1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
|
(* Advanced tactics for the primitives library *)
structure primitivesLib =
struct
open primitivesBaseTacLib primitivesTheory
val primitives_theory_name = "primitives"
(* Small utility: compute the set of assumptions in the context.
We isolate this code in a utility in order to be able to improve it:
for now we simply put all the assumptions in a set, but in the future
we might want to split the assumptions which are conjunctions in order
to be more precise.
*)
fun compute_asms_set ((asms,g) : goal) : term Redblackset.set =
Redblackset.fromList Term.compare asms
val integer_bounds_defs_list = [
i8_min_def,
i8_max_def,
i16_min_def,
i16_max_def,
i32_min_def,
i32_max_def,
i64_min_def,
i64_max_def,
i128_min_def,
i128_max_def,
u8_max_def,
u16_max_def,
u32_max_def,
u64_max_def,
u128_max_def
]
val integer_bounds_lemmas =
Redblackmap.fromList String.compare
[
("isize", isize_to_int_bounds),
("i8", i8_to_int_bounds),
("i16", i16_to_int_bounds),
("i32", i32_to_int_bounds),
("i64", i64_to_int_bounds),
("i128", i128_to_int_bounds),
("usize", usize_to_int_bounds),
("u8", u8_to_int_bounds),
("u16", u16_to_int_bounds),
("u32", u32_to_int_bounds),
("u64", u64_to_int_bounds),
("u128", u128_to_int_bounds)
]
val integer_types_names =
Redblackset.fromList String.compare
(map fst (Redblackmap.listItems integer_bounds_lemmas))
(* See {!assume_bounds_for_all_int_vars}.
This tactic is in charge of adding assumptions for one variable.
*)
fun assume_bounds_for_int_var
(asms_set: term Redblackset.set) (var : string) (ty : string) :
tactic =
let
(* Lookup the lemma to apply *)
val lemma = Redblackmap.find (integer_bounds_lemmas, ty);
(* Instantiate the lemma *)
val ty_t = mk_type (ty, []);
val var_t = mk_var (var, ty_t);
val lemma = SPEC var_t lemma;
(* Split the theorem into a list of conjuncts.
The bounds are typically a conjunction:
{[
⊢ 0 ≤ u32_to_int x ∧ u32_to_int x ≤ u32_max: thm
]}
*)
val lemmas = CONJUNCTS lemma;
(* Filter the conjuncts: some of them might already be in the context,
we don't want to introduce them again, as it would pollute it.
*)
val lemmas = filter (fn lem => not (Redblackset.member (asms_set, concl lem))) lemmas;
in
(* Introduce the assumptions in the context *)
assume_tacl lemmas
end
(* Introduce bound assumptions for all the machine integers in the context.
Exemple:
========
If there is “x : u32” in the input set, then we introduce:
{[
0 <= u32_to_int x
u32_to_int x <= u32_max
]}
*)
fun assume_bounds_for_all_int_vars (asms, g) =
let
(* Compute the set of integer variables in the context *)
val vars = free_varsl (g :: asms);
(* Compute the set of assumptions already present in the context *)
val asms_set = compute_asms_set (asms, g);
val vartys_set = ref (Redblackset.empty String.compare);
(* Filter the variables to keep only the ones with type machine integer,
decompose the types at the same time *)
fun decompose_var (v : term) : (string * string) =
let
val (v, ty) = dest_var v;
val {Args=args, Thy=thy, Tyop=ty} = dest_thy_type ty;
val _ = assert null args;
val _ = assert (fn thy => thy = primitives_theory_name) thy;
val _ = assert (fn ty => Redblackset.member (integer_types_names, ty)) ty;
val _ = vartys_set := Redblackset.add (!vartys_set, ty);
in (v, ty) end;
val vars = mapfilter decompose_var vars;
(* Add assumptions for one variable *)
fun add_var_asm (v, ty) : tactic =
assume_bounds_for_int_var asms_set v ty;
(* Add the bounds for isize, usize *)
val size_bounds =
append
(if Redblackset.member (!vartys_set, "usize") then CONJUNCTS usize_bounds else [])
(if Redblackset.member (!vartys_set, "isize") then CONJUNCTS isize_bounds else []);
val size_bounds =
filter (fn th => not (Redblackset.member (asms_set, concl th))) size_bounds;
in
((* Add assumptions for all the variables *)
map_every_tac add_var_asm vars >>
(* Add assumptions about the size bounds *)
assume_tacl size_bounds) (asms, g)
end
val integer_conversion_lemmas_list = [
isize_to_int_int_to_isize,
i8_to_int_int_to_i8,
i16_to_int_int_to_i16,
i32_to_int_int_to_i32,
i64_to_int_int_to_i64,
i128_to_int_int_to_i128,
usize_to_int_int_to_usize,
u8_to_int_int_to_u8,
u16_to_int_int_to_u16,
u32_to_int_int_to_u32,
u64_to_int_int_to_u64,
u128_to_int_int_to_u128
]
(* Using a net for efficiency *)
val integer_conversion_lemmas_net = net_of_rewrite_thms integer_conversion_lemmas_list
(* Look for conversions from integers to machine integers and back.
