summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Diverge.lean
blob: 0c1028bdf754853de4dd25bf09f1d791f200cc60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith

/-
TODO:
- we want an easier to use cases:
  - keeps in the goal an equation of the shape: `t = case`
  - if called on Prop terms, uses Classical.em
  Actually, the cases from mathlib seems already quite powerful
  (https://leanprover-community.github.io/mathlib_docs/tactics.html#cases)
  For instance: cases h : e
  Also: cases_matching
- better split tactic
- we need conversions to operate on the head of applications.
  Actually, something like this works:
  ```
  conv at Hl =>
    apply congr_fun
    simp [fix_fuel_P]
  ```
  Maybe we need a rpt ... ; focus?
- simplifier/rewriter have a strange behavior sometimes
-/

namespace Diverge

namespace Primitives
/-! # Copy-pasting from Primitives to make the file self-contained -/

inductive Error where
   | assertionFailure: Error
   | integerOverflow: Error
   | divisionByZero: Error
   | arrayOutOfBounds: Error
   | maximumSizeExceeded: Error
   | panic: Error
deriving Repr, BEq

open Error

inductive Result (α : Type u) where
  | ret (v: α): Result α
  | fail (e: Error): Result α
  | div
deriving Repr, BEq

open Result

def bind (x: Result α) (f: α -> Result β) : Result β :=
  match x with
  | ret v  => f v 
  | fail v => fail v
  | div => div

@[simp] theorem bind_ret (x : α) (f : α  Result β) : bind (.ret x) f = f x := by simp [bind]
@[simp] theorem bind_fail (x : Error) (f : α  Result β) : bind (.fail x) f = .fail x := by simp [bind]
@[simp] theorem bind_div (f : α  Result β) : bind .div f = .div := by simp [bind]

-- Allows using Result in do-blocks
instance : Bind Result where
  bind := bind

-- Allows using return x in do-blocks
instance : Pure Result where
  pure := fun x => ret x

@[simp] theorem bind_tc_ret (x : α) (f : α  Result β) :
  (do let y  .ret x; f y) = f x := by simp [Bind.bind, bind]

@[simp] theorem bind_tc_fail (x : Error) (f : α  Result β) :
  (do let y  fail x; f y) = fail x := by simp [Bind.bind, bind]

@[simp] theorem bind_tc_div (f : α  Result β) :
  (do let y  div; f y) = div := by simp [Bind.bind, bind]

def div? {α: Type} (r: Result α): Bool :=
  match r with
  | div => true
  | ret _ | fail _ => false

end Primitives

namespace Fix

  open Primitives
  open Result

  variable {a : Type} {b : a  Type}
  variable {c d : Type}

  /-! # The least fixed point definition and its properties -/

  def least_p (p : Nat  Prop) (n : Nat) : Prop := p n  ( m, m < n  ¬ p m)
  noncomputable def least (p : Nat  Prop) : Nat :=
    Classical.epsilon (least_p p)

  -- Auxiliary theorem for [least_spec]: if there exists an `n` satisfying `p`,
  -- there there exists a least `m` satisfying `p`.
  theorem least_spec_aux (p : Nat  Prop) :  (n : Nat), (hn : p n)   m, least_p p m := by
    apply Nat.strongRec'
    intros n hi hn
    -- Case disjunction on: is n the smallest n satisfying p?
    match Classical.em ( m, m < n  ¬ p m) with
    | .inl hlt =>
      -- Yes: trivial
      exists n
    | .inr hlt =>
      simp at *
      let  m,  hmlt, hm   := hlt
      have hi := hi m hmlt hm
      apply hi

  -- The specification of [least]: either `p` is never satisfied, or it is satisfied
  -- by `least p` and no `n < least p` satisfies `p`.
  theorem least_spec (p : Nat  Prop) : ( n, ¬ p n)  (p (least p)   n, n < least p  ¬ p n) := by
    -- Case disjunction on the existence of an `n` which satisfies `p`
    match Classical.em ( n, ¬ p n) with
    | .inl h =>
      -- There doesn't exist: trivial
      apply (Or.inl h)
    | .inr h =>
      -- There exists: we simply use `least_spec_aux` in combination with the property
      -- of the epsilon operator
      simp at *
      let  n, hn  := h
      apply Or.inr
      have hl := least_spec_aux p n hn
      have he := Classical.epsilon_spec hl
      apply he

