summaryrefslogtreecommitdiff
path: root/backends/hol4/divDefScript.sml
blob: 8ef995308708385a022f19ee9161bd27b3ae85bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
(* This file introduces a fixed-point operator to define potentially diverging
   functions so that the user doesn't have to prove termination at *definition time*
   but can prove it in an extrinsic manner.

   See divDefLib for a library which uses this fixed-point operator in an automated
   manner, and divDefExampleScript for hand-written and well commented examples of
   how to use it.
 *)

open primitivesArithTheory primitivesBaseTacLib primitivesTheory primitivesLib

val _ = new_theory "divDef"

(*======================
 * Fixed-point operator
 *======================*)

(* An auxiliary operator which uses some fuel *)
Definition fix_fuel_def:
  (fix_fuel (0 : num) (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result = Diverge) 
  (fix_fuel (SUC n) (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result = f (fix_fuel n f) x)
End

(* An auxiliary predicate *)
Definition fix_fuel_P_def:
  fix_fuel_P f x n = ~(is_diverge (fix_fuel n f x))
End

(* The fixed point operator *)
Definition fix_def:
  fix (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result =
    if ( n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge
End

(* An "executable" fixed point operator - useful for unit tests: we first test
   if ‘fix_fuel_P f x’ is true for a high quantity of fuel, otherwise we use
   ‘fix’ (which is not executable).

   We prove later that, under some constraints: ‘∀n. fix_nexec n f = fix f’
 *)
Definition fix_nexec_def:
  fix_nexec (n : num) (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result =
    if (fix_fuel_P f x n) then fix_fuel n f x else fix f x
End

(* We fix a quantity of fuel for ’fix_nexec *)
Definition fix_exec_def:
  fix_exec = fix_nexec 1000000
End

(* A validity condition.

   If a function body ‘f’ satisfies this condition, then we have the fixed point
   equation ‘fix f = f (fix f)’ (see [fix_fixed_eq]).
 *)
Definition is_valid_fp_body_def:
  (is_valid_fp_body (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) = F) 
  
  (is_valid_fp_body (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) =
    ∀x. (∀g h. f g x = f h x) 
         ( h y. is_valid_fp_body n h 
                  ∀g. f g x = do z <- g y; h g z od))
End

(*=====================================*
 * Lemmas about ‘fix_fuel’ and ‘fix’
 *=====================================*)
(* Auxiliary lemma.
   We generalize the goal of [fix_fuel_mono] in the case the fuel is non-empty
   (this allows us to unfold definitions like ‘fix_fuel’ once, and reveal
   a first intermediate function).

   Important: the structure of the proof is induction over ‘n’ then ‘N’.
 *)
Theorem fix_fuel_mono_aux:
  ∀n.
    ∀N M g f. is_valid_fp_body M f 
      is_valid_fp_body N g 
      ∀x. ~(is_diverge (g (fix_fuel n f) x)) 
       ∀m. n  m 
         g (fix_fuel n f) x = g (fix_fuel m f) x
Proof
  Induct_on ‘n’ >>
  Induct_on ‘N’ >- fs [is_valid_fp_body_def]
  >-(  
    rw [] >>
    fs [is_valid_fp_body_def, is_diverge_def] >>
    first_x_assum (qspec_assume ‘x’) >>
    rw []
    >-((* Case 1: the continuation doesn't matter *) fs []) >>
    (* Case 2: the continuation *does* matter (i.e., there is a recursive call *)
    (* Instantiate the validity property with the different continuations *)
    first_assum (qspec_assume ‘fix_fuel n f’) >>
    first_assum (qspec_assume ‘fix_fuel n' f’) >>
    fs [] >>
    ntac 3 (pop_assum ignore_tac) >>
    fs [bind_def] >>
    fs [fix_fuel_def])
  >-(fs [is_valid_fp_body_def]) >>
  rw [] >>
  qpat_assum ‘is_valid_fp_body (SUC N) g mp_tac >>
  pure_rewrite_tac [is_valid_fp_body_def] >>
  fs [is_diverge_def] >>
  rw [] >>
  first_x_assum (qspec_assume ‘x’) >>
  rw []
  >-((* Case 1: the continuation doesn't matter *) fs []) >>
  (* Case 2: the continuation *does* matter (i.e., there is a recursive call *)
  (* Use the validity property with the different continuations *)
  fs [] >> pop_assum ignore_tac >>
  fs [bind_def, fix_fuel_def] >>
  Cases_on ‘m’ >- int_tac >>
  fs [fix_fuel_def] >>
  (* *)
  last_x_assum (qspecl_assume [‘M’, ‘M’, ‘f’, ‘f’]) >>
  gvs [] >>
  first_x_assum (qspec_assume ‘y’) >>
  Cases_on ‘f (fix_fuel n f) y >> fs [] >>
  first_x_assum (qspec_assume ‘n'’) >> gvs [] >> Cases_on ‘f (fix_fuel n' f) y >> fs [] >>
  (* *)  
  first_assum (qspecl_assume [‘M’, ‘h’, ‘f’]) >>
  gvs []
QED

