get i).fst),
FixI.is_valid_p k (fun k => get_fun fl i k x)
:= by
intro Hvalid
apply is_valid_p_is_valid_p_aux; simp [*]
end FixI
namespace Ex1
/- An example of use of the fixed-point -/
open Primitives Fix
variable {a : Type} (k : (List a × Int) → Result a)
def list_nth_body (x : (List a × Int)) : Result a :=
let (ls, i) := x
match ls with
| [] => .fail .panic
| hd :: tl =>
if i = 0 then .ret hd
else k (tl, i - 1)
theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by
intro k x
simp [list_nth_body]
split <;> simp
split <;> simp
def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i)
-- The unfolding equation - diverges if `i < 0`
theorem list_nth_eq (ls : List a) (i : Int) :
list_nth ls i =
match ls with
| [] => .fail .panic
| hd :: tl =>
if i = 0 then .ret hd
else list_nth tl (i - 1)
:= by
have Heq := is_valid_fix_fixed_eq (@list_nth_body_is_valid a)
simp [list_nth]
conv => lhs; rw [Heq]
end Ex1
namespace Ex2
/- Same as Ex1, but we make the body of nth non tail-rec (this is mostly
to see what happens when there are let-bindings) -/
open Primitives Fix
variable {a : Type} (k : (List a × Int) → Result a)
def list_nth_body (x : (List a × Int)) : Result a :=
let (ls, i) := x
match ls with
| [] => .fail .panic
| hd :: tl =>
if i = 0 then .ret hd
else
do
let y ← k (tl, i - 1)
.ret y
theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by
intro k x
simp [list_nth_body]
split <;> simp
split <;> simp
apply is_valid_p_bind <;> intros <;> simp_all
def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i)
-- The unfolding equation - diverges if `i < 0`
theorem list_nth_eq (ls : List a) (i : Int) :
(list_nth ls i =
match ls with
| [] => .fail .panic
| hd :: tl =>
if i = 0 then .ret hd
else
do
let y ← list_nth tl (i - 1)
.ret y)
:= by
have Heq := is_valid_fix_fixed_eq (@list_nth_body_is_valid a)
simp [list_nth]
conv => lhs; rw [Heq]
end Ex2
namespace Ex3
/- Mutually recursive functions - first encoding (see Ex4 for a better encoding) -/
open Primitives Fix
/- Because we have mutually recursive functions, we use a sum for the inputs
and the output types:
- inputs: the sum allows to select the function to call in the recursive
calls (and the functions may not have the same input types)
- outputs: this case is degenerate because `even` and `odd` have the same
return type `Bool`, but generally speaking we need a sum type because
the functions in the mutually recursive group may have different
return types.
-/
variable (k : (Int ⊕ Int) → Result (Bool ⊕ Bool))
def is_even_is_odd_body (x : (Int ⊕ Int)) : Result (Bool ⊕ Bool) :=
match x with
| .inl i =>
-- Body of `is_even`
if i = 0
then .ret (.inl true) -- We use .inl because this is `is_even`
else
do
let b ←
do
-- Call `odd`: we need to wrap the input value in `.inr`, then
-- extract the output value
let r ← k (.inr (i- 1))
match r with
| .inl _ => .fail .panic -- Invalid output
| .inr b => .ret b
-- Wrap the return value
.ret (.inl b)
| .inr i =>
-- Body of `is_odd`
if i = 0
then .ret (.inr false) -- We use .inr because this is `is_odd`
else
do
let b ←
do
-- Call `is_even`: we need to wrap the input value in .inr, then
-- extract the output value
let r ← k (.inl (i- 1))
match r with
| .inl b => .ret b
| .inr _ => .fail .panic -- Invalid output
-- Wrap the return value
.ret (.inr b)
theorem is_even_is_odd_body_is_valid:
∀ k x, is_valid_p k (λ k => is_even_is_odd_body k x) := by
intro k x
simp [is_even_is_odd_body]
split <;> simp <;> split <;> simp
apply is_valid_p_bind; simp
intros; split <;> simp
apply is_valid_p_bind; simp
intros; split <;> simp
def is_even (i : Int): Result Bool :=
do
let r ← fix is_even_is_odd_body (.inl i)
match r with
| .inl b => .ret b
| .inr _ => .fail .panic
def is_odd (i : Int): Result Bool :=
do
let r ← fix is_even_is_odd_body (.inr i)
match r with
| .inl _ => .fail .panic
| .inr b => .ret b
-- The unfolding equation for `is_even` - diverges if `i < 0`
theorem is_even_eq (i : Int) :
is_even i = (if i = 0 then .ret true else is_odd (i - 1))
:= by
have Heq := is_valid_fix_fixed_eq is_even_is_odd_body_is_valid
simp [is_even, is_odd]
conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp
-- Very annoying: we need to swap the matches
-- Doing this with rewriting lemmas is hard generally speaking
-- (especially as we may have to generate lemmas for user-defined
-- inductives on the fly).