  /-! # The fixed point definitions -/

  def fix_fuel (n : Nat) (f : ((x:a)  Result (b x))  (x:a)  Result (b x)) (x : a) :
    Result (b x) :=
    match n with
    | 0 => .div
    | n + 1 =>
      f (fix_fuel n f) x

  @[simp] def fix_fuel_pred (f : ((x:a)  Result (b x))  (x:a)  Result (b x))
    (x : a) (n : Nat) :=
    not (div? (fix_fuel n f x))

  def fix_fuel_P (f : ((x:a)  Result (b x))  (x:a)  Result (b x))
    (x : a) (n : Nat) : Prop :=
    fix_fuel_pred f x n

  noncomputable
  def fix (f : ((x:a)  Result (b x))  (x:a)  Result (b x)) (x : a) : Result (b x) :=
    fix_fuel (least (fix_fuel_P f x)) f x

  /-! # The validity property -/

  -- Monotonicity relation over results
  -- TODO: generalize (we should parameterize the definition by a relation over `a`)
  def result_rel {a : Type u} (x1 x2 : Result a) : Prop :=
    match x1 with
    | div => True
    | fail _ => x2 = x1
    | ret _ => x2 = x1 -- TODO: generalize

  -- Monotonicity relation over monadic arrows (i.e., Kleisli arrows)
  def karrow_rel (k1 k2 : (x:a)  Result (b x)) : Prop :=
     x, result_rel (k1 x) (k2 x)

  -- Monotonicity property for function bodies
  def is_mono (f : ((x:a)  Result (b x))  (x:a)  Result (b x)) : Prop :=
     {{k1 k2}}, karrow_rel k1 k2  karrow_rel (f k1) (f k2)

  -- "Continuity" property.
  -- We need this, and this looks a lot like continuity. Also see this paper:
  -- https://inria.hal.science/file/index/docid/216187/filename/tarski.pdf
  -- We define our "continuity" criteria so that it gives us what we need to
  -- prove the fixed-point equation, and we can also easily manipulate it.
  def is_cont (f : ((x:a)  Result (b x))  (x:a)  Result (b x)) : Prop :=
     x, (Hdiv :  n, fix_fuel (.succ n) f x = div)  f (fix f) x = div

  /-! # The proof of the fixed-point equation -/
  theorem fix_fuel_mono {f : ((x:a)  Result (b x))  (x:a)  Result (b x)}
    (Hmono : is_mono f) :
     {{n m}}, n  m  karrow_rel (fix_fuel n f) (fix_fuel m f) := by
    intros n
    induction n
    case zero => simp [karrow_rel, fix_fuel, result_rel]
    case succ n1 Hi =>
      intros m Hle x
      simp [result_rel]
      match m with
      | 0 =>
        exfalso
        zify at *
        linarith
      | Nat.succ m1 =>
        simp_arith at Hle
        simp [fix_fuel]
        have Hi := Hi Hle
        have Hmono := Hmono Hi x
        simp [result_rel] at Hmono
        apply Hmono

  @[simp] theorem neg_fix_fuel_P
    {f : ((x:a)  Result (b x))  (x:a)  Result (b x)} {x : a} {n : Nat} :
    ¬ fix_fuel_P f x n  (fix_fuel n f x = div) := by
    simp [fix_fuel_P, div?]
    cases fix_fuel n f x <;> simp  

