summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Arith/Arith.lean
blob: 3557d35005157b3b952cb791957077cb16cee656 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/- This file contains tactics to solve arithmetic goals -/

import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith
-- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet
--import Mathlib.Tactic.Omega
import Base.Primitives
import Base.Utils
import Base.Arith.Base

/-
Mathlib tactics:
- rcases: https://leanprover-community.github.io/mathlib_docs/tactics.html#rcases
- split_ifs: https://leanprover-community.github.io/mathlib_docs/tactics.html#split_ifs
- norm_num: https://leanprover-community.github.io/mathlib_docs/tactics.html#norm_num
- should we use linarith or omega?
- hint: https://leanprover-community.github.io/mathlib_docs/tactics.html#hint
- classical: https://leanprover-community.github.io/mathlib_docs/tactics.html#classical
-/

namespace List

  -- TODO: I could not find this function??
  @[simp] def flatten {a : Type u} : List (List a)  List a
  | [] => []
  | x :: ls => x ++ flatten ls

end List

namespace Lean

namespace LocalContext

  open Lean Lean.Elab Command Term Lean.Meta

  -- Small utility: return the list of declarations in the context, from
  -- the last to the first.
  def getAllDecls (lctx : Lean.LocalContext) : MetaM (List Lean.LocalDecl) :=
    lctx.foldrM (fun d ls => do let d  instantiateLocalDeclMVars d; pure (d :: ls)) []

  -- Return the list of declarations in the context, but filter the
  -- declarations which are considered as implementation details
  def getDecls (lctx : Lean.LocalContext) : MetaM (List Lean.LocalDecl) := do
    let ls  lctx.getAllDecls
    pure (ls.filter (fun d => not d.isImplementationDetail))

end LocalContext

end Lean

namespace Arith

open Primitives

-- TODO: move?
theorem ne_zero_is_lt_or_gt {x : Int} (hne : x  0) : x < 0  x > 0 := by
  cases h: x <;> simp_all
  . rename_i n;
    cases n <;> simp_all
  . apply Int.negSucc_lt_zero

-- TODO: move?
theorem ne_is_lt_or_gt {x y : Int} (hne : x  y) : x < y  x > y := by
  have hne : x - y  0 := by
    simp
    intro h
    have: x = y := by linarith
    simp_all
  have h := ne_zero_is_lt_or_gt hne
  match h with
  | .inl _ => left; linarith
  | .inr _ => right; linarith

-- TODO: move
instance Vec.cast (a : Type): Coe (Vec a) (List a)  where coe := λ v => v.val

-- TODO: move
/- Remark: we can't write the following instance because of restrictions about
   the type class parameters (`ty` doesn't appear in the return type, which is
   forbidden):

   ```
   instance Scalar.cast (ty : ScalarTy) : Coe (Scalar ty) Int where coe := λ v => v.val
   ```
 -/
def Scalar.toInt {ty : ScalarTy} (x : Scalar ty) : Int := x.val

-- Remark: I tried a version of the shape `HasProp {a : Type} (x : a)`
-- but the lookup didn't work
class HasProp (a : Sort u) where
  prop_ty : a  Prop
  prop :  x:a, prop_ty x

instance (ty : ScalarTy) : HasProp (Scalar ty) where
  -- prop_ty is inferred
  prop := λ x => And.intro x.hmin x.hmax

instance (a : Type) : HasProp (Vec a) where
  prop_ty := λ v => v.val.length  Scalar.max ScalarTy.Usize
  prop := λ  _, l  => l

class PropHasImp (x : Prop) where
  concl : Prop
  prop : x  concl

-- This also works for `x ≠ y` because this expression reduces to `¬ x = y`
-- and `Ne` is marked as `reducible`
instance (x y : Int) : PropHasImp (¬ x = y) where
  concl := x < y  x > y
  prop := λ (h:x  y) => ne_is_lt_or_gt h

open Lean Lean.Elab Command Term Lean.Meta

-- Small utility: print all the declarations in the context
elab "print_all_decls" : tactic => do
  let ctx  Lean.MonadLCtx.getLCtx
  for decl in  ctx.getDecls do
    let ty  Lean.Meta.inferType decl.toExpr
    logInfo m!"{decl.toExpr} : {ty}"
  pure ()

