1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
|
(* Base tactics for the primitives library *)
structure primitivesBaseTacLib =
struct
open HolKernel boolLib bossLib Parse
open boolTheory arithmeticTheory integerTheory intLib listTheory
val debug = ref false
fun print_dbg msg = if !debug then print msg else ()
(* Remark: below, we also have conversions *)
val gsym = GSYM
(* Ignore a theorem.
To be used in conjunction with {!pop_assum} for instance.
*)
fun ignore_tac (_ : thm) : tactic = ALL_TAC
val pop_ignore_tac = pop_assum ignore_tac
(* TODO: no exfalso tactic?? *)
val exfalso : tactic =
SUBGOAL_THEN “F” (fn th => ASSUME_TAC th >> fs[])
val case_tac = CASE_TAC
val try_tac = TRY
val first_tac = FIRST
val map_first_tac = MAP_FIRST
val fail_tac = FAIL_TAC
val map_every_tac = MAP_EVERY
fun qspec_assume x th = qspec_then x assume_tac th
fun qspecl_assume xl th = qspecl_then xl assume_tac th
fun first_qspec_assume x = first_assum (qspec_assume x)
fun first_qspecl_assume xl = first_assum (qspecl_assume xl)
val all_tac = all_tac
val pure_rewrite_tac = PURE_REWRITE_TAC
val pure_asm_rewrite_tac = PURE_ASM_REWRITE_TAC
val pure_once_rewrite_tac = PURE_ONCE_REWRITE_TAC
(* Dependent rewrites *)
val dep_pure_once_rewrite_tac = dep_rewrite.DEP_PURE_ONCE_REWRITE_TAC
val dep_pure_rewrite_tac = dep_rewrite.DEP_PURE_REWRITE_TAC
(* Add a list of theorems in the assumptions *)
fun assume_tacl (thms : thm list) : tactic =
let
(* TODO: use MAP_EVERY *)
fun t thms =
case thms of
[] => all_tac
| thm :: thms => assume_tac thm >> t thms
in
t thms
end
(* Given a theorem of the shape:
{[
A0, ..., An ⊢ B0 ==> ... ==> Bm ==> concl
]}
Rewrite it so that it has the shape:
{[
⊢ (A0 /\ ... /\ An /\ B0 /\ ... /\ Bm) ==> concl
]}
*)
fun thm_to_conj_implies (thm : thm) : thm =
let
(* Discharge all the assumptions *)
val thm = DISCH_ALL thm;
(* Rewrite the implications as one conjunction *)
val thm = PURE_REWRITE_RULE [GSYM satTheory.AND_IMP] thm;
in thm end
(* Like THEN1 and >-, but doesn't fail if the first subgoal is not completely
solved.
TODO: how to get the notation right?
*)
fun op partial_then1 (tac1: tactic) (tac2: tactic) : tactic = tac1 THEN_LT (NTH_GOAL tac2 1)
(* If the current goal is [asms ⊢ g], and given a lemma of the form
[⊢ H ==> C], do the following:
- introduce [asms ⊢ H] as a subgoal and apply the given tactic on it
- also calls the theorem tactic with the theorem [asms ⊢ C]
If the lemma is not an implication, we directly call the theorem tactic.
*)
fun sg_premise_then (premise_tac: tactic) (then_tac: thm_tactic) (thm : thm) : tactic =
let
val c = concl thm;
(* First case: there is a premise to prove *)
fun prove_premise_then (h : term) =
partial_then1 (SUBGOAL_THEN h (fn h_thm => then_tac (MP thm h_thm))) premise_tac;
(* Second case: no premise to prove *)
val no_prove_premise_then = then_tac thm;
in
if is_imp c then prove_premise_then (fst (dest_imp c)) else no_prove_premise_then
end
(* Add the first premise of the theorem as subgoal, and add the theorem without its
first premise as an assumption.