{[
u32_to_int (int_to_u32 x)
]}
Attempts to prove and apply equalities of the form:
{[
u32_to_int (int_to_u32 x) = x
]}
*)
val rewrite_with_dep_int_lemmas : tactic =
let
val prove_premise = full_simp_tac simpLib.empty_ss integer_bounds_defs_list >> int_tac
(* Rewriting based on matching the conclusion. *)
val then_tac1 = (fn th => full_simp_tac simpLib.empty_ss [th])
val rewr_tac1 = apply_dep_rewrites_match_concl_with_all_tac prove_premise then_tac1
(* Rewriting based on matching the first premise.
We're not trying to be smart: we just try to rewrite with each theorem at
a time.
Remark: this is not used for now. *)
val then_tac2 = (fn th => full_simp_tac simpLib.empty_ss [th])
val rewr_tac2 = apply_dep_rewrites_match_first_premise_with_all_tac (fn _ => true) prove_premise then_tac2
in
rewr_tac1 integer_conversion_lemmas_net
end
(* Massage a bit the goal, for instance by introducing integer bounds in the
assumptions.
*)
val massage : tactic =
assume_bounds_for_all_int_vars >>
rewrite_with_dep_int_lemmas
(* The registered spec theorems, that {!progress} will automatically apply.
The keys are the function names (it is a pair, because constant names
are made of the theory name and the name of the constant itself).
Also note that we can store several specs per definition (in practice, when
looking up specs, we will try them all one by one, in a LIFO order).
We store theorems where all the premises are in the goal, with implications
(i.e.: [⊢ H0 ==> ... ==> Hn ==> H], not [H0, ..., Hn ⊢ H]).
We do this because, when doing proofs by induction, {!progress} might have to
handle *unregistered* theorems coming the current goal assumptions and of the shape
(the conclusion of the theorem is an assumption, and we want to ignore this assumption):
{[
[∀i. u32_to_int i < &LENGTH (list_t_v ls) ⇒
case nth ls i of
Return x => ...
| ... => ...]
⊢ ∀i. u32_to_int i < &LENGTH (list_t_v ls) ⇒
case nth ls i of
Return x => ...
| ... => ...
]}
*)
val reg_spec_thms: (const_name, thm) Redblackmap.dict ref =
ref (Redblackmap.mkDict const_name_compare)
(* Retrieve the specified application in a spec theorem.
A spec theorem for a function [f] typically has the shape:
{[
!x0 ... xn.
H0 ==> ... Hm ==>
(exists ...
(exists ... . f y0 ... yp = ... /\ ...) \/
(exists ... . f y0 ... yp = ... /\ ...) \/
...
]}
Or:
{[
!x0 ... xn.
H0 ==> ... Hm ==>
case f y0 ... yp of
... => ...
| ... => ...