  theorem fix_fuel_fix_mono {f : ((x:a)  Result (b x))  (x:a)  Result (b x)} (Hmono : is_mono f) :
     n, karrow_rel (fix_fuel n f) (fix f) := by
    intros n x
    simp [result_rel]
    have Hl := least_spec (fix_fuel_P f x)
    simp at Hl
    match Hl with
    | .inl Hl => simp [*]
    | .inr  Hl, Hn  =>
      match Classical.em (fix_fuel n f x = div) with
      | .inl Hd =>
        simp [*]
      | .inr Hd =>
        have Hineq : least (fix_fuel_P f x)  n := by
          -- Proof by contradiction
          cases Classical.em (least (fix_fuel_P f x)  n) <;> simp [*]
          simp at *
          rename_i Hineq
          have Hn := Hn n Hineq
          contradiction
        have Hfix : ¬ (fix f x = div) := by
          simp [fix]
          -- By property of the least upper bound
          revert Hd Hl
          -- TODO: there is no conversion to select the head of a function!
          conv => lhs; apply congr_fun; apply congr_fun; apply congr_fun; simp [fix_fuel_P, div?]
          cases fix_fuel (least (fix_fuel_P f x)) f x <;> simp
        have Hmono := fix_fuel_mono Hmono Hineq x
        simp [result_rel] at Hmono
        simp [fix] at *
        cases Heq: fix_fuel (least (fix_fuel_P f x)) f x <;>
        cases Heq':fix_fuel n f x <;>
        simp_all

  theorem fix_fuel_P_least {f : ((x:a)  Result (b x))  (x:a)  Result (b x)} (Hmono : is_mono f) :
     {{x n}}, fix_fuel_P f x n  fix_fuel_P f x (least (fix_fuel_P f x)) := by
    intros x n Hf
    have Hfmono := fix_fuel_fix_mono Hmono n x
    -- TODO: there is no conversion to select the head of a function!
    conv => apply congr_fun; simp [fix_fuel_P]
    simp [fix_fuel_P] at Hf
    revert Hf Hfmono
    simp [div?, result_rel, fix]
    cases fix_fuel n f x <;> simp_all

  -- Prove the fixed point equation in the case there exists some fuel for which
  -- the execution terminates
  theorem fix_fixed_eq_terminates (f : ((x:a)  Result (b x))  (x:a)  Result (b x)) (Hmono : is_mono f)
    (x : a) (n : Nat) (He : fix_fuel_P f x n) :
    fix f x = f (fix f) x := by
    have Hl := fix_fuel_P_least Hmono He
    -- TODO: better control of simplification
    conv at Hl =>
      apply congr_fun
      simp [fix_fuel_P]
    -- The least upper bound is > 0
    have  n, Hsucc  :  n, least (fix_fuel_P f x) = Nat.succ n := by
      revert Hl
      simp [div?]
      cases least (fix_fuel_P f x) <;> simp [fix_fuel]
    simp [Hsucc] at Hl
    revert Hl
    simp [*, div?, fix, fix_fuel]
    -- Use the monotonicity
    have Hfixmono := fix_fuel_fix_mono Hmono n
    have Hvm := Hmono Hfixmono x
    -- Use functional extensionality
    simp [result_rel, fix] at Hvm
    revert Hvm
    split <;> simp [*] <;> intros <;> simp [*]

  theorem fix_fixed_eq_forall {{f : ((x:a)  Result (b x))  (x:a)  Result (b x)}}
    (Hmono : is_mono f) (Hcont : is_cont f) :
     x, fix f x = f (fix f) x := by
    intros x
    -- Case disjunction: is there a fuel such that the execution successfully execute?
    match Classical.em ( n, fix_fuel_P f x n) with
    | .inr He =>
      -- No fuel: the fixed point evaluates to `div`
      --simp [fix] at *
      simp at *
      conv => lhs; simp [fix]
      have Hel := He (Nat.succ (least (fix_fuel_P f x))); simp [*, fix_fuel] at *; clear Hel
      -- Use the "continuity" of `f`
      have He :  n, fix_fuel (.succ n) f x = div := by intros; simp [*]
      have Hcont := Hcont x He
      simp [Hcont]
    | .inl  n, He  => apply fix_fixed_eq_terminates f Hmono x n He

  -- The final fixed point equation
  theorem fix_fixed_eq {{f : ((x:a)  Result (b x))  (x:a)  Result (b x)}}
    (Hmono : is_mono f) (Hcont : is_cont f) :
    fix f = f (fix f) := by
    have Heq := fix_fixed_eq_forall Hmono Hcont
    have Heq1 : fix f = (λ x => fix f x) := by simp
    rw [Heq1]
    conv => lhs; ext; simp [Heq]