For instance, if we have the goal:
asls
====
c
and the theorem: ⊢ H ==> G
We generate:
asls asls
==== G
H ====
C
*)
val sg_premise_tac = sg_premise_then all_tac assume_tac
(* Same as {!sg_premise_then} but fails if the premise_tac fails to prove the premise *)
fun prove_premise_then (premise_tac: tactic) (then_tac: thm_tactic) (thm : thm) : tactic =
sg_premise_then
(premise_tac >> FAIL_TAC "prove_premise_then: could not prove premise")
then_tac thm
(*
val thm = th
*)
(* Call a function on all the subterms of a term *)
fun dep_apply_in_subterms
(f : string Redblackset.set -> term -> unit)
(bound_vars : string Redblackset.set)
(t : term) : unit =
let
val dep = dep_apply_in_subterms f;
val _ = f bound_vars t;
in
case dest_term t of
VAR (name, ty) => ()
| CONST {Name=name, Thy=thy, Ty=ty} => ()
| COMB (app, arg) =>
let
val _ = dep bound_vars app;
val _ = dep bound_vars arg;
in () end
| LAMB (bvar, body) =>
let
val (varname, ty) = dest_var bvar;
val bound_vars = Redblackset.add (bound_vars, varname);
val _ = dep bound_vars body;
in () end
end
(* Return the set of free variables appearing in the residues of a term substitution *)
fun free_vars_in_subst_residue (s: (term, term) Term.subst) : string Redblackset.set =
let
val free_vars = free_varsl (map (fn {redex=_, residue=x} => x) s);
val free_vars = map (fst o dest_var) free_vars;
val free_vars = Redblackset.fromList String.compare free_vars;
in free_vars end
(* Attempt to instantiate a rewrite theorem.
Remark: this theorem should be of the form:
H ⊢ x = y
(without quantified variables).
**REMARK**: the function raises a HOL_ERR exception if it fails.
[forbid_vars]: forbid substituting with those vars (typically because
we are maching in a subterm under lambdas, and some of those variables
are bounds in the outer lambdas).
*)
fun inst_match_concl (forbid_vars : string Redblackset.set) (th : thm) (t : term) : thm =
let
(* Retrieve the lhs of the conclusion of the theorem *)
val l = lhs (concl th);
(* Match this lhs with the term *)
val (var_s, ty_s) = match_term l t;
(* Check that we are allowed to perform the substitution *)
val free_vars = free_vars_in_subst_residue var_s;
val _ = assert Redblackset.isEmpty (Redblackset.intersection (free_vars, forbid_vars));
in
(* Perform the substitution *)
INST var_s (INST_TYPE ty_s th)
end
(*
val forbid_vars = Redblackset.empty String.compare
val t = “u32_to_int (int_to_u32 x)”
val t = “u32_to_int (int_to_u32 3)”
val th = (UNDISCH_ALL o SPEC_ALL) int_to_u32_id
*)
(* Attempt to instantiate a theorem by matching its first premise.
Note that we make the hypothesis tha all the free variables which need
to be instantiated appear in the first premise, of course (the caller should
enforce this).
Remark: this theorem should be of the form:
⊢ H0 ==> ... ==> Hn ==> H
(without quantified variables).
**REMARK**: the function raises a HOL_ERR exception if it fails.
[forbid_vars]: see [inst_match_concl]
*)
fun inst_match_first_premise
(forbid_vars : string Redblackset.set) (th : thm) (t : term) : thm =
let
(* Retrieve the first premise *)
val l = (fst o dest_imp o concl) th;
(* Match this with the term *)
val (var_s, ty_s) = match_term l t;
(* Check that we are allowed to perform the substitution *)
val free_vars = free_vars_in_subst_residue var_s;
val _ = assert Redblackset.isEmpty (Redblackset.intersection (free_vars, forbid_vars));
in
(* Perform the substitution *)
INST var_s (INST_TYPE ty_s th)
end
(*
val forbid_vars = Redblackset.empty String.compare
val t = “u32_to_int z = u32_to_int i − 1”
val th = SPEC_ALL NUM_SUB_1_EQ
*)
(* Call a matching function on all the subterms in the provided list of term.
This is a generic function.
[try_match] should return an instantiated theorem, as well as a term which
identifies this theorem (the lhs of the equality, if this is a rewriting
theorem for instance - we use this to check for collisions, and discard
redundant instantiations).
It takes as input the set of bound variables (it should not perform
substitutions with variables belonging to this set).