(* ‘fix_fuel’ is monotonous over the fuel *)
Theorem fix_fuel_mono:
  ∀N f. is_valid_fp_body N f 
    ∀n x. fix_fuel_P f x n 
      m. n  m 
       fix_fuel n f x = fix_fuel m f x
Proof
  rw [] >>
  Cases_on ‘n’
  >-(fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >>
  fs [fix_fuel_P_def, fix_fuel_def] >> rw [] >>
  qspecl_assume [‘n'’, ‘N’, ‘N’, ‘f’, ‘f’] fix_fuel_mono_aux >>
  Cases_on ‘m’ >- fs [] >>
  gvs [fix_fuel_def]
QED

Theorem fix_fuel_mono_least:
  ∀N f. is_valid_fp_body N f 
    ∀n x. fix_fuel_P f x n 
      fix_fuel n f x = fix_fuel ($LEAST (fix_fuel_P f x)) f x
Proof
  rw [] >>
  pure_once_rewrite_tac [EQ_SYM_EQ] >>
  irule fix_fuel_mono >> fs [] >>
  (* Use the "fundamental" property about $LEAST *)
  qspec_assume ‘fix_fuel_P f x whileTheory.LEAST_EXISTS_IMP >>
  (* Prove the premise *)
  pop_assum sg_premise_tac >- metis_tac [] >> fs [] >>
  conj_tac
  >- (spose_not_then assume_tac >> fs [not_le_eq_gt]) >>
  metis_tac []
QED

Theorem fix_fuel_eq_fix:
  ∀N f. is_valid_fp_body N f 
    ∀n x. fix_fuel_P f x n 
      fix_fuel n f x = fix f x
Proof
  fs [fix_def] >>
  rw [] >>
  imp_res_tac fix_fuel_mono_least >>
  fs [fix_fuel_P_def, is_diverge_def] >>
  case_tac >> fs []
QED

Theorem fix_fuel_P_least:
  ∀f n x. fix_fuel n f x  Diverge  fix_fuel_P f x ($LEAST (fix_fuel_P f x))
Proof
  rw [] >>
  qspec_assume ‘fix_fuel_P f x whileTheory.LEAST_EXISTS_IMP >>
  (* Prove the premise *)
  pop_assum sg_premise_tac
  >-(fs [fix_fuel_P_def, is_diverge_def] >> qexists ‘n’ >> fs [] >> case_tac >> fs []) >>
  rw []
QED

(* If ‘g (fix f) x’ doesn't diverge, we can write it in terms of ‘g (fix_fuel n f)’
   for some fuel ‘n’.

