summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Arith/Int.lean
blob: a57f8bb179c4505d0f3df6248ec434d922f46b59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/- This file contains tactics to solve arithmetic goals -/

import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith
-- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet
--import Mathlib.Tactic.Omega
import Base.Utils
import Base.Arith.Base

namespace Arith

open Utils

-- Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)`
-- but the lookup didn't work
class HasIntProp (a : Sort u) where
  prop_ty : a  Prop
  prop :  x:a, prop_ty x

class PropHasImp (x : Prop) where
  concl : Prop
  prop : x  concl

instance (p : Int  Prop) : HasIntProp (Subtype p) where
  prop_ty := λ x => p x
  prop := λ x => x.property

-- This also works for `x ≠ y` because this expression reduces to `¬ x = y`
-- and `Ne` is marked as `reducible`
instance (x y : Int) : PropHasImp (¬ x = y) where
  concl := x < y  x > y
  prop := λ (h:x  y) => ne_is_lt_or_gt h

-- Check if a proposition is a linear integer proposition.
-- We notably use this to check the goals.
class IsLinearIntProp (x : Prop) where

instance (x y : Int) : IsLinearIntProp (x < y) where
instance (x y : Int) : IsLinearIntProp (x > y) where
instance (x y : Int) : IsLinearIntProp (x  y) where
instance (x y : Int) : IsLinearIntProp (x  y) where
instance (x y : Int) : IsLinearIntProp (x  y) where
instance (x y : Int) : IsLinearIntProp (x = y) where
/- It seems we don't need to do any special preprocessing when the *goal*
   has the following shape - I guess `linarith` automatically calls `intro` -/
instance (x y : Int) : IsLinearIntProp (¬ x = y) where

open Lean Lean.Elab Lean.Meta

-- Explore a term by decomposing the applications (we explore the applied
-- functions and their arguments, but ignore lambdas, forall, etc. -
-- should we go inside?).
-- Remark: we pretend projections are applications, and explore the projected
-- terms.
partial def foldTermApps (k : α  Expr  MetaM α) (s : α) (e : Expr) : MetaM α := do
  -- Explore the current expression
  let e := e.consumeMData
  let s  k s e
  -- Recurse
  match e with
  | .proj _ _ e' =>
    foldTermApps k s e'
  | .app .. =>
    e.withApp fun f args => do
      let s  k s f
      args.foldlM (foldTermApps k) s
  | _ => pure s

-- Provided a function `k` which lookups type class instances on an expression,
-- collect all the instances lookuped by applying `k` on the sub-expressions of `e`.
def collectInstances
  (k : Expr  MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do
  let k s e := do
    match  k e with
    | none => pure s
    | some i => pure (s.insert i)
  foldTermApps k s e

-- Similar to `collectInstances`, but explores all the local declarations in the
-- main context.
def collectInstancesFromMainCtx (k : Expr  MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do
  Tactic.withMainContext do
  -- Get the local context
  let ctx  Lean.MonadLCtx.getLCtx
  -- Just a matter of precaution
  let ctx  instantiateLCtxMVars ctx
  -- Initialize the hashset
  let hs := HashSet.empty
  -- Explore the declarations
  let decls  ctx.getDecls
  let hs  decls.foldlM (fun hs d => collectInstances k hs d.toExpr) hs
  -- Also explore the goal
  collectInstances k hs ( Tactic.getMainTarget)

-- Helper
def lookupProp (fName : String) (className : Name) (e : Expr) : MetaM (Option Expr) := do
  trace[Arith] fName
  -- TODO: do we need Lean.observing?
  -- This actually eliminates the error messages
  trace[Arith] m!"{fName}: {e}"
  Lean.observing? do
    trace[Arith] m!"{fName}: observing: {e}"
    let ty  Lean.Meta.inferType e
    let hasProp  mkAppM className #[ty]
    let hasPropInst  trySynthInstance hasProp
    match hasPropInst with
    | LOption.some i =>
      trace[Arith] "Found {fName} instance"
      let i_prop  mkProjection i (Name.mkSimple "prop")
      some ( mkAppM' i_prop #[e])
    | _ => none

