blob: f7ecccab584d3ace3da6cbefe7c2eac1fd3cddf0 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
signature primitivesArithTheory =
sig
type thm = Thm.thm
(* Theorems *)
val add_sub_same_eq : thm
val ge_eq_le : thm
val gt_eq_lt : thm
val int_add : thm
val int_add_minus_same_eq : thm
val int_induction : thm
val int_induction_ideal : thm
val int_of_num_id : thm
val int_of_num_inj : thm
val le_eq_ge : thm
val lt_eq_gt : thm
val not_ge_eq_lt : thm
val not_gt_eq_le : thm
val not_le_eq_gt : thm
val not_lt_eq_ge : thm
val num_sub_1_eq : thm
val num_sub_eq : thm
val pos_div_pos_is_pos : thm
val pos_div_pos_le : thm
val pos_div_pos_le_init : thm
val pos_mod_pos_is_pos : thm
val pos_mod_pos_le_init : thm
val pos_mul_pos_is_pos : thm
val primitivesArith_grammars : type_grammar.grammar * term_grammar.grammar
(*
[Omega] Parent theory of "primitivesArith"
[int_arith] Parent theory of "primitivesArith"
[add_sub_same_eq] Theorem
⊢ ∀i j. i + j − j = i
[ge_eq_le] Theorem
⊢ ∀x y. x ≥ y ⇔ y ≤ x
[gt_eq_lt] Theorem
⊢ ∀x y. x > y ⇔ y < x
[int_add] Theorem
⊢ ∀m n. &(m + n) = &m + &n
[int_add_minus_same_eq] Theorem
⊢ ∀i j. i + j − j = i
[int_induction] Theorem
⊢ ∀P. (∀i. i < 0 ⇒ P i) ∧ P 0 ∧ (∀i. P i ⇒ P (i + 1)) ⇒ ∀i. P i
[int_induction_ideal] Theorem
⊢ ∀P. P 0 ∧ (∀i. 0 ≤ i ∧ P i ⇒ P (i + 1)) ⇒ ∀i. 0 ≤ i ⇒ P i
[int_of_num_id] Theorem
⊢ ∀i. 0 ≤ i ⇒ &Num i = i
[int_of_num_inj] Theorem
⊢ ∀n m. &n = &m ⇒ n = m
[le_eq_ge] Theorem
⊢ ∀x y. x ≤ y ⇔ y ≥ x
[lt_eq_gt] Theorem
⊢ ∀x y. x < y ⇔ y > x
[not_ge_eq_lt] Theorem
⊢ ∀x y. ¬(x ≥ y) ⇔ x < y
[not_gt_eq_le] Theorem
⊢ ∀x y. ¬(x > y) ⇔ x ≤ y
[not_le_eq_gt] Theorem
⊢ ∀x y. ¬(x ≤ y) ⇔ x > y
[not_lt_eq_ge] Theorem
⊢ ∀x y. ¬(x < y) ⇔ x ≥ y
[num_sub_1_eq] Theorem
⊢ ∀x y. x = y − 1 ⇒ 0 ≤ x ⇒ Num y = SUC (Num x)
[num_sub_eq] Theorem
⊢ ∀x y z. x = y − z ⇒ 0 ≤ x ⇒ 0 ≤ z ⇒ Num y = Num z + Num x
[pos_div_pos_is_pos] Theorem
⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ 0 ≤ x / y
[pos_div_pos_le] Theorem
⊢ ∀x y d. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 < d ⇒ x ≤ y ⇒ x / d ≤ y / d
[pos_div_pos_le_init] Theorem
⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x / y ≤ x
[pos_mod_pos_is_pos] Theorem
⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ 0 ≤ x % y
[pos_mod_pos_le_init] Theorem
⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x % y ≤ x
[pos_mul_pos_is_pos] Theorem
⊢ ∀x y. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 ≤ x * y
*)
end
|