   This is an auxiliary lemma used to prove [fix_not_diverge_implies_fix_fuel]
 *)
Theorem fix_not_diverge_implies_fix_fuel_aux:
  ∀N M g f. is_valid_fp_body M f 
    is_valid_fp_body N g 
     ∀x. g (fix f) x  Diverge 
       ∃n. g (fix f) x = g (fix_fuel n f) x 
         ∀m. n  m  g (fix_fuel m f) x = g (fix_fuel n f) x
Proof
  Induct_on ‘N’
  >-(fs [is_valid_fp_body_def]) >>
  rw [is_valid_fp_body_def] >>
  first_x_assum (qspec_assume ‘x’) >> rw []
  >-(first_assum (qspecl_assume [‘fix f’, ‘fix_fuel 0 f’]) >> fs []) >>
  (* Use the validity hypothesis *)
  fs [] >> pop_assum ignore_tac >>
  (* Use the induction hypothesis *)
  last_x_assum (qspecl_assume [‘M’, ‘h’, ‘f’]) >> gvs [] >>
  (* Case disjunction on ‘fix f ÿ’*)
  Cases_on ‘fix f y >> fs [bind_def] >~ [‘fix f y = Fail _’]
  >-(
    (* Fail case: easy, the call to ‘h’ is ignored *)
    fs [fix_def] >> pop_assum mp_tac >> rw [] >>
    qexists ‘$LEAST (fix_fuel_P f y) >>
    fs [] >>
    (* Use the monotonicity property for ‘f’ *)
    rw [] >>
    qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >>
    first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >>
    fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >>
    first_x_assum (qspecl_assume [‘m’]) >> gvs [] >>
    first_x_assum (fn th => assume_tac (GSYM th)) >> fs []
    ) >>
  (* Return case: we must take the maximum of the fuel for ‘f’ and ‘h’, and use
     the monotonicity property *)
  fs [fix_def] >> pop_assum mp_tac >> rw [] >>
  first_x_assum (qspec_assume ‘a’) >> gvs [] >>
  qexists ‘MAX ($LEAST (fix_fuel_P f y)) n' >> fs [] >>
  (* Use the monotonicity properties *)
  (* Instantiate the Monotonicity property for ‘f’ (the induction hypothesis gives
     the one for ‘h’) *)
  qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >>
  first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >>
  fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >>
  first_x_assum (qspecl_assume [‘MAX ($LEAST (fix_fuel_P f y)) n'’]) >> gvs [] >>
  first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] >>
  (* Prove the monotonicity property for ‘do z <- fix f y; h (fix f) z’ *)
  rw [] >>
  (* First, one of the ‘fix_fuel ... f y’ doesn't use the proper fuel *)
  sg ‘fix_fuel ($LEAST (fix_fuel_P f y)) f y = Return a
  >-(
    qspecl_assume [‘f’, ‘MAX ($LEAST (fix_fuel_P f y)) n'’, ‘y’] fix_fuel_P_least >>
    gvs [fix_fuel_P_def, is_diverge_def] >>
    Cases_on ‘fix_fuel ($LEAST (fix_fuel_P f y)) f y >> fs [] >>
    (* Use the monotonicity property - there are two goals here *)
    qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >>
    first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >>
    fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >>
    first_x_assum (qspecl_assume [‘MAX ($LEAST (fix_fuel_P f y)) n'’]) >> gvs []) >>
  (* Instantiate the monotonicity property for ‘f’ *)
  qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >>
  first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >>
  gvs [fix_fuel_P_def, is_diverge_def] >> gvs [] >>
  first_x_assum (qspecl_assume [‘m’]) >> gvs [] >>
  first_x_assum (fn th => assume_tac (GSYM th)) >> fs []
QED

(* If ‘g (fix f) x’ doesn't diverge, we can write it in terms of ‘g (fix_fuel n f)’
   for some fuel ‘n’. *)
Theorem fix_not_diverge_implies_fix_fuel:
  ∀N f. is_valid_fp_body N f 
     ∀x. f (fix f) x  Diverge 
       ∃n. f (fix f) x = f (fix_fuel n f) x
Proof
  metis_tac [fix_not_diverge_implies_fix_fuel_aux]
QED    

(* ‘fix’ satisfies the fixed point equation in case the evaluation diverges *)
Theorem fix_fixed_diverges:
  ∀N f. is_valid_fp_body N f  ∀x. ~( n. fix_fuel_P f x n)  fix f x = f (fix f) x
Proof
  (* We do the proof by contraposition: if ‘f (fix f) x’ doesn't diverge, we
     can exhibit some fuel (lemma [fix_not_diverge_implies_fix_fuel]) *)
  rw [fix_def] >>
  imp_res_tac fix_not_diverge_implies_fix_fuel >>
  pop_assum (qspec_assume ‘x’) >>
  fs [fix_fuel_P_def, is_diverge_def] >>
  (* Case analysis: we have to prove that the ‘Return’ and ‘Fail’ cases lead
     to a contradiction *)
  Cases_on ‘f (fix f) x >> gvs [] >>
  first_x_assum (qspec_assume ‘SUC n’) >> fs [fix_fuel_def] >>
  pop_assum mp_tac >> case_tac >> fs []
QED

(* If ‘g (fix_fuel n f) x’ doesn't diverge, then it is equal to ‘g (fix f) x’ *)
Theorem fix_fuel_not_diverge_eq_fix_aux:
  ∀N M g f. is_valid_fp_body M f 
    is_valid_fp_body N g 
     ∀n x. g (fix_fuel n f) x  Diverge 
       g (fix f) x = g (fix_fuel n f) x
Proof
  Induct_on ‘N’
  >-(fs [is_valid_fp_body_def]) >>
  rw [is_valid_fp_body_def] >>
  first_x_assum (qspec_assume ‘x’) >> rw []
  >-(first_assum (qspecl_assume [‘fix f’, ‘fix_fuel 0 f’]) >> fs []) >>
  (* Use the validity hypothesis *)
  fs [] >> pop_assum ignore_tac >>
  (* For ‘fix f y = fix_fuel n f y’: use the monotonicity property *)
  sg ‘fix_fuel_P f y n
  >-(Cases_on ‘fix_fuel n f y >> fs [fix_fuel_P_def, is_diverge_def, bind_def]) >>
  sg ‘fix f y = fix_fuel n f y >-(metis_tac [fix_fuel_eq_fix])>>
  (* Case disjunction on the call to ‘f’ *)
  Cases_on ‘fix_fuel n f y >> gvs [bind_def] >>
  (* We have to prove that: ‘h (fix f) a = h (fix_fuel n f) a’: use the induction hypothesis *)
  metis_tac []
QED