-- Return an instance of `HasIntProp` for `e` if it has some
def lookupHasIntProp (e : Expr) : MetaM (Option Expr) :=
  lookupProp "lookupHasIntProp" ``HasIntProp e

-- Collect the instances of `HasIntProp` for the subexpressions in the context
def collectHasIntPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do
  collectInstancesFromMainCtx lookupHasIntProp

-- Return an instance of `PropHasImp` for `e` if it has some
def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do
  trace[Arith] m!"lookupPropHasImp: {e}"
  -- TODO: do we need Lean.observing?
  -- This actually eliminates the error messages
  Lean.observing? do
    trace[Arith] "lookupPropHasImp: observing: {e}"
    let ty  Lean.Meta.inferType e
    trace[Arith] "lookupPropHasImp: ty: {ty}"
    let cl  mkAppM ``PropHasImp #[ty]
    let inst  trySynthInstance cl
    match inst with
    | LOption.some i =>
      trace[Arith] "Found PropHasImp instance"
      let i_prop   mkProjection i (Name.mkSimple "prop")
      some ( mkAppM' i_prop #[e])
    | _ => none

-- Collect the instances of `PropHasImp` for the subexpressions in the context
def collectPropHasImpInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do
  collectInstancesFromMainCtx lookupPropHasImp

elab "display_prop_has_imp_instances" : tactic => do
  trace[Arith] "Displaying the PropHasImp instances"
  let hs  collectPropHasImpInstancesFromMainCtx
  hs.forM fun e => do
    trace[Arith] "+ PropHasImp instance: {e}"

example (x y : Int) (_ : x  y) (_ : ¬ x = y) : True := by
  display_prop_has_imp_instances
  simp

-- Lookup instances in a context and introduce them with additional declarations.
def introInstances (declToUnfold : Name) (lookup : Expr  MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do
  let hs  collectInstancesFromMainCtx lookup
  hs.toArray.mapM fun e => do
    let type  inferType e
    let name  mkFreshAnonPropUserName
    -- Add a declaration
    let nval  Utils.addDeclTac name e type (asLet := false)
    -- Simplify to unfold the declaration to unfold (i.e., the projector)
    Utils.simpAt true [declToUnfold] [] [] (Location.targets #[mkIdent name] false)
    -- Return the new value
    pure nval

def introHasIntPropInstances : Tactic.TacticM (Array Expr) := do
  trace[Arith] "Introducing the HasIntProp instances"
  introInstances ``HasIntProp.prop_ty lookupHasIntProp

-- Lookup the instances of `HasIntProp for all the sub-expressions in the context,
-- and introduce the corresponding assumptions
elab "intro_has_int_prop_instances" : tactic => do
  let _  introHasIntPropInstances

-- Lookup the instances of `PropHasImp for all the sub-expressions in the context,
-- and introduce the corresponding assumptions
elab "intro_prop_has_imp_instances" : tactic => do
  trace[Arith] "Introducing the PropHasImp instances"
  let _  introInstances ``PropHasImp.concl lookupPropHasImp

example (x y : Int) (h0 : x  y) (h1 : x  y) : x < y := by
  intro_prop_has_imp_instances
  rename_i h
  split_disj h
  . linarith
  . linarith

/- Boosting a bit the linarith tac.