*)
fun inst_match_in_terms
(try_match: string Redblackset.set -> term -> term * thm)
(tml : term list) : thm list =
let
(* We use a map when storing the theorems, to avoid storing the same theorem twice *)
val inst_thms: (term, thm) Redblackmap.dict ref = ref (Redblackmap.mkDict Term.compare);
fun try_instantiate bvars t =
let
val (inst_th_tm, inst_th) = try_match bvars t;
in
inst_thms := Redblackmap.insert (!inst_thms, inst_th_tm, inst_th)
end
handle HOL_ERR _ => ();
(* Explore the term *)
val _ = List.app (dep_apply_in_subterms try_instantiate (Redblackset.empty String.compare)) tml;
in
map snd (Redblackmap.listItems (!inst_thms))
end
(* Given a rewriting theorem [th] which has premises, return all the
instantiations of this theorem which make its conclusion match subterms
in the provided list of term.
[keep]: if this function returns false on an instantiated theorem, ignore
the theorem.
*)
fun inst_match_concl_in_terms (keep : thm -> bool) (th : thm) (tml : term list) : thm list =
let
val th = (UNDISCH_ALL o SPEC_ALL) th;
fun try_match bvars t =
let
val _ = print_dbg ("inst_match_concl_in_terms: " ^ term_to_string t ^ "\n")
val inst_th = inst_match_concl bvars th t
val c = concl inst_th
val _ = print_dbg ("inst_match_concl_in_terms: matched with success\n")
in
(* Check that we mustn't ignore the theorem *)
if keep inst_th then (lhs (concl inst_th), inst_th)
else
let val _ = print_dbg ("inst_match_concl_in_terms: matched failed\n") in
failwith "inst_match_concl_in_terms: ignore theorem" end
end;
in
inst_match_in_terms try_match tml
end
(*
val t = “!x. u32_to_int (int_to_u32 x) = u32_to_int (int_to_u32 y)”
val th = int_to_u32_id
val thms = inst_match_concl_in_terms int_to_u32_id [t]
*)
(* Given a theorem [th] which has premises, return all the
instantiations of this theorem which make its first premise match subterms
in the provided list of term.
*)
fun inst_match_first_premise_in_terms (keep : thm -> bool) (th : thm) (tml : term list) : thm list =
let
val th = SPEC_ALL th;
fun try_match bvars t =
let
val inst_th = inst_match_first_premise bvars th t;
in
if keep inst_th then ((fst o dest_imp o concl) inst_th, inst_th)
else failwith "inst_match_first_premise_in_terms: ignore theorem"
end;
in
inst_match_in_terms try_match tml
end
(*
val t = “x = y - 1 ==> T”
val th = SPEC_ALL NUM_SUB_1_EQ
val thms = inst_match_first_premise_in_terms th [t]
*)
(* Attempt to apply dependent rewrites with a theorem by matching its
conclusion with subterms in the given list of terms.
Leaves the premises as subgoals if [prove_premise] doesn't prove them.
*)
fun apply_dep_rewrites_match_concl_with_terms_tac
(prove_premise : tactic) (then_tac : thm_tactic)
(ignore_tml : term list)
(tml : term list) (th : thm) : tactic =
let
val ignore = Redblackset.fromList Term.compare ignore_tml
fun keep th = not (Redblackset.member (ignore, concl th))
(* Discharge the assumptions so that the goal is one single term *)
val thms = inst_match_concl_in_terms keep th tml
val thms = map thm_to_conj_implies thms
in
(* Apply each theorem *)
map_every_tac (try_tac o sg_premise_then prove_premise then_tac) thms
end
(* Attempt to apply dependent rewrites with a theorem by matching its
conclusion with subterms of the goal (including the assumptions).
Leaves the premises as subgoals if [prove_premise] doesn't prove them.
*)
fun apply_dep_rewrites_match_concl_with_all_tac
(prove_premise : tactic) (then_tac : thm_tactic) (th : thm) : tactic =
fn (asms, g) =>
apply_dep_rewrites_match_concl_with_terms_tac prove_premise then_tac asms (g :: asms) th (asms, g)
(* Same as {!apply_dep_rewrites_match_concl_with_all_tac} but we only match the
conclusion of the goal.