  /-! # Making the proofs of validity manageable (and automatable) -/

  -- Monotonicity property for expressions
  def is_mono_p (e : ((x:a)  Result (b x))  Result c) : Prop :=
     {{k1 k2}}, karrow_rel k1 k2  result_rel (e k1) (e k2)

  theorem is_mono_p_same (x : Result c) :
    @is_mono_p a b c (λ _ => x) := by
    simp [is_mono_p, karrow_rel, result_rel]
    split <;> simp

  theorem is_mono_p_rec (x : a) :
    @is_mono_p a b (b x) (λ f => f x) := by
    simp_all [is_mono_p, karrow_rel, result_rel]

  -- The important lemma about `is_mono_p`
  theorem is_mono_p_bind
    (g : ((x:a)  Result (b x))  Result c)
    (h : c  ((x:a)  Result (b x))  Result d) :
    is_mono_p g 
    ( y, is_mono_p (h y)) 
    @is_mono_p a b d (λ k => do let y  g k; h y k) := by
    intro hg hh
    simp [is_mono_p]
    intro fg fh Hrgh
    simp [karrow_rel, result_rel]
    have hg := hg Hrgh; simp [result_rel] at hg
    cases heq0: g fg <;> simp_all
    rename_i y _
    have hh := hh y Hrgh; simp [result_rel] at hh
    simp_all

  -- Continuity property for expressions - note that we take the continuation
  -- as parameter
  def is_cont_p (k : ((x:a)  Result (b x))  (x:a)  Result (b x))
    (e : ((x:a)  Result (b x))  Result c) : Prop :=
    (Hc :  n, e (fix_fuel n k) = .div) 
    e (fix k) = .div

  theorem is_cont_p_same (k : ((x:a)  Result (b x))  (x:a)  Result (b x))
    (x : Result c) :
    is_cont_p k (λ _ => x) := by
    simp [is_cont_p]

  theorem is_cont_p_rec (f : ((x:a)  Result (b x))  (x:a)  Result (b x)) (x : a) :
    is_cont_p f (λ f => f x) := by
    simp_all [is_cont_p, fix]

  -- The important lemma about `is_cont_p`
  theorem is_cont_p_bind
    (k : ((x:a)  Result (b x))  (x:a)  Result (b x))
    (Hkmono : is_mono k)
    (g : ((x:a)  Result (b x))  Result c)
    (h : c  ((x:a)  Result (b x))  Result d) :
    is_mono_p g 
    is_cont_p k g 
    ( y, is_mono_p (h y)) 
    ( y, is_cont_p k (h y)) 
    is_cont_p k (λ k => do let y  g k; h y k) := by
    intro Hgmono Hgcont Hhmono Hhcont
    simp [is_cont_p]
    intro Hdiv
    -- Case on `g (fix... k)`: is there an n s.t. it terminates?
    cases Classical.em ( n, g (fix_fuel n k) = .div) <;> rename_i Hn
    . -- Case 1: g diverges
      have Hgcont := Hgcont Hn
      simp_all
    . -- Case 2: g doesn't diverge
      simp at Hn
      let  n, Hn  := Hn
      have Hdivn := Hdiv n
      have Hffmono := fix_fuel_fix_mono Hkmono n
      have Hgeq := Hgmono Hffmono
      simp [result_rel] at Hgeq
      cases Heq: g (fix_fuel n k) <;> rename_i y <;> simp_all
      -- Remains the .ret case
      -- Use Hdiv to prove that: ∀ n, h y (fix_fuel n f) = div
      -- We do this in two steps: first we prove it for m ≥ n
      have Hhdiv:  m, h y (fix_fuel m k) = .div := by
        have Hhdiv :  m, n  m  h y (fix_fuel m k) = .div := by
          -- We use the fact that `g (fix_fuel n f) = .div`, combined with Hdiv
          intro m Hle
          have Hdivm := Hdiv m
          -- Monotonicity of g
          have Hffmono := fix_fuel_mono Hkmono Hle
          have Hgmono := Hgmono Hffmono
          -- We need to clear Hdiv because otherwise simp_all rewrites Hdivm with Hdiv
          clear Hdiv
          simp_all [result_rel]
        intro m
        -- TODO: we shouldn't need the excluded middle here because it is decidable
        cases Classical.em (n  m) <;> rename_i Hl
        . apply Hhdiv; assumption
        . simp at Hl
          -- Make a case disjunction on `h y (fix_fuel m k)`: if it is not equal
          -- to div, use the monotonicity of `h y`
          have Hle : m  n := by linarith
          have Hffmono := fix_fuel_mono Hkmono Hle
          have Hmono := Hhmono y Hffmono
          simp [result_rel] at Hmono
          cases Heq: h y (fix_fuel m k) <;> simp_all
      -- We can now use the continuity hypothesis for h
      apply Hhcont; assumption

