summaryrefslogtreecommitdiff
path: root/backends/hol4/divDefProto2Script.sml
blob: 985b930f1360cf98e56a6e61a5664e419aba2fac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
(* Prototype: divDefLib but with general combinators *)

open HolKernel boolLib bossLib Parse
open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory

open primitivesArithTheory primitivesBaseTacLib ilistTheory primitivesTheory
open primitivesLib

val _ = new_theory "divDefProto2"


(*
 * Test with a general validity predicate.
 *
 * TODO: this works! Cleanup.
 *)
val fix_fuel_def = Define 
  (fix_fuel (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = Diverge) 
  (fix_fuel (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = f (fix_fuel n f) x)


val fix_fuel_P_def = Define 
  fix_fuel_P f x n = ~(is_diverge (fix_fuel n f x))


val fix_def = Define 
  fix (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result =
    if ( n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge


val is_valid_fp_body_def = Define 
  (is_valid_fp_body (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) = F) 
  
  (is_valid_fp_body (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) =
    ∀x. (∀g h. f g x = f h x) 
         ( h y. is_valid_fp_body n h 
                  ∀g. f g x = do z <- g y; h g z od))


(* Auxiliary lemma.
   We generalize the goal of fix_fuel_mono in the case the fuel is non-empty
   (this allows us to unfold definitions like ‘fix_fuel’ once, and reveal
   a first intermediate function).

   Important: the structure of the proof is induction over ‘n’ then ‘N’.
 *)
Theorem fix_fuel_mono_aux:
  ∀n.
    ∀N M g f. is_valid_fp_body M f 
      is_valid_fp_body N g 
      ∀x. ~(is_diverge (g (fix_fuel n f) x)) 
       ∀m. n  m 
         g (fix_fuel n f) x = g (fix_fuel m f) x
Proof
  Induct_on ‘n’ >>
  Induct_on ‘N’ >- fs [is_valid_fp_body_def]
  >-(  
    rw [] >>
    fs [is_valid_fp_body_def, is_diverge_def] >>
    first_x_assum (qspec_assume ‘x’) >>
    rw []
    >-((* Case 1: the continuation doesn't matter *) fs []) >>
    (* Case 2: the continuation *does* matter (i.e., there is a recursive call *)
    (* Instantiate the validity property with the different continuations *)
    first_assum (qspec_assume ‘fix_fuel n f’) >>
    first_assum (qspec_assume ‘fix_fuel n' f’) >>
    fs [] >>
    ntac 3 (pop_assum ignore_tac) >>
    fs [bind_def] >>
    fs [fix_fuel_def])
  >-(fs [is_valid_fp_body_def]) >>
  rw [] >>
  qpat_assum ‘is_valid_fp_body (SUC N) g mp_tac >>
  pure_rewrite_tac [is_valid_fp_body_def] >>
  fs [is_diverge_def] >>
  rw [] >>
  first_x_assum (qspec_assume ‘x’) >>
  rw []
  >-((* Case 1: the continuation doesn't matter *) fs []) >>
  (* Case 2: the continuation *does* matter (i.e., there is a recursive call *)
  (* Use the validity property with the different continuations *)
  fs [] >> pop_assum ignore_tac >>
  fs [bind_def, fix_fuel_def] >>
  Cases_on ‘m’ >- int_tac >>
  fs [fix_fuel_def] >>
  (* *)
  last_x_assum (qspecl_assume [‘M’, ‘M’, ‘f’, ‘f’]) >>
  gvs [] >>
  first_x_assum (qspec_assume ‘y’) >>
  Cases_on ‘f (fix_fuel n f) y >> fs [] >>
  first_x_assum (qspec_assume ‘n'’) >> gvs [] >> Cases_on ‘f (fix_fuel n' f) y >> fs [] >>
  (* *)  
  first_assum (qspecl_assume [‘M’, ‘h’, ‘f’]) >>
  gvs []
QED

Theorem fix_fuel_mono:
  ∀N f. is_valid_fp_body N f 
    ∀n x. fix_fuel_P f x n 
      m. n  m 
       fix_fuel n f x = fix_fuel m f x
Proof
  rw [] >>
  Cases_on ‘n’
  >-(fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >>
  fs [fix_fuel_P_def, fix_fuel_def] >> rw [] >>
  qspecl_assume [‘n'’, ‘N’, ‘N’, ‘f’, ‘f’] fix_fuel_mono_aux >>
  Cases_on ‘m’ >- fs [] >>
  gvs [fix_fuel_def]
QED

(* TODO: remove? *)
Theorem fix_fuel_mono_least:
  ∀N f. is_valid_fp_body N f 
    ∀n x. fix_fuel_P f x n 
      fix_fuel n f x = fix_fuel ($LEAST (fix_fuel_P f x)) f x
Proof
  rw [] >>
  pure_once_rewrite_tac [EQ_SYM_EQ] >>
  irule fix_fuel_mono >> fs [] >>
  (* Use the "fundamental" property about $LEAST *)
  qspec_assume ‘fix_fuel_P f x whileTheory.LEAST_EXISTS_IMP >>
  (* Prove the premise *)
  pop_assum sg_premise_tac >- metis_tac [] >> fs [] >>
  conj_tac
  >- (spose_not_then assume_tac >> fs [not_le_eq_gt]) >>
  metis_tac []
QED