*)
fun apply_dep_rewrites_match_concl_with_goal_tac
(prove_premise : tactic) (then_tac : thm_tactic) (th : thm) : tactic =
fn (asms, g) =>
apply_dep_rewrites_match_concl_with_terms_tac prove_premise then_tac asms [g] th (asms, g)
(* A theorem might be of the shape: [H => A = B /\ C = D], in which
case we can split it into:
[H => A = B]
[H => C = D]
The theorem mustn't have assumptions.
*)
fun split_rewrite_thm (th : thm) : thm list =
let
val _ = null (hyp th);
val t = concl th;
val (vars, t) = strip_forall t;
val (impl, t) = strip_imp t;
val tml = strip_conj t;
fun mk_goal (t : term) = list_mk_forall (vars, (list_mk_imp (impl, t)))
val prove_tac =
rpt gen_tac >> rpt disch_tac >>
qspecl_assume (map (fn a => ‘^a’) vars) th >>
fs [];
fun mk_th (t : term) = prove (mk_goal t, prove_tac);
(* Change the shape of the theorem (one of the conjuncts may have
universally quantified variables)
*)
fun transform_th (th : thm) : thm =
(GEN_ALL o thm_to_conj_implies o SPEC_ALL o UNDISCH_ALL o SPEC_ALL) th
in
map (transform_th o mk_th) tml
end
(* A dependent rewrite tactic which introduces the premises in a new goal.
We try to apply dependent rewrites to the whole goal, including its assumptions.
TODO: this tactic sometimes introduces several times the same subgoal
(because we split theorems...).
*)
fun sg_dep_rewrite_all_tac (th : thm) =
let
(* Split the theorem *)
val thml = split_rewrite_thm th
in
MAP_EVERY (apply_dep_rewrites_match_concl_with_all_tac all_tac assume_tac) thml
end
(* Same as {!sg_dep_rewrite_tac} but this time we apply rewrites only in the conclusion
of the goal (not the assumptions).
*)
fun sg_dep_rewrite_goal_tac (th : thm) =
let
(* Split the theorem *)
val thml = split_rewrite_thm th
in
MAP_EVERY (apply_dep_rewrites_match_concl_with_goal_tac all_tac assume_tac) thml
end
(*
val (asms, g) = ([
“u32_to_int z = u32_to_int i − u32_to_int (int_to_u32 1)”,
“u32_to_int (int_to_u32 2) = 2”
], “T”)
apply_dep_rewrites_match_concl_tac
(FULL_SIMP_TAC simpLib.empty_ss all_integer_bounds >> COOPER_TAC)
(fn th => FULL_SIMP_TAC simpLib.empty_ss [th])
int_to_u32_id
*)
(* Attempt to apply dependent rewrites with a theorem by matching its
first premise with subterms of the goal.
Leaves the premises as subgoals if [prove_premise] doesn't prove them.
*)
fun apply_dep_rewrites_match_first_premise_with_all_tac
(keep : thm -> bool)
(prove_premise : tactic) (then_tac : thm_tactic) (th : thm) : tactic =
fn (asms, g) =>
let
(* Discharge the assumptions so that the goal is one single term *)
val thms = inst_match_first_premise_in_terms keep th (g :: asms);
val thms = map thm_to_conj_implies thms;
fun apply_tac th =
let
val th = thm_to_conj_implies th;
in
sg_premise_then prove_premise then_tac th
end;
in
(* Apply each theorem *)
map_every_tac apply_tac thms (asms, g)
end
val cooper_tac = COOPER_TAC
(* TODO: COOPER_TAC fails in the proof below, because of x <> y. We should
create an issue/PR for HOL4.