-- Explore a term by decomposing the applications (we explore the applied
-- functions and their arguments, but ignore lambdas, forall, etc. -
-- should we go inside?).
partial def foldTermApps (k : α  Expr  MetaM α) (s : α) (e : Expr) : MetaM α := do
  -- We do it in a very simpler manner: we deconstruct applications,
  -- and recursively explore the sub-expressions. Note that we do
  -- not go inside foralls and abstractions (should we?).
  e.withApp fun f args => do
    let s  k s f
    args.foldlM (foldTermApps k) s

-- Provided a function `k` which lookups type class instances on an expression,
-- collect all the instances lookuped by applying `k` on the sub-expressions of `e`.
def collectInstances
  (k : Expr  MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do
  let k s e := do
    match  k e with
    | none => pure s
    | some i => pure (s.insert i)
  foldTermApps k s e

-- Similar to `collectInstances`, but explores all the local declarations in the
-- main context.
def collectInstancesFromMainCtx (k : Expr  MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do
  Tactic.withMainContext do
  -- Get the local context
  let ctx  Lean.MonadLCtx.getLCtx
  -- Just a matter of precaution
  let ctx  instantiateLCtxMVars ctx
  -- Initialize the hashset
  let hs := HashSet.empty
  -- Explore the declarations
  let decls  ctx.getDecls
  decls.foldlM (fun hs d => collectInstances k hs d.toExpr) hs

-- Return an instance of `HasProp` for `e` if it has some
def lookupHasProp (e : Expr) : MetaM (Option Expr) := do
  trace[Arith] "lookupHasProp"
  -- TODO: do we need Lean.observing?
  -- This actually eliminates the error messages
  Lean.observing? do
    trace[Arith] "lookupHasProp: observing"
    let ty  Lean.Meta.inferType e
    let hasProp  mkAppM ``HasProp #[ty]
    let hasPropInst  trySynthInstance hasProp
    match hasPropInst with
    | LOption.some i =>
      trace[Arith] "Found HasProp instance"
      let i_prop  mkProjection i (Name.mkSimple "prop")
      some ( mkAppM' i_prop #[e])
    | _ => none

-- Collect the instances of `HasProp` for the subexpressions in the context
def collectHasPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do
  collectInstancesFromMainCtx lookupHasProp

elab "display_has_prop_instances" : tactic => do
  trace[Arith] "Displaying the HasProp instances"
  let hs  collectHasPropInstancesFromMainCtx
  hs.forM fun e => do
    trace[Arith] "+ HasProp instance: {e}"

example (x : U32) : True := by
  let i : HasProp U32 := inferInstance
  have p := @HasProp.prop _ i x
  simp only [HasProp.prop_ty] at p
  display_has_prop_instances
  simp

-- Return an instance of `PropHasImp` for `e` if it has some
def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do
  trace[Arith] "lookupPropHasImp"
  -- TODO: do we need Lean.observing?
  -- This actually eliminates the error messages
  Lean.observing? do
    trace[Arith] "lookupPropHasImp: observing"
    let ty  Lean.Meta.inferType e
    trace[Arith] "lookupPropHasImp: ty: {ty}"
    let cl  mkAppM ``PropHasImp #[ty]
    let inst  trySynthInstance cl
    match inst with
    | LOption.some i =>
      trace[Arith] "Found PropHasImp instance"
      let i_prop   mkProjection i (Name.mkSimple "prop")
      some ( mkAppM' i_prop #[e])
    | _ => none

-- Collect the instances of `PropHasImp` for the subexpressions in the context
def collectPropHasImpInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do
  collectInstancesFromMainCtx lookupPropHasImp

elab "display_prop_has_imp_instances" : tactic => do
  trace[Arith] "Displaying the PropHasImp instances"
  let hs  collectPropHasImpInstancesFromMainCtx
  hs.forM fun e => do
    trace[Arith] "+ PropHasImp instance: {e}"

example (x y : Int) (_ : x  y) (_ : ¬ x = y) : True := by
  display_prop_has_imp_instances
  simp

-- Lookup instances in a context and introduce them with additional declarations.
def introInstances (declToUnfold : Name) (lookup : Expr  MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do
  let hs  collectInstancesFromMainCtx lookup
  hs.toArray.mapM fun e => do
    let type  inferType e
    let name  mkFreshUserName `h
    -- Add a declaration
    let nval  Utils.addDeclTac name e type (asLet := false)
    -- Simplify to unfold the declaration to unfold (i.e., the projector)
    Utils.simpAt [declToUnfold] [] [] (Tactic.Location.targets #[mkIdent name] false)
    -- Return the new value
    pure nval

def introHasPropInstances : Tactic.TacticM (Array Expr) := do
  trace[Arith] "Introducing the HasProp instances"
  introInstances ``HasProp.prop_ty lookupHasProp