   We do the following:
   - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we
     introduce two goals with the assumptions `x < y` and `x > y`
     TODO: we could create a PR for mathlib.
 -/
def intTacPreprocess (extraPreprocess :  Tactic.TacticM Unit) : Tactic.TacticM Unit := do
  Tactic.withMainContext do
  -- Lookup the instances of PropHasImp (this is how we detect assumptions
  -- of the proper shape), introduce assumptions in the context and split
  -- on those
  -- TODO: get rid of the assumptions that we split
  let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit :=
    match asms with
    | [] => pure ()
    | asm :: asms =>
      let k := splitOnAsms asms
      Utils.splitDisjTac asm k k
  -- Introduce the scalar bounds
  let _  introHasIntPropInstances
  -- Extra preprocessing, before we split on the disjunctions
  extraPreprocess
  -- Split - note that the extra-preprocessing step might actually have
  -- proven the goal (by doing simplifications for instance)
  Tactic.allGoals do
    let asms  introInstances ``PropHasImp.concl lookupPropHasImp
    splitOnAsms asms.toList

elab "int_tac_preprocess" : tactic =>
  intTacPreprocess (do pure ())

-- Check if the goal is a linear arithmetic goal
def goalIsLinearInt : Tactic.TacticM Bool := do
  Tactic.withMainContext do
  let gty  Tactic.getMainTarget
  match  trySynthInstance ( mkAppM ``IsLinearIntProp #[gty]) with
  | .some _ => pure true
  | _ => pure false

def intTac (splitGoalConjs : Bool) (extraPreprocess :  Tactic.TacticM Unit) : Tactic.TacticM Unit := do
  Tactic.withMainContext do
  Tactic.focus do
  let g  Tactic.getMainGoal
  trace[Arith] "Original goal: {g}"
  -- Introduce all the universally quantified variables (includes the assumptions)
  let (_, g)  g.intros
  Tactic.setGoals [g]
  -- Preprocess - wondering if we should do this before or after splitting
  -- the goal. I think before leads to a smaller proof term?
  Tactic.allGoals (intTacPreprocess extraPreprocess)
  -- More preprocessing
  Tactic.allGoals (Utils.tryTac (Utils.simpAt true [] [``nat_zero_eq_int_zero] [] .wildcard))
  -- Split the conjunctions in the goal
  if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget)
  -- Call linarith
  let linarith := do
    let cfg : Linarith.LinarithConfig := {
      -- We do this with our custom preprocessing
      splitNe := false
    }
    Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg
  Tactic.allGoals do
    -- We check if the goal is a linear arithmetic goal: if yes, we directly
    -- call linarith, otherwise we first apply exfalso (we do this because
    -- linarith is too general and sometimes fails to do this correctly).
    if  goalIsLinearInt then do
      trace[Arith] "linarith goal: {← Tactic.getMainGoal}"
      linarith
    else do
      let g  Tactic.getMainGoal
      let gs  g.apply (Expr.const ``False.elim [.zero])
      let goals  Tactic.getGoals
      Tactic.setGoals (gs ++ goals)
      Tactic.allGoals do
        trace[Arith] "linarith goal: {← Tactic.getMainGoal}"
        linarith

elab "int_tac" args:(" split_goal"?): tactic =>
  let split := args.raw.getArgs.size > 0
  intTac split (do pure ())

-- For termination proofs
syntax "int_decr_tac" : tactic
macro_rules
  | `(tactic| int_decr_tac) =>
    `(tactic|
      simp_wf;
      -- TODO: don't use a macro (namespace problems)
      (first | apply Arith.to_int_to_nat_lt
             | apply Arith.to_int_sub_to_nat_lt) <;>
      simp_all <;> int_tac)

example (x : Int) (h0: 0  x) (h1: x  0) : 0 < x := by
  int_tac_preprocess
  linarith
  linarith

example (x : Int) (h0: 0  x) (h1: x  0) : 0 < x := by
  int_tac

-- Checking that things append correctly when there are several disjunctions
example (x y : Int) (h0: 0  x) (h1: x  0) (h2 : 0  y) (h3 : y  0) : 0 < x  0 < y := by
  int_tac split_goal

-- Checking that things append correctly when there are several disjunctions
example (x y : Int) (h0: 0  x) (h1: x  0) (h2 : 0  y) (h3 : y  0) : 0 < x  0 < y  x + y  2 := by
  int_tac split_goal

-- Checking that we can prove exfalso
example (a : Prop) (x : Int) (h0: 0 < x) (h1: x < 0) : a := by
  int_tac

end Arith