  -- The validity property for an expression
  def is_valid_p (k : ((x:a)  Result (b x))  (x:a)  Result (b x))
    (e : ((x:a)  Result (b x))  Result c) : Prop :=
    is_mono_p e 
    (is_mono k  is_cont_p k e)

  @[simp] theorem is_valid_p_same
    (k : ((x:a)  Result (b x))  (x:a)  Result (b x)) (x : Result c) :
    is_valid_p k (λ _ => x) := by
    simp [is_valid_p, is_mono_p_same, is_cont_p_same]

  @[simp] theorem is_valid_p_rec
    (k : ((x:a)  Result (b x))  (x:a)  Result (b x)) (x : a) :
    is_valid_p k (λ k => k x) := by
    simp_all [is_valid_p, is_mono_p_rec, is_cont_p_rec]

  -- Lean is good at unification: we can write a very general version
  -- (in particular, it will manage to figure out `g` and `h` when we
  -- apply the lemma)
  theorem is_valid_p_bind
    {{k : ((x:a)  Result (b x))  (x:a)  Result (b x)}}
    {{g : ((x:a)  Result (b x))  Result c}}
    {{h : c  ((x:a)  Result (b x))  Result d}}
    (Hgvalid : is_valid_p k g)
    (Hhvalid :  y, is_valid_p k (h y)) :
    is_valid_p k (λ k => do let y  g k; h y k) := by
    let  Hgmono, Hgcont  := Hgvalid
    simp [is_valid_p, forall_and] at Hhvalid
    have  Hhmono, Hhcont  := Hhvalid
    simp [ imp_forall_iff] at Hhcont
    simp [is_valid_p]; constructor
    . -- Monotonicity
      apply is_mono_p_bind <;> assumption
    . -- Continuity
      intro Hkmono
      have Hgcont := Hgcont Hkmono
      have Hhcont := Hhcont Hkmono
      apply is_cont_p_bind <;> assumption

  theorem is_valid_p_imp_is_valid {{e : ((x:a)  Result (b x))  (x:a)  Result (b x)}}
    (Hvalid :  k x, is_valid_p k (λ k => e k x)) :
    is_mono e  is_cont e := by
    have Hmono : is_mono e := by
      intro f h Hr x
      have Hmono := Hvalid (λ _ _ => .div) x
      have Hmono := Hmono.left
      apply Hmono; assumption
    have Hcont : is_cont e := by
      intro x Hdiv
      have Hcont := (Hvalid e x).right Hmono
      simp [is_cont_p] at Hcont
      apply Hcont
      intro n
      have Hdiv := Hdiv n
      simp [fix_fuel] at Hdiv
      simp [*]
    simp [*]

  theorem is_valid_p_fix_fixed_eq {{e : ((x:a)  Result (b x))  (x:a)  Result (b x)}}
    (Hvalid :  k x, is_valid_p k (λ k => e k x)) :
    fix e = e (fix e) := by
    have  Hmono, Hcont  := is_valid_p_imp_is_valid Hvalid
    exact fix_fixed_eq Hmono Hcont

end Fix

namespace Ex1
  /- An example of use of the fixed-point -/
  open Primitives Fix

  variable {a : Type} (k : (List a × Int)  Result a)

  def list_nth_body (x : (List a × Int)) : Result a :=
    let (ls, i) := x
    match ls with
    | [] => .fail .panic
    | hd :: tl =>
      if i = 0 then .ret hd
      else k (tl, i - 1)

  theorem list_nth_body_is_valid:  k x, is_valid_p k (λ k => @list_nth_body a k x) := by
    intro k x
    simp [list_nth_body]
    split <;> simp
    split <;> simp

  noncomputable
  def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i)

