summaryrefslogtreecommitdiff
path: root/backends/hol4/divDefProto2Theory.sig
blob: 77d5631e8afd2b950b598a42500a902e529fa9b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
signature divDefProto2Theory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val even_odd_body_def : thm
    val fix_def : thm
    val fix_fuel_P_def : thm
    val fix_fuel_def : thm
    val is_valid_fp_body_def : thm
    val list_t_TY_DEF : thm
    val list_t_case_def : thm
    val list_t_size_def : thm
    val nth_body_def : thm
  
  (*  Theorems  *)
    val datatype_list_t : thm
    val even_def : thm
    val even_odd_body_is_valid : thm
    val even_odd_body_is_valid_aux : thm
    val fix_fixed_diverges : thm
    val fix_fixed_eq : thm
    val fix_fixed_terminates : thm
    val fix_fuel_P_least : thm
    val fix_fuel_compute : thm
    val fix_fuel_eq_fix : thm
    val fix_fuel_mono : thm
    val fix_fuel_mono_aux : thm
    val fix_fuel_mono_least : thm
    val fix_fuel_not_diverge_eq_fix : thm
    val fix_fuel_not_diverge_eq_fix_aux : thm
    val fix_not_diverge_implies_fix_fuel : thm
    val fix_not_diverge_implies_fix_fuel_aux : thm
    val is_valid_fp_body_compute : thm
    val list_t_11 : thm
    val list_t_Axiom : thm
    val list_t_case_cong : thm
    val list_t_case_eq : thm
    val list_t_distinct : thm
    val list_t_induction : thm
    val list_t_nchotomy : thm
    val nth_body_is_valid : thm
    val nth_body_is_valid_aux : thm
    val nth_def : thm
    val odd_def : thm
  
  val divDefProto2_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [primitives] Parent theory of "divDefProto2"
   
   [even_odd_body_def]  Definition
      
      ⊢ ∀f x.
          even_odd_body f x =
          case x of
            INL 0 => Return (INR (INR T))
          | INL i =>
            (case f (INR (INL (i − 1))) of
               Return (INL v) => Fail Failure
             | Return (INR (INL v2)) => Fail Failure
             | Return (INR (INR b)) => Return (INR (INR b))
             | Fail e => Fail e
             | Diverge => Diverge)
          | INR (INL 0) => Return (INR (INR F))
          | INR (INL i) =>
            (case f (INL (i − 1)) of
               Return (INL v) => Fail Failure
             | Return (INR (INL v2)) => Fail Failure
             | Return (INR (INR b)) => Return (INR (INR b))
             | Fail e => Fail e
             | Diverge => Diverge)
          | INR (INR v5) => Fail Failure
   
   [fix_def]  Definition
      
      ⊢ ∀f x.
          fix f x =
          if ∃n. fix_fuel_P f x n then
            fix_fuel ($LEAST (fix_fuel_P f x)) f x
          else Diverge
   
   [fix_fuel_P_def]  Definition
      
      ⊢ ∀f x n. fix_fuel_P f x n ⇔ ¬is_diverge (fix_fuel n f x)
   
   [fix_fuel_def]  Definition
      
      ⊢ (∀f x. fix_fuel 0 f x = Diverge) ∧
        ∀n f x. fix_fuel (SUC n) f x = f (fix_fuel n f) x
   
   [is_valid_fp_body_def]  Definition
      
      ⊢ (∀f. is_valid_fp_body 0 f ⇔ F) ∧
        ∀n f.
          is_valid_fp_body (SUC n) f ⇔
          ∀x. (∀g h. f g x = f h x) ∨
              ∃h y.
                is_valid_fp_body n h ∧ ∀g. f g x = do z <- g y; h g z od
   
