summaryrefslogtreecommitdiff
path: root/backends/hol4/primitivesArithTheory.sig
blob: 85a627d26f62a21b5fb05df51c74dc040d37c358 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
signature primitivesArithTheory =
sig
  type thm = Thm.thm
  
  (*  Theorems  *)
    val add_sub_same_eq : thm
    val ge_eq_le : thm
    val gt_eq_lt : thm
    val int_add : thm
    val int_add_minus_same_eq : thm
    val int_induction : thm
    val int_induction_ideal : thm
    val int_of_num_id : thm
    val int_of_num_inj : thm
    val le_eq_ge : thm
    val lt_eq_gt : thm
    val mul_pos_left_le : thm
    val mul_pos_left_lt : thm
    val mul_pos_right_le : thm
    val mul_pos_right_lt : thm
    val not_ge_eq_lt : thm
    val not_gt_eq_le : thm
    val not_le_eq_gt : thm
    val not_lt_eq_ge : thm
    val num_sub_1_eq : thm
    val num_sub_eq : thm
    val pos_div_pos_ge : thm
    val pos_div_pos_is_pos : thm
    val pos_div_pos_le : thm
    val pos_div_pos_le_init : thm
    val pos_div_pos_mul_le : thm
    val pos_mod_pos_ineqs : thm
    val pos_mod_pos_is_pos : thm
    val pos_mod_pos_le_init : thm
    val pos_mod_pos_lt : thm
    val pos_mul_2_div_pos_decompose : thm
    val pos_mul_left_pos_le : thm
    val pos_mul_left_pos_lt : thm
    val pos_mul_pos_div_pos_decompose : thm
    val pos_mul_pos_is_pos : thm
    val pos_mul_right_pos_le : thm
    val pos_mul_right_pos_lt : thm
  
  val primitivesArith_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [Omega] Parent theory of "primitivesArith"
   
   [int_arith] Parent theory of "primitivesArith"
   
   [add_sub_same_eq]  Theorem
      
      ⊢ ∀i j. i + j − j = i
   
   [ge_eq_le]  Theorem
      
      ⊢ ∀x y. x ≥ y ⇔ y ≤ x
   
   [gt_eq_lt]  Theorem
      
      ⊢ ∀x y. x > y ⇔ y < x
   
   [int_add]  Theorem
      
      ⊢ ∀m n. &(m + n) = &m + &n
   
   [int_add_minus_same_eq]  Theorem
      
      ⊢ ∀i j. i + j − j = i
   
   [int_induction]  Theorem
      
      ⊢ ∀P. (∀i. i < 0 ⇒ P i) ∧ P 0 ∧ (∀i. P i ⇒ P (i + 1)) ⇒ ∀i. P i
   
   [int_induction_ideal]  Theorem
      
      ⊢ ∀P. P 0 ∧ (∀i. 0 ≤ i ∧ P i ⇒ P (i + 1)) ⇒ ∀i. 0 ≤ i ⇒ P i
   
   [int_of_num_id]  Theorem
      
      ⊢ ∀i. 0 ≤ i ⇒ &Num i = i
   
   [int_of_num_inj]  Theorem
      
      ⊢ ∀n m. &n = &m ⇒ n = m
   
   [le_eq_ge]  Theorem
      
      ⊢ ∀x y. x ≤ y ⇔ y ≥ x
   
   [lt_eq_gt]  Theorem
      
      ⊢ ∀x y. x < y ⇔ y > x
   
   [mul_pos_left_le]  Theorem
      
      ⊢ ∀a x y. 0 ≤ a ⇒ x ≤ y ⇒ a * x ≤ a * y
   
   [mul_pos_left_lt]  Theorem
      
      ⊢ ∀a x y. 0 < a ⇒ x < y ⇒ a * x < a * y
   
   [mul_pos_right_le]  Theorem
      
      ⊢ ∀a x y. 0 ≤ a ⇒ x ≤ y ⇒ x * a ≤ y * a
   
   [mul_pos_right_lt]  Theorem
      
      ⊢ ∀a x y. 0 < a ⇒ x < y ⇒ x * a < y * a
   
   [not_ge_eq_lt]  Theorem
      
      ⊢ ∀x y. ¬(x ≥ y) ⇔ x < y
   
   [not_gt_eq_le]  Theorem
      
      ⊢ ∀x y. ¬(x > y) ⇔ x ≤ y
   
   [not_le_eq_gt]  Theorem
      
      ⊢ ∀x y. ¬(x ≤ y) ⇔ x > y
   
   [not_lt_eq_ge]  Theorem
      
      ⊢ ∀x y. ¬(x < y) ⇔ x ≥ y
   
   [num_sub_1_eq]  Theorem
      
      ⊢ ∀x y. x = y − 1 ⇒ 0 ≤ x ⇒ Num y = SUC (Num x)
   
   [num_sub_eq]  Theorem
      
      ⊢ ∀x y z. x = y − z ⇒ 0 ≤ x ⇒ 0 ≤ z ⇒ Num y = Num z + Num x
   
   [pos_div_pos_ge]  Theorem
      
      ⊢ ∀x y d. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 < d ⇒ x ≥ y ⇒ x / d ≥ y / d
   
   [pos_div_pos_is_pos]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ 0 ≤ x / y
   
   [pos_div_pos_le]  Theorem
      
      ⊢ ∀x y d. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 < d ⇒ x ≤ y ⇒ x / d ≤ y / d
   
   [pos_div_pos_le_init]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x / y ≤ x
   
   [pos_div_pos_mul_le]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x / y * y ≤ x
   
   [pos_mod_pos_ineqs]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ 0 ≤ x % y ∧ x % y < y
   
   [pos_mod_pos_is_pos]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ 0 ≤ x % y
   
   [pos_mod_pos_le_init]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x % y ≤ x
   
   [pos_mod_pos_lt]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x % y < y
   
   [pos_mul_2_div_pos_decompose]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x / y + x / y ≤ x * 2 / y
   
   [pos_mul_left_pos_le]  Theorem
      
      ⊢ ∀a x. 0 < a ⇒ 0 ≤ x ⇒ x ≤ a * x
   
   [pos_mul_left_pos_lt]  Theorem
      
      ⊢ ∀a x. 1 < a ⇒ 0 < x ⇒ x < a * x
   
   [pos_mul_pos_div_pos_decompose]  Theorem
      
      ⊢ ∀x y z. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 < z ⇒ x / z + y / z ≤ (x + y) / z
   
   [pos_mul_pos_is_pos]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 ≤ x * y
   
   [pos_mul_right_pos_le]  Theorem
      
      ⊢ ∀a x. 0 < a ⇒ 0 ≤ x ⇒ x ≤ x * a
   
   [pos_mul_right_pos_lt]  Theorem
      
      ⊢ ∀a x. 1 < a ⇒ 0 < x ⇒ x < x * a
   
   
*)
end