  -- The unfolding equation - diverges if `i < 0`
  theorem list_nth_eq (ls : List a) (i : Int) :
    list_nth ls i =
      match ls with
      | [] => .fail .panic
      | hd :: tl =>
        if i = 0 then .ret hd
        else list_nth tl (i - 1)
    := by
    have Heq := is_valid_p_fix_fixed_eq (@list_nth_body_is_valid a)
    simp [list_nth]
    conv => lhs; rw [Heq]

end Ex1

namespace Ex2
  /- Same as Ex1, but we make the body of nth non tail-rec (this is mostly
     to see what happens when there are let-bindings) -/
  open Primitives Fix

  variable {a : Type} (k : (List a × Int)  Result a)

  def list_nth_body (x : (List a × Int)) : Result a :=
    let (ls, i) := x
    match ls with
    | [] => .fail .panic
    | hd :: tl =>
      if i = 0 then .ret hd
      else
        do
          let y  k (tl, i - 1)
          .ret y

  theorem list_nth_body_is_valid:  k x, is_valid_p k (λ k => @list_nth_body a k x) := by
    intro k x
    simp [list_nth_body]
    split <;> simp
    split <;> simp
    apply is_valid_p_bind <;> intros <;> simp_all

  noncomputable
  def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i)

  -- The unfolding equation - diverges if `i < 0`
  theorem list_nth_eq (ls : List a) (i : Int) :
    (list_nth ls i =
       match ls with
       | [] => .fail .panic
       | hd :: tl =>
         if i = 0 then .ret hd
         else
           do
             let y  list_nth tl (i - 1)
             .ret y)
    := by
    have Heq := is_valid_p_fix_fixed_eq (@list_nth_body_is_valid a)
    simp [list_nth]
    conv => lhs; rw [Heq]

end Ex2

namespace Ex3
  /- Mutually recursive functions - first encoding (see Ex4 for a better encoding) -/
  open Primitives Fix

  /- Because we have mutually recursive functions, we use a sum for the inputs
     and the output types:
     - inputs: the sum allows to select the function to call in the recursive
       calls (and the functions may not have the same input types)
     - outputs: this case is degenerate because `even` and `odd` have the same
       return type `Bool`, but generally speaking we need a sum type because
       the functions in the mutually recursive group may have different
       return types.
   -/
  variable (k : (Int  Int)  Result (Bool  Bool))

  def is_even_is_odd_body (x : (Int  Int)) : Result (Bool  Bool) :=
    match x with
    | .inl i =>
      -- Body of `is_even`
      if i = 0
      then .ret (.inl true) -- We use .inl because this is `is_even`
      else
        do
          let b 
            do
              -- Call `odd`: we need to wrap the input value in `.inr`, then
              -- extract the output value
              let r  k (.inr (i- 1))
              match r with
              | .inl _ => .fail .panic -- Invalid output
              | .inr b => .ret b
          -- Wrap the return value
          .ret (.inl b)
    | .inr i =>
      -- Body of `is_odd`
      if i = 0
      then .ret (.inr false) -- We use .inr because this is `is_odd`
      else
        do
          let b 
            do
              -- Call `is_even`: we need to wrap the input value in .inr, then
              -- extract the output value
              let r  k (.inl (i- 1))
              match r with
              | .inl b => .ret b
              | .inr _ => .fail .panic -- Invalid output
          -- Wrap the return value
          .ret (.inr b)