-- The simplest is to repeatedly split then simplify (we identify
-- the outer match or monadic let-binding, and split on its scrutinee)
split <;> simp
cases H0 : fix is_even_is_odd_body (Sum.inr (i - 1)) <;> simp
rename_i v
split <;> simp
-- The unfolding equation for `is_odd` - diverges if `i < 0`
theorem is_odd_eq (i : Int) :
is_odd i = (if i = 0 then .ret false else is_even (i - 1))
:= by
have Heq := is_valid_fix_fixed_eq is_even_is_odd_body_is_valid
simp [is_even, is_odd]
conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp
-- Same remark as for `even`
split <;> simp
cases H0 : fix is_even_is_odd_body (Sum.inl (i - 1)) <;> simp
rename_i v
split <;> simp
end Ex3
namespace Ex4
/- Mutually recursive functions - 2nd encoding -/
open Primitives FixI
/- We make the input type and output types dependent on a parameter -/
@[simp] def tys : List in_out_ty := [mk_in_out_ty Int (λ _ => Bool), mk_in_out_ty Int (λ _ => Bool)]
@[simp] def input_ty (i : Fin 2) : Type := (tys.get i).fst
@[simp] def output_ty (i : Fin 2) (x : input_ty i) : Type :=
(tys.get i).snd x
/- The bodies are more natural -/
def is_even_body (k : (i : Fin 2) → (x : input_ty i) → Result (output_ty i x)) (i : Int) : Result Bool :=
if i = 0
then .ret true
else do
let b ← k 1 (i - 1)
.ret b
def is_odd_body (k : (i : Fin 2) → (x : input_ty i) → Result (output_ty i x)) (i : Int) : Result Bool :=
if i = 0
then .ret false
else do
let b ← k 0 (i - 1)
.ret b
@[simp] def bodies :
Funs (Fin 2) input_ty output_ty
[mk_in_out_ty Int (λ _ => Bool), mk_in_out_ty Int (λ _ => Bool)] :=
Funs.Cons (is_even_body) (Funs.Cons (is_odd_body) Funs.Nil)
def body (k : (i : Fin 2) → (x : input_ty i) → Result (output_ty i x)) (i: Fin 2) :
(x : input_ty i) → Result (output_ty i x) := get_fun bodies i k
theorem body_is_valid : is_valid body := by
-- Split the proof into proofs of validity of the individual bodies
rw [is_valid]
simp only [body]
intro k
apply (Funs.is_valid_p_is_valid_p tys)
simp [Funs.is_valid_p]
(repeat (apply And.intro)) <;> intro x <;> simp at x <;>
simp only [is_even_body, is_odd_body]
-- Prove the validity of the individual bodies
. split <;> simp
apply is_valid_p_bind <;> simp
. split <;> simp
apply is_valid_p_bind <;> simp
theorem body_fix_eq : fix body = body (fix body) :=
is_valid_fix_fixed_eq body_is_valid
def is_even (i : Int) : Result Bool := fix body 0 i
def is_odd (i : Int) : Result Bool := fix body 1 i
theorem is_even_eq (i : Int) : is_even i =
(if i = 0
then .ret true
else do
let b ← is_odd (i - 1)
.ret b) := by
simp [is_even, is_odd];
conv => lhs; rw [body_fix_eq]
theorem is_odd_eq (i : Int) : is_odd i =
(if i = 0
then .ret false
else do
let b ← is_even (i - 1)
.ret b) := by
simp [is_even, is_odd];
conv => lhs; rw [body_fix_eq]
end Ex4
namespace Ex5
/- Higher-order example -/
open Primitives Fix
variable {a b : Type}
/- An auxiliary function, which doesn't require the fixed-point -/
def map (f : a → Result b) (ls : List a) : Result (List b) :=
match ls with
| [] => .ret []
| hd :: tl =>
do
let hd ← f hd
let tl ← map f tl
.ret (hd :: tl)
/- The validity theorem for `map`, generic in `f` -/
theorem map_is_valid
{{f : (a → Result b) → a → Result c}}
(Hfvalid : ∀ k x, is_valid_p k (λ k => f k x))
(k : (a → Result b) → a → Result b)
(ls : List a) :
is_valid_p k (λ k => map (f k) ls) := by
induction ls <;> simp [map]
apply is_valid_p_bind <;> simp_all
intros
apply is_valid_p_bind <;> simp_all
/- An example which uses map -/
inductive Tree (a : Type) :=
| leaf (x : a)
| node (tl : List (Tree a))