   [list_t_TY_DEF]  Definition
      
      ⊢ ∃rep.
          TYPE_DEFINITION
            (λa0'.
                 ∀ $var$('list_t').
                   (∀a0'.
                      (∃a0 a1.
                         a0' =
                         (λa0 a1.
                              ind_type$CONSTR 0 a0
                                (ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
                           a0 a1 ∧ $var$('list_t') a1) ∨
                      a0' =
                      ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒
                      $var$('list_t') a0') ⇒
                   $var$('list_t') a0') rep
   
   [list_t_case_def]  Definition
      
      ⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧
        ∀f v. list_t_CASE ListNil f v = v
   
   [list_t_size_def]  Definition
      
      ⊢ (∀f a0 a1.
           list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧
        ∀f. list_t_size f ListNil = 0
   
   [nth_body_def]  Definition
      
      ⊢ ∀f x.
          nth_body f x =
          case x of
            INL x =>
              (let
                 (ls,i) = x
               in
                 case ls of
                   ListCons x tl =>
                     if u32_to_int i = 0 then Return (INR x)
                     else
                       do
                         i0 <- u32_sub i (int_to_u32 1);
                         r <- f (INL (tl,i0));
                         case r of
                           INL v => Fail Failure
                         | INR i1 => Return (INR i1)
                       od
                 | ListNil => Fail Failure)
          | INR v2 => Fail Failure
   
   [datatype_list_t]  Theorem
      
      ⊢ DATATYPE (list_t ListCons ListNil)
   
   [even_def]  Theorem
      
      ⊢ ∀i. even i = if i = 0 then Return T else odd (i − 1)
   
   [even_odd_body_is_valid]  Theorem
      
      ⊢ is_valid_fp_body (SUC (SUC 0)) even_odd_body
   
   [even_odd_body_is_valid_aux]  Theorem
      
      ⊢ is_valid_fp_body (SUC (SUC n)) even_odd_body
   
   [fix_fixed_diverges]  Theorem
      
      ⊢ ∀N f.
          is_valid_fp_body N f ⇒
          ∀x. ¬(∃n. fix_fuel_P f x n) ⇒ fix f x = f (fix f) x
   
   [fix_fixed_eq]  Theorem
      
      ⊢ ∀N f. is_valid_fp_body N f ⇒ ∀x. fix f x = f (fix f) x
   
   [fix_fixed_terminates]  Theorem
      
      ⊢ ∀N f.
          is_valid_fp_body N f ⇒
          ∀x n. fix_fuel_P f x n ⇒ fix f x = f (fix f) x
   
   [fix_fuel_P_least]  Theorem
      
      ⊢ ∀f n x.
          fix_fuel n f x ≠ Diverge ⇒
          fix_fuel_P f x ($LEAST (fix_fuel_P f x))
   
   [fix_fuel_compute]  Theorem
      
      ⊢ (∀f x. fix_fuel 0 f x = Diverge) ∧
        (∀n f x.
           fix_fuel (NUMERAL (BIT1 n)) f x =
           f (fix_fuel (NUMERAL (BIT1 n) − 1) f) x) ∧
        ∀n f x.
          fix_fuel (NUMERAL (BIT2 n)) f x =
          f (fix_fuel (NUMERAL (BIT1 n)) f) x
   
   [fix_fuel_eq_fix]  Theorem
      
      ⊢ ∀N f.
          is_valid_fp_body N f ⇒
          ∀n x. fix_fuel_P f x n ⇒ fix_fuel n f x = fix f x
   
   [fix_fuel_mono]  Theorem
      
      ⊢ ∀N f.
          is_valid_fp_body N f ⇒
          ∀n x.
            fix_fuel_P f x n ⇒ ∀m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x
   
   [fix_fuel_mono_aux]  Theorem
      
      ⊢ ∀n N M g f.
          is_valid_fp_body M f ⇒
          is_valid_fp_body N g ⇒
          ∀x. ¬is_diverge (g (fix_fuel n f) x) ⇒
              ∀m. n ≤ m ⇒ g (fix_fuel n f) x = g (fix_fuel m f) x
   