]}
We return: [f y0 ... yp]
*)
fun get_spec_app (t : term) : term =
let
(* Remove the universally quantified variables, the premises and
the existentially quantified variables *)
val t = (snd o strip_exists o snd o strip_imp o snd o strip_forall) t;
(* Remove the exists, take the first disjunct *)
val t = (hd o strip_disj o snd o strip_exists) t;
(* Split the conjunctions and take the first conjunct *)
val t = (hd o strip_conj) t;
(* Remove the case if there is, otherwise destruct the equality *)
val t =
if TypeBase.is_case t then let val (_, t, _) = TypeBase.dest_case t in t end
else (fst o dest_eq) t;
in t end
(* Register a spec theorem in the spec database.
For the shape of spec theorems, see {!get_spec_thm_app}.
*)
fun register_spec_thm (th: thm) : unit =
let
(* Transform the theroem a bit before storing it *)
val th = SPEC_ALL th;
(* Retrieve the app ([f x0 ... xn]) *)
val f = get_spec_app (concl th);
(* Retrieve the function name *)
val cn = get_fun_name_from_app f;
in
(* Store *)
reg_spec_thms := Redblackmap.insert (!reg_spec_thms, cn, th)
end
val all_add_eqs = [
isize_add_eq,
i8_add_eq,
i16_add_eq,
i32_add_eq,
i64_add_eq,
i128_add_eq,
usize_add_eq,
u8_add_eq,
u16_add_eq,
u32_add_eq,
u64_add_eq,
u128_add_eq
]
val _ = app register_spec_thm all_add_eqs
val all_sub_eqs = [
isize_sub_eq,
i8_sub_eq,
i16_sub_eq,
i32_sub_eq,
i64_sub_eq,
i128_sub_eq,
usize_sub_eq,
u8_sub_eq,
u16_sub_eq,
u32_sub_eq,
u64_sub_eq,
u128_sub_eq
]
val _ = app register_spec_thm all_sub_eqs
val all_mul_eqs = [
isize_mul_eq,
i8_mul_eq,
i16_mul_eq,
i32_mul_eq,
i64_mul_eq,
i128_mul_eq,
usize_mul_eq,
u8_mul_eq,
u16_mul_eq,
u32_mul_eq,
u64_mul_eq,
u128_mul_eq
]
val _ = app register_spec_thm all_mul_eqs
val all_div_eqs = [
isize_div_eq,
i8_div_eq,
i16_div_eq,
i32_div_eq,
i64_div_eq,
i128_div_eq,
usize_div_eq,
u8_div_eq,
u16_div_eq,
u32_div_eq,
u64_div_eq,
u128_div_eq
]
val _ = app register_spec_thm all_div_eqs
val all_rem_eqs = [
isize_rem_eq,
i8_rem_eq,
i16_rem_eq,
i32_rem_eq,
i64_rem_eq,
i128_rem_eq,
usize_rem_eq,
u8_rem_eq,
u16_rem_eq,
u32_rem_eq,
u64_rem_eq,
u128_rem_eq
]
val _ = app register_spec_thm all_rem_eqs
val all_vec_lems = [
vec_len_spec,
vec_insert_back_spec
]
val _ = app register_spec_thm all_vec_lems
(* Provided the goal contains a call to a monadic function, return this function call.
The goal should be of the shape:
1.
{[
case (* potentially expanded function body *) of
... => ...
| ... => ...
]}
2. Or:
{[
exists ... .
... (* potentially expanded function body *) = Return ... /\
... (* Various properties *)
]}
3. Or a disjunction of cases like the one above, below existential binders
(actually: note sure this last case exists in practice):
{[
exists ... .
(exists ... . (* body *) = Return ... /\ ...) \/
...
]}
The function body should be of the shape:
{[
x <- f y0 ... yn;
...
]}
Or (typically if we expanded the monadic binds):
{[
case f y0 ... yn of
...
]}
Or simply (typically if we reached the end of the function we're analyzing):
{[
f y0 ... yn
]}
For all the above cases we would return [f y0 ... yn].
