blob: 1d3047230e3af04be923b1d8d70ec274ac6618a1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
signature testHashmapTheory =
sig
type thm = Thm.thm
(* Axioms *)
val insert_def : thm
(* Definitions *)
val distinct_keys_def : thm
val distinct_keys_f_def : thm
val for_all_def : thm
val list_t_TY_DEF : thm
val list_t_case_def : thm
val list_t_size_def : thm
val list_t_v_def : thm
val lookup_def : thm
val pairwise_rel_def : thm
(* Theorems *)
val datatype_list_t : thm
val distinct_keys_cons : thm
val distinct_keys_f_eq_distinct_keys : thm
val distinct_keys_f_insert : thm
val distinct_keys_f_insert_for_all : thm
val distinct_keys_insert : thm
val distinct_keys_insert_index_neq : thm
val distinct_keys_tail : thm
val for_all_quant : thm
val insert_index_neq : thm
val insert_lem : thm
val insert_lem_aux : thm
val list_t_11 : thm
val list_t_Axiom : thm
val list_t_case_cong : thm
val list_t_case_eq : thm
val list_t_distinct : thm
val list_t_induction : thm
val list_t_nchotomy : thm
val lookup_raw_def : thm
val lookup_raw_ind : thm
val nth_mut_fwd_def : thm
val nth_mut_fwd_ind : thm
val nth_mut_fwd_spec : thm
val pairwise_rel_quant : thm
val testHashmap_grammars : type_grammar.grammar * term_grammar.grammar
(*
[primitives] Parent theory of "testHashmap"
[insert_def] Axiom
[oracles: ] [axioms: insert_def] []
⊢ insert key value ls =
case ls of
ListCons (ckey,cvalue) tl =>
if ckey = key then Return (ListCons (ckey,value) tl)
else
do
tl0 <- insert key value tl;
Return (ListCons (ckey,cvalue) tl0)
od
| ListNil => Return (ListCons (key,value) ListNil)
[distinct_keys_def] Definition
⊢ ∀ls.
distinct_keys ls ⇔
∀i j.
0 ≤ i ⇒
i < j ⇒
j < len ls ⇒
FST (index i ls) ≠ FST (index j ls)
[distinct_keys_f_def] Definition
⊢ ∀ls. distinct_keys_f ls ⇔ pairwise_rel (λx y. FST x ≠ FST y) ls
[for_all_def] Definition
⊢ (∀p. for_all p [] ⇔ T) ∧
∀p x ls. for_all p (x::ls) ⇔ p x ∧ for_all p ls
[list_t_TY_DEF] Definition
⊢ ∃rep.
TYPE_DEFINITION
(λa0'.
∀ $var$('list_t').
(∀a0'.
(∃a0 a1.
a0' =
(λa0 a1.
ind_type$CONSTR 0 a0
(ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
a0 a1 ∧ $var$('list_t') a1) ∨
a0' =
ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒
$var$('list_t') a0') ⇒
$var$('list_t') a0') rep
[list_t_case_def] Definition
⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧
∀f v. list_t_CASE ListNil f v = v
[list_t_size_def] Definition
⊢ (∀f a0 a1.
list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧
∀f. list_t_size f ListNil = 0
[list_t_v_def] Definition
⊢ list_t_v ListNil = [] ∧
∀x tl. list_t_v (ListCons x tl) = x::list_t_v tl
[lookup_def] Definition
⊢ ∀key ls. lookup key ls = lookup_raw key (list_t_v ls)
[pairwise_rel_def] Definition
⊢ (∀p. pairwise_rel p [] ⇔ T) ∧
∀p x ls.
pairwise_rel p (x::ls) ⇔ for_all (p x) ls ∧ pairwise_rel p ls
[datatype_list_t] Theorem
⊢ DATATYPE (list_t ListCons ListNil)
[distinct_keys_cons] Theorem
⊢ ∀k v ls.
(∀i. 0 ≤ i ⇒ i < len ls ⇒ FST (index i ls) ≠ k) ⇒
distinct_keys ls ⇒
distinct_keys ((k,v)::ls)
[distinct_keys_f_eq_distinct_keys] Theorem
⊢ ∀ls. distinct_keys_f ls ⇔ distinct_keys ls
[distinct_keys_f_insert] Theorem
[oracles: DISK_THM] [axioms: insert_def] []
⊢ ∀k v ls0 ls1.
distinct_keys_f (list_t_v ls0) ⇒
insert k v ls0 = Return ls1 ⇒
distinct_keys_f (list_t_v ls1)
[distinct_keys_f_insert_for_all] Theorem
[oracles: DISK_THM] [axioms: insert_def] []
⊢ ∀k v k1 ls0 ls1.
