blob: fd22e05bca37d7a6dc9d0a57896471e68431a872 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
signature testHashmapTheory =
sig
type thm = Thm.thm
(* Axioms *)
val insert_def : thm
(* Definitions *)
val distinct_keys_def : thm
val list_t_TY_DEF : thm
val list_t_case_def : thm
val list_t_size_def : thm
val list_t_v_def : thm
val lookup_def : thm
(* Theorems *)
val datatype_list_t : thm
val insert_lem : thm
val list_t_11 : thm
val list_t_Axiom : thm
val list_t_case_cong : thm
val list_t_case_eq : thm
val list_t_distinct : thm
val list_t_induction : thm
val list_t_nchotomy : thm
val lookup_raw_def : thm
val lookup_raw_ind : thm
val nth_mut_fwd_def : thm
val nth_mut_fwd_ind : thm
val nth_mut_fwd_spec : thm
val testHashmap_grammars : type_grammar.grammar * term_grammar.grammar
(*
[primitives] Parent theory of "testHashmap"
[insert_def] Axiom
[oracles: ] [axioms: insert_def] []
⊢ insert key value ls =
case ls of
ListCons (ckey,cvalue) tl =>
if ckey = key then Return (ListCons (ckey,value) tl)
else
do
tl0 <- insert key value tl;
Return (ListCons (ckey,cvalue) tl0)
od
| ListNil => Return (ListCons (key,value) ListNil)
[distinct_keys_def] Definition
⊢ ∀ls.
distinct_keys ls ⇔
∀i j.
0 < i ⇒
i < len ls ⇒
0 < j ⇒
j < len ls ⇒
FST (index i ls) = FST (index j ls) ⇒
i = j
[list_t_TY_DEF] Definition
⊢ ∃rep.
TYPE_DEFINITION
(λa0'.
∀ $var$('list_t').
(∀a0'.
(∃a0 a1.
a0' =
(λa0 a1.
ind_type$CONSTR 0 a0
(ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
a0 a1 ∧ $var$('list_t') a1) ∨
a0' =
ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒
$var$('list_t') a0') ⇒
$var$('list_t') a0') rep
[list_t_case_def] Definition
⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧
∀f v. list_t_CASE ListNil f v = v
[list_t_size_def] Definition
⊢ (∀f a0 a1.
list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧
∀f. list_t_size f ListNil = 0
[list_t_v_def] Definition
⊢ list_t_v ListNil = [] ∧
∀x tl. list_t_v (ListCons x tl) = x::list_t_v tl
[lookup_def] Definition
⊢ ∀key ls. lookup key ls = lookup_raw key (list_t_v ls)
[datatype_list_t] Theorem
⊢ DATATYPE (list_t ListCons ListNil)
[insert_lem] Theorem
[oracles: DISK_THM] [axioms: insert_def] []
⊢ ∀ls key value.
distinct_keys (list_t_v ls) ⇒
case insert key value ls of
Return ls1 =>
lookup key ls1 = SOME value ∧
∀k. k ≠ key ⇒ lookup k ls = lookup k ls1
| Fail v3 => F
| Diverge => F
[list_t_11] Theorem
⊢ ∀a0 a1 a0' a1'.
ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
[list_t_Axiom] Theorem
⊢ ∀f0 f1. ∃fn.
(∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧
fn ListNil = f1
[list_t_case_cong] Theorem
⊢ ∀M M' f v.
M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧
(M' = ListNil ⇒ v = v') ⇒
list_t_CASE M f v = list_t_CASE M' f' v'
[list_t_case_eq] Theorem
⊢ list_t_CASE x f v = v' ⇔
(∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v'
[list_t_distinct] Theorem
⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil
[list_t_induction] Theorem
⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l
[list_t_nchotomy] Theorem
⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil
[lookup_raw_def] Theorem
⊢ (∀key. lookup_raw key [] = NONE) ∧
∀v ls key k.
lookup_raw key ((k,v)::ls) =
if k = key then SOME v else lookup_raw key ls
[lookup_raw_ind] Theorem
⊢ ∀P. (∀key. P key []) ∧
(∀key k v ls. (k ≠ key ⇒ P key ls) ⇒ P key ((k,v)::ls)) ⇒
∀v v1. P v v1
[nth_mut_fwd_def] Theorem
⊢ ∀ls i.
nth_mut_fwd ls i =
case ls of
ListCons x tl =>
if u32_to_int i = 0 then Return x
else do i0 <- u32_sub i (int_to_u32 1); nth_mut_fwd tl i0 od
| ListNil => Fail Failure
[nth_mut_fwd_ind] Theorem
⊢ ∀P. (∀ls i.
(∀x tl i0. ls = ListCons x tl ∧ u32_to_int i ≠ 0 ⇒ P tl i0) ⇒
P ls i) ⇒
∀v v1. P v v1
[nth_mut_fwd_spec] Theorem
⊢ ∀ls i.
u32_to_int i < len (list_t_v ls) ⇒
case nth_mut_fwd ls i of
Return x => x = index (u32_to_int i) (list_t_v ls)
| Fail v3 => F
| Diverge => F
*)
end
|