-- Lookup the instances of `HasProp for all the sub-expressions in the context,
-- and introduce the corresponding assumptions
elab "intro_has_prop_instances" : tactic => do
  let _  introHasPropInstances

example (x y : U32) : x.val  Scalar.max ScalarTy.U32 := by
  intro_has_prop_instances
  simp [*]

example {a: Type} (v : Vec a) : v.val.length  Scalar.max ScalarTy.Usize := by
  intro_has_prop_instances
  simp_all [Scalar.max, Scalar.min]

-- Lookup the instances of `PropHasImp for all the sub-expressions in the context,
-- and introduce the corresponding assumptions
elab "intro_prop_has_imp_instances" : tactic => do
  trace[Arith] "Introducing the PropHasImp instances"
  let _  introInstances ``PropHasImp.concl lookupPropHasImp

example (x y : Int) (h0 : x  y) (h1 : x  y) : x < y := by
  intro_prop_has_imp_instances
  rename_i h
  split_disj h
  . linarith
  . linarith

/- Boosting a bit the linarith tac.

   We do the following:
   - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we
     introduce two goals with the assumptions `x < y` and `x > y`
     TODO: we could create a PR for mathlib.
 -/
def intTacPreprocess : Tactic.TacticM Unit := do
  Tactic.withMainContext do
  -- Lookup the instances of PropHasImp (this is how we detect assumptions
  -- of the proper shape), introduce assumptions in the context and split
  -- on those
  -- TODO: get rid of the assumptions that we split
  let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit :=
    match asms with
    | [] => pure ()
    | asm :: asms =>
      let k := splitOnAsms asms
      Utils.splitDisjTac asm k k
  -- Introduce
  let asms  introInstances ``PropHasImp.concl lookupPropHasImp
  -- Split
  splitOnAsms asms.toList

elab "int_tac_preprocess" : tactic =>
  intTacPreprocess

def intTac : Tactic.TacticM Unit := do
  Tactic.withMainContext do
  Tactic.focus do
  -- Preprocess - wondering if we should do this before or after splitting
  -- the goal. I think before leads to a smaller proof term?
  Tactic.allGoals intTacPreprocess
  -- Split the conjunctions in the goal
  Utils.repeatTac Utils.splitConjTarget
  -- Call linarith
  let linarith :=
    let cfg : Linarith.LinarithConfig := {
      -- We do this with our custom preprocessing
      splitNe := false
    }
    Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg
  Tactic.allGoals linarith

elab "int_tac" : tactic =>
  intTac

example (x : Int) (h0: 0  x) (h1: x  0) : 0 < x := by
  int_tac_preprocess
  linarith
  linarith

example (x : Int) (h0: 0  x) (h1: x  0) : 0 < x := by
  int_tac

-- Checking that things append correctly when there are several disjunctions
example (x y : Int) (h0: 0  x) (h1: x  0) (h2 : 0  y) (h3 : y  0) : 0 < x  0 < y := by
  int_tac

-- Checking that things append correctly when there are several disjunctions
example (x y : Int) (h0: 0  x) (h1: x  0) (h2 : 0  y) (h3 : y  0) : 0 < x  0 < y  x + y  2 := by
  int_tac

-- A tactic to solve linear arithmetic goals in the presence of scalars
def scalarTac : Tactic.TacticM Unit := do
  Tactic.withMainContext do
  -- Introduce the scalar bounds
  let _  introHasPropInstances
  Tactic.allGoals do
  -- Inroduce the bounds for the isize/usize types
  let add (e : Expr) : Tactic.TacticM Unit := do
    let ty  inferType e
    let _  Utils.addDeclTac ( mkFreshUserName `h) e ty (asLet := false)
  add ( mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Usize []])
  add ( mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []])
  add ( mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []])
  add ( mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []])
  -- Reveal the concrete bounds - TODO: not too sure about that.
  -- Maybe we should reveal the "concrete" bounds (after normalization)
  Utils.simpAt [``Scalar.max, ``Scalar.min, ``Scalar.cMin, ``Scalar.cMax] [] [] .wildcard
  -- Apply the integer tactic
  intTac

elab "scalar_tac" : tactic =>
  scalarTac

example (x y : U32) : x.val  Scalar.max ScalarTy.U32 := by
  scalar_tac

example {a: Type} (v : Vec a) : v.val.length  Scalar.max ScalarTy.Usize := by
  scalar_tac

end Arith