  theorem is_even_is_odd_body_is_valid:
     k x, is_valid_p k (λ k => is_even_is_odd_body k x) := by
    intro k x
    simp [is_even_is_odd_body]
    split <;> simp <;> split <;> simp
    apply is_valid_p_bind; simp
    intros; split <;> simp
    apply is_valid_p_bind; simp
    intros; split <;> simp

  noncomputable
  def is_even (i : Int): Result Bool :=
    do
      let r  fix is_even_is_odd_body (.inl i)
      match r with
      | .inl b => .ret b
      | .inr _ => .fail .panic

  noncomputable
  def is_odd (i : Int): Result Bool :=
    do
      let r  fix is_even_is_odd_body (.inr i)
      match r with
      | .inl _ => .fail .panic
      | .inr b => .ret b

  -- The unfolding equation for `is_even` - diverges if `i < 0`
  theorem is_even_eq (i : Int) :
    is_even i = (if i = 0 then .ret true else is_odd (i - 1))
    := by
    have Heq := is_valid_p_fix_fixed_eq is_even_is_odd_body_is_valid
    simp [is_even, is_odd]
    conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp
    -- Very annoying: we need to swap the matches
    -- Doing this with rewriting lemmas is hard generally speaking
    -- (especially as we may have to generate lemmas for user-defined
    -- inductives on the fly).
    -- The simplest is to repeatedly split then simplify (we identify
    -- the outer match or monadic let-binding, and split on its scrutinee)
    split <;> simp
    cases H0 : fix is_even_is_odd_body (Sum.inr (i - 1)) <;> simp
    rename_i v
    split <;> simp

  -- The unfolding equation for `is_odd` - diverges if `i < 0`
  theorem is_odd_eq (i : Int) :
    is_odd i = (if i = 0 then .ret false else is_even (i - 1))
    := by
    have Heq := is_valid_p_fix_fixed_eq is_even_is_odd_body_is_valid
    simp [is_even, is_odd]
    conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp
    -- Same remark as for `even`
    split <;> simp
    cases H0 : fix is_even_is_odd_body (Sum.inl (i - 1)) <;> simp
    rename_i v
    split <;> simp

end Ex3

namespace Ex4
  /- Mutually recursive functions - 2nd encoding -/
  open Primitives Fix

  attribute [local simp] List.get

  /- We make the input type and output types dependent on a parameter -/
  @[simp] def input_ty (i : Fin 2) : Type :=
    [Int, Int].get i

  @[simp] def output_ty (i : Fin 2) : Type :=
    [Bool, Bool].get i

  /- The continuation -/
  variable (k : (i : Fin 2)  input_ty i  Result (output_ty i))

  /- The bodies are more natural -/
  def is_even_body (k : (i : Fin 2)  input_ty i  Result (output_ty i)) (i : Int) : Result Bool :=
    if i = 0
      then .ret true
    else do
      let b  k 1 (i - 1)
      .ret b

  def is_odd_body (i : Int) : Result Bool :=
    if i = 0
      then .ret false
    else do
      let b  k 0 (i - 1)
      .ret b

  inductive Funs : List (Type u)  List (Type u)  Type (u + 1) :=
    | Nil : Funs [] []
    | Cons {ity oty : Type u} {itys otys : List (Type u)}
           (f : ity  Result oty) (tl : Funs itys otys) : Funs (ity :: itys) (oty :: otys)

  theorem Funs.length_eq {itys otys : List (Type)} (fl : Funs itys otys) :
    itys.length = otys.length :=
    match fl with
    | .Nil => by simp
    | .Cons f tl =>
      have h:= Funs.length_eq tl
      by simp [h]

  @[simp] def Funs.cast_fin {itys otys : List (Type)}
    (fl : Funs itys otys) (i : Fin itys.length) : Fin otys.length :=
     i.val, by have h:= fl.length_eq; have h1:= i.isLt; simp_all 

  @[simp] def bodies (k : (i : Fin 2)  input_ty i  Result (output_ty i)) :
    Funs [Int, Int] [Bool, Bool] :=
    Funs.Cons (is_even_body k) (Funs.Cons (is_odd_body k) Funs.Nil)