   [fix_fuel_mono_least]  Theorem
      
      ⊢ ∀N f.
          is_valid_fp_body N f ⇒
          ∀n x.
            fix_fuel_P f x n ⇒
            fix_fuel n f x = fix_fuel ($LEAST (fix_fuel_P f x)) f x
   
   [fix_fuel_not_diverge_eq_fix]  Theorem
      
      ⊢ ∀N f.
          is_valid_fp_body N f ⇒
          ∀n x.
            f (fix_fuel n f) x ≠ Diverge ⇒ f (fix f) x = f (fix_fuel n f) x
   
   [fix_fuel_not_diverge_eq_fix_aux]  Theorem
      
      ⊢ ∀N M g f.
          is_valid_fp_body M f ⇒
          is_valid_fp_body N g ⇒
          ∀n x.
            g (fix_fuel n f) x ≠ Diverge ⇒ g (fix f) x = g (fix_fuel n f) x
   
   [fix_not_diverge_implies_fix_fuel]  Theorem
      
      ⊢ ∀N f.
          is_valid_fp_body N f ⇒
          ∀x. f (fix f) x ≠ Diverge ⇒ ∃n. f (fix f) x = f (fix_fuel n f) x
   
   [fix_not_diverge_implies_fix_fuel_aux]  Theorem
      
      ⊢ ∀N M g f.
          is_valid_fp_body M f ⇒
          is_valid_fp_body N g ⇒
          ∀x. g (fix f) x ≠ Diverge ⇒
              ∃n. g (fix f) x = g (fix_fuel n f) x ∧
                  ∀m. n ≤ m ⇒ g (fix_fuel m f) x = g (fix_fuel n f) x
   
   [is_valid_fp_body_compute]  Theorem
      
      ⊢ (∀f. is_valid_fp_body 0 f ⇔ F) ∧
        (∀n f.
           is_valid_fp_body (NUMERAL (BIT1 n)) f ⇔
           ∀x. (∀g h. f g x = f h x) ∨
               ∃h y.
                 is_valid_fp_body (NUMERAL (BIT1 n) − 1) h ∧
                 ∀g. f g x = do z <- g y; h g z od) ∧
        ∀n f.
          is_valid_fp_body (NUMERAL (BIT2 n)) f ⇔
          ∀x. (∀g h. f g x = f h x) ∨
              ∃h y.
                is_valid_fp_body (NUMERAL (BIT1 n)) h ∧
                ∀g. f g x = do z <- g y; h g z od
   
   [list_t_11]  Theorem
      
      ⊢ ∀a0 a1 a0' a1'.
          ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
   
   [list_t_Axiom]  Theorem
      
      ⊢ ∀f0 f1. ∃fn.
          (∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧
          fn ListNil = f1
   
   [list_t_case_cong]  Theorem
      
      ⊢ ∀M M' f v.
          M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧
          (M' = ListNil ⇒ v = v') ⇒
          list_t_CASE M f v = list_t_CASE M' f' v'
   
   [list_t_case_eq]  Theorem
      
      ⊢ list_t_CASE x f v = v' ⇔
        (∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v'
   
   [list_t_distinct]  Theorem
      
      ⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil
   
   [list_t_induction]  Theorem
      
      ⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l
   
   [list_t_nchotomy]  Theorem
      
      ⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil
   
   [nth_body_is_valid]  Theorem
      
      ⊢ is_valid_fp_body (SUC (SUC 0)) nth_body
   
   [nth_body_is_valid_aux]  Theorem
      
      ⊢ is_valid_fp_body (SUC (SUC n)) nth_body
   
   [nth_def]  Theorem
      
      ⊢ ∀ls i.
          nth ls i =
          case ls of
            ListCons x tl =>
              if u32_to_int i = 0 then Return x
              else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od
          | ListNil => Fail Failure
   
   [odd_def]  Theorem
      
      ⊢ ∀i. odd i = if i = 0 then Return F else even (i − 1)
   
   
*)
end