blob: 15592052085719967af43c2a84b15a6c904fe13b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
signature divDefTheory =
sig
type thm = Thm.thm
(* Definitions *)
val fix_def : thm
val fix_fuel_P_def : thm
val fix_fuel_def : thm
val is_valid_fp_body_def : thm
(* Theorems *)
val case_result_switch_eq : thm
val fix_fixed_diverges : thm
val fix_fixed_eq : thm
val fix_fixed_terminates : thm
val fix_fuel_P_least : thm
val fix_fuel_compute : thm
val fix_fuel_eq_fix : thm
val fix_fuel_mono : thm
val fix_fuel_mono_aux : thm
val fix_fuel_mono_least : thm
val fix_fuel_not_diverge_eq_fix : thm
val fix_fuel_not_diverge_eq_fix_aux : thm
val fix_not_diverge_implies_fix_fuel : thm
val fix_not_diverge_implies_fix_fuel_aux : thm
val is_valid_fp_body_compute : thm
val divDef_grammars : type_grammar.grammar * term_grammar.grammar
(*
[primitives] Parent theory of "divDef"
[fix_def] Definition
⊢ ∀f x.
fix f x =
if ∃n. fix_fuel_P f x n then
fix_fuel ($LEAST (fix_fuel_P f x)) f x
else Diverge
[fix_fuel_P_def] Definition
⊢ ∀f x n. fix_fuel_P f x n ⇔ ¬is_diverge (fix_fuel n f x)
[fix_fuel_def] Definition
⊢ (∀f x. fix_fuel 0 f x = Diverge) ∧
∀n f x. fix_fuel (SUC n) f x = f (fix_fuel n f) x
[is_valid_fp_body_def] Definition
⊢ (∀f. is_valid_fp_body 0 f ⇔ F) ∧
∀n f.
is_valid_fp_body (SUC n) f ⇔
∀x. (∀g h. f g x = f h x) ∨
∃h y.
is_valid_fp_body n h ∧ ∀g. f g x = do z <- g y; h g z od
[case_result_switch_eq] Theorem
⊢ (case
case x of
Return y => f y
| Fail e => Fail e
| Diverge => Diverge
of
Return y => g y
| Fail e => Fail e
| Diverge => Diverge) =
case x of
Return y =>
(case f y of
Return y => g y
| Fail e => Fail e
| Diverge => Diverge)
| Fail e => Fail e
| Diverge => Diverge
[fix_fixed_diverges] Theorem
⊢ ∀N f.
is_valid_fp_body N f ⇒
∀x. ¬(∃n. fix_fuel_P f x n) ⇒ fix f x = f (fix f) x
[fix_fixed_eq] Theorem
⊢ ∀N f. is_valid_fp_body N f ⇒ ∀x. fix f x = f (fix f) x
[fix_fixed_terminates] Theorem
⊢ ∀N f.
is_valid_fp_body N f ⇒
∀x n. fix_fuel_P f x n ⇒ fix f x = f (fix f) x
[fix_fuel_P_least] Theorem
⊢ ∀f n x.
fix_fuel n f x ≠ Diverge ⇒
fix_fuel_P f x ($LEAST (fix_fuel_P f x))
[fix_fuel_compute] Theorem
⊢ (∀f x. fix_fuel 0 f x = Diverge) ∧
(∀n f x.
fix_fuel (NUMERAL (BIT1 n)) f x =
f (fix_fuel (NUMERAL (BIT1 n) − 1) f) x) ∧
∀n f x.
fix_fuel (NUMERAL (BIT2 n)) f x =
f (fix_fuel (NUMERAL (BIT1 n)) f) x
[fix_fuel_eq_fix] Theorem
⊢ ∀N f.
is_valid_fp_body N f ⇒
∀n x. fix_fuel_P f x n ⇒ fix_fuel n f x = fix f x
[fix_fuel_mono] Theorem
⊢ ∀N f.
is_valid_fp_body N f ⇒
∀n x.
fix_fuel_P f x n ⇒ ∀m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x
[fix_fuel_mono_aux] Theorem
⊢ ∀n N M g f.
is_valid_fp_body M f ⇒
is_valid_fp_body N g ⇒
∀x. ¬is_diverge (g (fix_fuel n f) x) ⇒
∀m. n ≤ m ⇒ g (fix_fuel n f) x = g (fix_fuel m f) x
[fix_fuel_mono_least] Theorem
⊢ ∀N f.
is_valid_fp_body N f ⇒
∀n x.
fix_fuel_P f x n ⇒
fix_fuel n f x = fix_fuel ($LEAST (fix_fuel_P f x)) f x
[fix_fuel_not_diverge_eq_fix] Theorem
⊢ ∀N f.
is_valid_fp_body N f ⇒
∀n x.
f (fix_fuel n f) x ≠ Diverge ⇒ f (fix f) x = f (fix_fuel n f) x
[fix_fuel_not_diverge_eq_fix_aux] Theorem
⊢ ∀N M g f.
is_valid_fp_body M f ⇒
is_valid_fp_body N g ⇒
∀n x.
g (fix_fuel n f) x ≠ Diverge ⇒ g (fix f) x = g (fix_fuel n f) x
[fix_not_diverge_implies_fix_fuel] Theorem
⊢ ∀N f.
is_valid_fp_body N f ⇒
∀x. f (fix f) x ≠ Diverge ⇒ ∃n. f (fix f) x = f (fix_fuel n f) x
[fix_not_diverge_implies_fix_fuel_aux] Theorem
⊢ ∀N M g f.
is_valid_fp_body M f ⇒
is_valid_fp_body N g ⇒
∀x. g (fix f) x ≠ Diverge ⇒
∃n. g (fix f) x = g (fix_fuel n f) x ∧
∀m. n ≤ m ⇒ g (fix_fuel m f) x = g (fix_fuel n f) x
[is_valid_fp_body_compute] Theorem
⊢ (∀f. is_valid_fp_body 0 f ⇔ F) ∧
(∀n f.
is_valid_fp_body (NUMERAL (BIT1 n)) f ⇔
∀x. (∀g h. f g x = f h x) ∨
∃h y.
is_valid_fp_body (NUMERAL (BIT1 n) − 1) h ∧
∀g. f g x = do z <- g y; h g z od) ∧
∀n f.
is_valid_fp_body (NUMERAL (BIT2 n)) f ⇔
∀x. (∀g h. f g x = f h x) ∨
∃h y.
is_valid_fp_body (NUMERAL (BIT1 n)) h ∧
∀g. f g x = do z <- g y; h g z od
*)
end
|