k1 ≠ k ⇒
for_all (λy. k1 ≠ FST y) (list_t_v ls0) ⇒
pairwise_rel (λx y. FST x ≠ FST y) (list_t_v ls0) ⇒
insert k v ls0 = Return ls1 ⇒
for_all (λy. k1 ≠ FST y) (list_t_v ls1)
[distinct_keys_insert] Theorem
[oracles: DISK_THM] [axioms: insert_def] []
⊢ ∀k v ls0 ls1.
distinct_keys (list_t_v ls0) ⇒
insert k v ls0 = Return ls1 ⇒
distinct_keys (list_t_v ls1)
[distinct_keys_insert_index_neq] Theorem
[oracles: DISK_THM] [axioms: insert_def] []
⊢ ∀k v q r ls0 ls1 i.
distinct_keys ((q,r)::list_t_v ls0) ⇒
q ≠ k ⇒
insert k v ls0 = Return ls1 ⇒
0 ≤ i ⇒
i < len (list_t_v ls1) ⇒
FST (index i (list_t_v ls1)) ≠ q
[distinct_keys_tail] Theorem
⊢ ∀k v ls. distinct_keys ((k,v)::ls) ⇒ distinct_keys ls
[for_all_quant] Theorem
⊢ ∀p ls. for_all p ls ⇔ ∀i. 0 ≤ i ⇒ i < len ls ⇒ p (index i ls)
[insert_index_neq] Theorem
[oracles: DISK_THM] [axioms: insert_def] []
⊢ ∀q k v ls0 ls1 i.
(∀j. 0 ≤ j ∧ j < len (list_t_v ls0) ⇒
q ≠ FST (index j (list_t_v ls0))) ⇒
q ≠ k ⇒
insert k v ls0 = Return ls1 ⇒
0 ≤ i ⇒
i < len (list_t_v ls1) ⇒
FST (index i (list_t_v ls1)) ≠ q
[insert_lem] Theorem
[oracles: DISK_THM] [axioms: insert_def] []
⊢ ∀ls key value.
distinct_keys (list_t_v ls) ⇒
case insert key value ls of
Return ls1 =>
lookup key ls1 = SOME value ∧
(∀k. k ≠ key ⇒ lookup k ls = lookup k ls1) ∧
distinct_keys (list_t_v ls1)
| Fail v1 => F
| Diverge => F
[insert_lem_aux] Theorem
[oracles: DISK_THM] [axioms: insert_def] []
⊢ ∀ls key value.
case insert key value ls of
Return ls1 =>
lookup key ls1 = SOME value ∧
∀k. k ≠ key ⇒ lookup k ls = lookup k ls1
| Fail v1 => F
| Diverge => F
[list_t_11] Theorem
⊢ ∀a0 a1 a0' a1'.
ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
[list_t_Axiom] Theorem
⊢ ∀f0 f1. ∃fn.
(∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧
fn ListNil = f1
[list_t_case_cong] Theorem
⊢ ∀M M' f v.
M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧
(M' = ListNil ⇒ v = v') ⇒
list_t_CASE M f v = list_t_CASE M' f' v'
[list_t_case_eq] Theorem
⊢ list_t_CASE x f v = v' ⇔
(∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v'
[list_t_distinct] Theorem
⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil
[list_t_induction] Theorem
⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l
[list_t_nchotomy] Theorem
⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil
[lookup_raw_def] Theorem
⊢ (∀key. lookup_raw key [] = NONE) ∧
∀v ls key k.
lookup_raw key ((k,v)::ls) =
if k = key then SOME v else lookup_raw key ls
[lookup_raw_ind] Theorem
⊢ ∀P. (∀key. P key []) ∧
(∀key k v ls. (k ≠ key ⇒ P key ls) ⇒ P key ((k,v)::ls)) ⇒
∀v v1. P v v1
[nth_mut_fwd_def] Theorem
⊢ ∀ls i.
nth_mut_fwd ls i =
case ls of
ListCons x tl =>
if u32_to_int i = 0 then Return x
else do i0 <- u32_sub i (int_to_u32 1); nth_mut_fwd tl i0 od
| ListNil => Fail Failure
[nth_mut_fwd_ind] Theorem
⊢ ∀P. (∀ls i.
(∀x tl i0. ls = ListCons x tl ∧ u32_to_int i ≠ 0 ⇒ P tl i0) ⇒
P ls i) ⇒
∀v v1. P v v1
[nth_mut_fwd_spec] Theorem
⊢ ∀ls i.
u32_to_int i < len (list_t_v ls) ⇒
case nth_mut_fwd ls i of
Return x => x = index (u32_to_int i) (list_t_v ls)
| Fail v1 => F
| Diverge => F
[pairwise_rel_quant] Theorem
⊢ ∀p ls.
pairwise_rel p ls ⇔
∀i j. 0 ≤ i ⇒ i < j ⇒ j < len ls ⇒ p (index i ls) (index j ls)
*)
end
|