def id_body (k : Tree a → Result (Tree a)) (t : Tree a) : Result (Tree a) :=
match t with
| .leaf x => .ret (.leaf x)
| .node tl =>
do
let tl ← map k tl
.ret (.node tl)
theorem id_body_is_valid :
∀ k x, is_valid_p k (λ k => @id_body a k x) := by
intro k x
simp only [id_body]
split <;> simp
apply is_valid_p_bind <;> simp [*]
-- We have to show that `map k tl` is valid
apply map_is_valid;
-- Remark: if we don't do the intro, then the last step is expensive:
-- "typeclass inference of Nonempty took 119ms"
intro k x
simp only [is_valid_p_same, is_valid_p_rec]
def id (t : Tree a) := fix id_body t
-- The unfolding equation
theorem id_eq (t : Tree a) :
(id t =
match t with
| .leaf x => .ret (.leaf x)
| .node tl =>
do
let tl ← map id tl
.ret (.node tl))
:= by
have Heq := is_valid_fix_fixed_eq (@id_body_is_valid a)
simp [id]
conv => lhs; rw [Heq]; simp; rw [id_body]
end Ex5
namespace Ex6
/- `list_nth` again, but this time we use FixI -/
open Primitives FixI
@[simp] def tys.{u} : List in_out_ty :=
[mk_in_out_ty ((a:Type u) × (List a × Int)) (λ ⟨ a, _ ⟩ => a)]
@[simp] def input_ty (i : Fin 1) := (tys.get i).fst
@[simp] def output_ty (i : Fin 1) (x : input_ty i) :=
(tys.get i).snd x
def list_nth_body.{u} (k : (i:Fin 1) → (x:input_ty i) → Result (output_ty i x))
(x : (a : Type u) × List a × Int) : Result x.fst :=
let ⟨ a, ls, i ⟩ := x
match ls with
| [] => .fail .panic
| hd :: tl =>
if i = 0 then .ret hd
else k 0 ⟨ a, tl, i - 1 ⟩
@[simp] def bodies :
Funs (Fin 1) input_ty output_ty tys :=
Funs.Cons list_nth_body Funs.Nil
def body (k : (i : Fin 1) → (x : input_ty i) → Result (output_ty i x)) (i: Fin 1) :
(x : input_ty i) → Result (output_ty i x) := get_fun bodies i k
theorem body_is_valid: is_valid body := by
-- Split the proof into proofs of validity of the individual bodies
rw [is_valid]
simp only [body]
intro k
apply (Funs.is_valid_p_is_valid_p tys)
simp [Funs.is_valid_p]
(repeat (apply And.intro)); intro x; simp at x
simp only [list_nth_body]
-- Prove the validity of the individual bodies
intro k x
simp [list_nth_body]
split <;> simp
split <;> simp
-- Writing the proof terms explicitly
theorem list_nth_body_is_valid' (k : k_ty (Fin 1) input_ty output_ty)
(x : (a : Type u) × List a × Int) : is_valid_p k (fun k => list_nth_body k x) :=
let ⟨ a, ls, i ⟩ := x
match ls with
| [] => is_valid_p_same k (.fail .panic)
| hd :: tl =>
is_valid_p_ite k (Eq i 0) (is_valid_p_same k (.ret hd)) (is_valid_p_rec k 0 ⟨a, tl, i-1⟩)
theorem body_is_valid' : is_valid body :=
fun k =>
Funs.is_valid_p_is_valid_p tys k bodies
(And.intro (list_nth_body_is_valid' k) (Funs.is_valid_p_Nil k))
def list_nth {a: Type u} (ls : List a) (i : Int) : Result a :=
fix body 0 ⟨ a, ls , i ⟩
-- The unfolding equation - diverges if `i < 0`
theorem list_nth_eq (ls : List a) (i : Int) :
list_nth ls i =
match ls with
| [] => .fail .panic
| hd :: tl =>
if i = 0 then .ret hd
else list_nth tl (i - 1)
:= by
have Heq := is_valid_fix_fixed_eq body_is_valid
simp [list_nth]
conv => lhs; rw [Heq]
-- Write the proof term explicitly: the generation of the proof term (without tactics)
-- is automatable, and the proof term is actually a lot simpler and smaller when we
-- don't use tactics.
theorem list_nth_eq'.{u} {a : Type u} (ls : List a) (i : Int) :
list_nth ls i =
match ls with
| [] => .fail .panic
| hd :: tl =>
if i = 0 then .ret hd
else list_nth tl (i - 1)
:=
-- Use the fixed-point equation
have Heq := is_valid_fix_fixed_eq body_is_valid.{u}
-- Add the index
have Heqi := congr_fun Heq 0
-- Add the input
have Heqix := congr_fun Heqi { fst := a, snd := (ls, i) }
-- Done
Heqix
end Ex6
|