  @[simp] def get_fun {itys otys : List (Type)} (fl : Funs itys otys) :
    (i : Fin itys.length)  itys.get i  Result (otys.get (fl.cast_fin i)) :=
    match fl with
    | .Nil => λ i => by have h:= i.isLt; simp at h
    | @Funs.Cons ity oty itys1 otys1 f tl =>
      λ i =>
      if h: i.val = 0 then
        Eq.mp (by cases i; simp_all [List.get]) f
      else
        let j := i.val - 1
        have Hj: j < itys1.length := by
          have Hi := i.isLt
          simp at Hi
          revert Hi
          cases Heq: i.val <;> simp_all
          simp_arith
        let j: Fin itys1.length :=  j, Hj 
        Eq.mp
          (by
            cases Heq: i; rename_i val isLt;
            cases Heq': j; rename_i val' isLt;
            cases val <;> simp_all [List.get])
          (get_fun tl j)

  def body (k : (i : Fin 2)  input_ty i  Result (output_ty i)) (i: Fin 2) :
    input_ty i  Result (output_ty i) := get_fun (bodies k) i

  def fix_ {n : Nat} {ity oty : Fin n  Type}
    (f : ((i:Fin n)  ity i  Result (oty i))  (i:Fin n)  ity i  Result (oty i)) :
    (i:Fin n)  ity i  Result (oty i) :=
    sorry

  theorem body_fix_eq : fix_ body = body (fix_ body) := sorry

  def is_even (i : Int) : Result Bool := fix_ body 0 i
  def is_odd (i : Int) : Result Bool := fix_ body 1 i

  theorem is_even_eq (i : Int) : is_even i =
    (if i = 0
       then .ret true
     else do
       let b  is_odd (i - 1)
       .ret b) := by
    simp [is_even, is_odd];
    conv => lhs; rw [body_fix_eq]

  theorem is_odd_eq (i : Int) : is_odd i =
    (if i = 0
       then .ret false
     else do
       let b  is_even (i - 1)
       .ret b) := by
    simp [is_even, is_odd];
    conv => lhs; rw [body_fix_eq]

end Ex4

namespace Ex5
  /- Higher-order example -/
  open Primitives Fix

  variable {a b : Type}

  /- An auxiliary function, which doesn't require the fixed-point -/
  def map (f : a  Result b) (ls : List a) : Result (List b) :=
    match ls with
    | [] => .ret []
    | hd :: tl =>
      do
        let hd  f hd
        let tl  map f tl
        .ret (hd :: tl)

  /- The validity theorem for `map`, generic in `f` -/
  theorem map_is_valid
    {{f : (a  Result b)  a  Result c}}
    (Hfvalid :  k x, is_valid_p k (λ k => f k x))
    (k : (a  Result b)  a  Result b)
    (ls : List a) :
    is_valid_p k (λ k => map (f k) ls) := by
    induction ls <;> simp [map]
    apply is_valid_p_bind <;> simp_all
    intros
    apply is_valid_p_bind <;> simp_all

  /- An example which uses map -/
  inductive Tree (a : Type) :=
  | leaf (x : a)
  | node (tl : List (Tree a))

  def id_body (k : Tree a  Result (Tree a)) (t : Tree a) : Result (Tree a) :=
    match t with
    | .leaf x => .ret (.leaf x)
    | .node tl =>
      do
        let tl  map k tl
        .ret (.node tl)

  theorem id_body_is_valid :
     k x, is_valid_p k (λ k => @id_body a k x) := by
    intro k x
    simp [id_body]
    split <;> simp
    apply is_valid_p_bind <;> simp_all
    -- We have to show that `map k tl` is valid
    apply map_is_valid; simp

  noncomputable def id (t : Tree a) := fix id_body t

  -- The unfolding equation
  theorem id_eq (t : Tree a) :
    (id t =
       match t with
       | .leaf x => .ret (.leaf x)
       | .node tl =>
       do
         let tl  map id tl
         .ret (.node tl))
    := by
    have Heq := is_valid_p_fix_fixed_eq (@id_body_is_valid a)
    simp [id]
    conv => lhs; rw [Heq]; simp; rw [id_body]

end Ex5

end Diverge