Theorem cooper_fail:
∀(x y : 'a). x ≠ y ==> 0 ≤ i ==> i ≠ 0 ⇒ 0 < i
Proof
rw [] >> cooper_tac
QED
*)
(* Filter the assumptions in the goal *)
fun filter_assums_tac (keep : term -> bool) : tactic =
fn (asms, g) =>
let
val kept_asms = filter keep asms
(* The validation function *)
fun valid thms =
case thms of
[th] =>
let
(* Being a bit brutal - will optimize later *)
val tac = ntac (length asms) strip_tac >> irule th >> pure_asm_rewrite_tac []
val th = prove (list_mk_imp (asms, g), tac)
val th = foldl (fn (_, th) => UNDISCH th) th asms
in th end
| _ => failwith "filter_assums: expected exactly one theorem"
in
([(kept_asms, g)], valid)
end
(* Destruct the conjunctions in the assumptions *)
val dest_assums_conjs_tac : tactic =
fn (asms, g) =>
let
(* Destruct the conjunctions *)
val dest_asms = flatten (map (rev o strip_conj) asms)
(* The validation function *)
fun valid thms =
case thms of
[th] =>
let
(* Being a bit brutal - will optimize later *)
val tac = ntac (length asms) strip_tac >> irule th >> pure_asm_rewrite_tac []
val th = prove (list_mk_imp (asms, g), tac)
val th = foldl (fn (_, th) => UNDISCH th) th asms
in th end
| _ => failwith "dest_assums_conjs: expected exactly one theorem"
in
([(dest_asms, g)], valid)
end
(* Defining those here so that they are evaluated once and for all (parsing
depends on the context) *)
val int_tac_int_ty = “:int”
val int_tac_num_ty = “:num”
val int_tac_pat1 = “(x : 'a) <> (y : 'a)”
val int_tac_pat2 = “(x : 'a) = (y : 'a)”
(* We boost COOPER_TAC a bit *)
fun int_tac (asms, g) =
let
(* Following the bug we discovered in COOPER_TAC, we filter all the
inequalities/equalities which terms are not between terms of type “:int”
or “:num”.
TODO: issue/PR for HOL4
*)
fun keep_with_pat (asm : term) (pat : term) : bool =
let
val (_, s) = match_term pat asm
in
case s of
[{redex = _, residue = ty}] => (ty = int_tac_int_ty orelse ty = int_tac_num_ty)
| [] => (* Can happen if the term has exactly the same types as the pattern - unlikely *) false
| _ => failwith "int_tac: match error"
end
handle HOL_ERR _ => true
fun keep (asm : term) : bool =
forall (keep_with_pat asm) [int_tac_pat1, int_tac_pat2]
in
(dest_assums_conjs_tac >>
filter_assums_tac keep >>
first_tac [cooper_tac, exfalso >> cooper_tac]) (asms, g)
end
(* Repeatedly destruct cases and return the last scrutinee we get *)
fun strip_all_cases_get_scrutinee (t : term) : term =
if TypeBase.is_case t
then
(* Remark.: [strip_case] is too smart for what we want.
For instance: (fst o strip_case) “if i = 0 then ... else ...”
returns “i” while we want to get “i = 0”.
We use [dest_case] for this reason.
*)
(strip_all_cases_get_scrutinee o (fn (_, x, _) => x) o TypeBase.dest_case) t
else t
(*
TypeBase.dest_case “case ls of [] => T | _ => F”
TypeBase.strip_case “case ls of [] => T | _ => F”
TypeBase.strip_case “case (if b then [] else [0, 1]) of [] => T | _ => F”
TypeBase.strip_case “3”
TypeBase.dest_case “3”
strip_all_cases_get_scrutinee “case ls of [] => T | _ => F”
strip_all_cases_get_scrutinee “case (if b then [] else [0, 1]) of [] => T | _ => F”
strip_all_cases_get_scrutinee “3”
*)
(* Lexicographic order over pairs *)
fun pair_compare (comp1 : 'a * 'a -> order) (comp2 : 'b * 'b -> order)
((p1, p2) : (('a * 'b) * ('a * 'b))) : order =
let
val (x1, y1) = p1;
val (x2, y2) = p2;
in
case comp1 (x1, x2) of
LESS => LESS
| GREATER => GREATER
| EQUAL => comp2 (y1, y2)
end
(* A constant name (theory, constant name) *)
type const_name = string * string
val const_name_compare = pair_compare String.compare String.compare
(* Given a function call [f y0 ... yn] return the name of the function *)
fun get_fun_name_from_app (t : term) : const_name =
let
val f = (fst o strip_comb) t;
val {Name=name, Thy=thy, Ty=_} = dest_thy_const f;
val cn = (thy, name);
in cn end
end
|