*)
fun get_monadic_app_call (t : term) : term =
(* We do something slightly imprecise but hopefully general and robut *)
let
(* Case 3.: strip the existential binders, and take the first disjuntion *)
val t = (hd o strip_disj o snd o strip_exists) t;
(* Case 2.: strip the existential binders, and take the first conjunction *)
val t = (hd o strip_conj o snd o strip_exists) t;
(* If it is an equality, take the lhs *)
val t = if is_eq t then lhs t else t;
(* Expand the binders to transform them to cases *)
val t =
(rhs o concl) (REWRITE_CONV [bind_def] t)
handle UNCHANGED => t;
(* Strip all the cases *)
val t = strip_all_cases_get_scrutinee t;
in t end
(* Use the given theorem to progress by one step (we use this when
analyzing a function body: this goes forward by one call to a monadic function).
We transform the goal by:
- pushing the theorem premises to a subgoal
- adding the theorem conclusion in the assumptions in another goal, and
getting rid of the monadic call
Then [then_tac] receives as paramter the monadic call on which we applied
the lemma. This can be useful, for instance, to make a case disjunction.
This function is the most primitive of the [progress...] functions.
*)
fun pure_progress_with (premise_tac : tactic)
(then_tac : term -> thm_tactic) (th : thm) : tactic =
fn (asms,g) =>
let
(* Remove all the universally quantified variables from the theorem *)
val th = SPEC_ALL th;
(* Retrieve the monadic call from the goal *)
val fgoal = get_monadic_app_call g;
(* Retrieve the app call from the theroem *)
val gth = get_spec_app (concl th);
(* Match and instantiate *)
val (var_s, ty_s) = match_term gth fgoal;
(* Instantiate the theorem *)
val th = INST var_s (INST_TYPE ty_s th);
(* Retrieve the premises of the theorem *)
val th = PURE_REWRITE_RULE [GSYM satTheory.AND_IMP] th;
in
(* Apply the theorem *)
sg_premise_then premise_tac (then_tac fgoal) th (asms, g)
end
(*
val (asms, g) = top_goal ()
val t = g
val th = U32_SUB_EQ
val premise_tac = massage >> TRY COOPER_TAC
fun then_tac fgoal =
fn thm => ASSUME_TAC thm >> Cases_on ‘^fgoal’ >>
rw [] >> fs [st_ex_bind_def] >> massage >> fs []
pure_progress_with premise_tac then_tac th
*)
fun progress_with (th : thm) : tactic =
let
val premise_tac = massage >> fs [] >> rw [] >> TRY COOPER_TAC;
fun then_tac fgoal thm =
mp_tac thm >> strip_tac >> Cases_on ‘^fgoal’ >>
fs [bind_def] >> massage >> fs [];
in
pure_progress_with premise_tac then_tac th
end
(*
progress_with U32_SUB_EQ
*)
(* This function lookups the theorem to use to make progress *)
val progress : tactic =
fn (asms, g) =>
let
(* Retrieve the monadic call from the goal *)
val fgoal = get_monadic_app_call g;
val fname = get_fun_name_from_app fgoal;
(* Lookup the theorem: first look in the assumptions (we might want to
use the inductive hypothesis for instance) *)
fun asm_to_spec asm =
let
(* Fail if there are no universal quantifiers *)
val _ =
if is_forall asm then asm
else assert is_forall ((snd o strip_imp) asm);
val asm_fname = (get_fun_name_from_app o get_spec_app) asm;
(* Fail if the name is not the one we're looking for *)
val _ = assert (fn n => fname = n) asm_fname;
in
ASSUME asm
end
val asms_thl = mapfilter asm_to_spec asms;
(* Lookup a spec in the database *)
val thl =
case Redblackmap.peek (!reg_spec_thms, fname) of
NONE => asms_thl
| SOME spec => spec :: asms_thl;
val _ =
if null thl then
raise (failwith "progress: could not find a suitable theorem to apply")
else ();
in
(* Attempt to use the theorems one by one *)
map_first_tac progress_with thl (asms, g)
end
end
|