Theorem fix_fuel_not_diverge_eq_fix:
  ∀N f. is_valid_fp_body N f 
     ∀n x. f (fix_fuel n f) x  Diverge 
       f (fix f) x = f (fix_fuel n f) x
Proof
  metis_tac [fix_fuel_not_diverge_eq_fix_aux]
QED

(* ‘fix’ satisfies the fixed point equation in case the evaluation terminates *)
Theorem fix_fixed_terminates:
  ∀N f. is_valid_fp_body N f  ∀x n. fix_fuel_P f x n  fix f x = f (fix f) x
Proof
  (* The proof simply uses the lemma [fix_fuel_not_diverge_eq_fix] *)
  rw [fix_fuel_P_def, is_diverge_def, fix_def] >> case_tac >> fs [] >>
  (* We can prove that ‘fix_fuel ($LEAST ...) f x ≠ Diverge’ *)
  qspecl_assume [‘f’, ‘n’, ‘x’] fix_fuel_P_least >>
  pop_assum sg_premise_tac >-(Cases_on ‘fix_fuel n f x >> fs []) >>
  fs [fix_fuel_P_def, is_diverge_def] >>
  (* *)
  Cases_on ‘($LEAST (fix_fuel_P f x)) >> fs [fix_fuel_def] >>
  irule (GSYM fix_fuel_not_diverge_eq_fix) >>
  Cases_on ‘f (fix_fuel n'' f) x >> fs [] >> metis_tac []
QED

(* The final fixed point equation *)
Theorem fix_fixed_eq:
  ∀N f. is_valid_fp_body N f  ∀x. fix f x = f (fix f) x
Proof
  rw [] >>
  Cases_on ‘∃n. fix_fuel_P f x n
  >- (irule fix_fixed_terminates >> metis_tac []) >>
  irule fix_fixed_diverges >>
  metis_tac []
QED

(*===============================
 * Lemmas about ‘fix_exec’
 *===============================*)

(* Prove that ‘fix_nexec’ is equivalent to ‘fix’ *)
Theorem fix_nexec_eq_fix:
   N f n. is_valid_fp_body N f  fix_nexec n f = fix f
Proof
  rw [] >>
  rpt (irule EQ_EXT >> gen_tac) >>
  fs [fix_nexec_def, fix_def] >>
  top_case_tac >>
  case_tac >> fs [] >>
  (* Use the properties of the least upper bound *)
  qspec_assume ‘fix_fuel_P f x whileTheory.LEAST_EXISTS_IMP >>
  pop_assum sg_premise_tac >- metis_tac [] >> fs [] >>
  (* Use the monotonicity property *)
  irule fix_fuel_mono_least >> metis_tac []
QED

(* Prove the fixed point property for ‘fix_exec’ *)
Theorem fix_exec_fixed_eq:
  ∀N f. is_valid_fp_body N f  ∀x. fix_exec f x = f (fix_exec f) x
Proof
  rw [fix_exec_def] >>
  imp_res_tac fix_nexec_eq_fix >> fs [] >>
  irule fix_fixed_eq >> fs [] >> metis_tac []
QED


(*===============================
 * Utilities for the automation
 *===============================*)

(* This theorem is important to shape the goal when proving that a body
   satifies the fixed point validity property.

   Important: this theorem (and its usafe) relies on the fact that errors are just
   transmitted to the caller (in particular, without modification).
 *)
Theorem case_result_switch_eq:
  (case (case x of Return y => f y | Fail e => Fail e | Diverge => Diverge) of
  | Return y => g y
  | Fail e => Fail e
  | Diverge => Diverge) =
  (case x of
   | Return y =>
     (case f y of
     | Return y => g y
     | Fail e => Fail e
     | Diverge => Diverge)
  | Fail e => Fail e
  | Diverge => Diverge)
Proof
  Cases_on ‘x’ >> fs []
QED

val _ = export_theory ()