Theorem fix_fuel_eq_fix:
  ∀N f. is_valid_fp_body N f 
    ∀n x. fix_fuel_P f x n 
      fix_fuel n f x = fix f x
Proof
  fs [fix_def] >>
  rw [] >>
  imp_res_tac fix_fuel_mono_least >>
  fs [fix_fuel_P_def, is_diverge_def] >>
  case_tac >> fs []
QED

Theorem fix_fuel_P_least:
  ∀f n x. fix_fuel n f x  Diverge  fix_fuel_P f x ($LEAST (fix_fuel_P f x))
Proof
  rw [] >>
  qspec_assume ‘fix_fuel_P f x whileTheory.LEAST_EXISTS_IMP >>
  (* Prove the premise *)
  pop_assum sg_premise_tac
  >-(fs [fix_fuel_P_def, is_diverge_def] >> qexists ‘n’ >> fs [] >> case_tac >> fs []) >>
  rw []
QED

(* If ‘g (fix f) x’ doesn't diverge, we can exhibit some fuel *)
Theorem fix_not_diverge_implies_fix_fuel_aux:
  ∀N M g f. is_valid_fp_body M f 
    is_valid_fp_body N g 
     ∀x. g (fix f) x  Diverge 
       ∃n. g (fix f) x = g (fix_fuel n f) x 
         ∀m. n  m  g (fix_fuel m f) x = g (fix_fuel n f) x
Proof
  Induct_on ‘N’
  >-(fs [is_valid_fp_body_def]) >>
  rw [is_valid_fp_body_def] >>
  first_x_assum (qspec_assume ‘x’) >> rw []
  >-(first_assum (qspecl_assume [‘fix f’, ‘fix_fuel 0 f’]) >> fs []) >>
  (* Use the validity hypothesis *)
  fs [] >> pop_assum ignore_tac >>
  (* Use the induction hypothesis *)
  last_x_assum (qspecl_assume [‘M’, ‘h’, ‘f’]) >> gvs [] >>
  (* Case disjunction on ‘fix f ÿ’*)
  Cases_on ‘fix f y >> fs [bind_def] >~ [‘fix f y = Fail _’]
  >-(
    (* Fail case: easy, the call to ‘h’ is ignored *)
    fs [fix_def] >> pop_assum mp_tac >> rw [] >>
    qexists ‘$LEAST (fix_fuel_P f y) >>
    fs [] >>
    (* Use the monotonicity property for ‘f’ *)
    rw [] >>
    qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >>
    first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >>
    fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >>
    first_x_assum (qspecl_assume [‘m’]) >> gvs [] >>
    first_x_assum (fn th => assume_tac (GSYM th)) >> fs []
    ) >>
  (* Return case: we must take the maximum of the fuel for ‘f’ and ‘h’, and use
     the monotonicity property *)
  fs [fix_def] >> pop_assum mp_tac >> rw [] >>
  first_x_assum (qspec_assume ‘a’) >> gvs [] >>
  qexists ‘MAX ($LEAST (fix_fuel_P f y)) n' >> fs [] >>
  (* Use the monotonicity properties *)
  (* Instantiate the Monotonicity property for ‘f’ (the induction hypothesis gives
     the one for ‘h’) *)
  qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >>
  first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >>
  fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >>
  first_x_assum (qspecl_assume [‘MAX ($LEAST (fix_fuel_P f y)) n'’]) >> gvs [] >>
  first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] >>
  (* Prove the monotonicity property for ‘do z <- fix f y; h (fix f) z’ *)
  rw [] >>
  (* First, one of the ‘fix_fuel ... f y’ doesn't use the proper fuel *)
  sg ‘fix_fuel ($LEAST (fix_fuel_P f y)) f y = Return a
  >-(
    qspecl_assume [‘f’, ‘MAX ($LEAST (fix_fuel_P f y)) n'’, ‘y’] fix_fuel_P_least >>
    gvs [fix_fuel_P_def, is_diverge_def] >>
    Cases_on ‘fix_fuel ($LEAST (fix_fuel_P f y)) f y >> fs [] >>
    (* Use the monotonicity property - there are two goals here *)
    qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >>
    first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >>
    fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >>
    first_x_assum (qspecl_assume [‘MAX ($LEAST (fix_fuel_P f y)) n'’]) >> gvs []) >>
  (* Instantiate the monotonicity property for ‘f’ *)
  qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >>
  first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >>
  gvs [fix_fuel_P_def, is_diverge_def] >> gvs [] >>
  first_x_assum (qspecl_assume [‘m’]) >> gvs [] >>
  first_x_assum (fn th => assume_tac (GSYM th)) >> fs []
QED

(* If ‘g (fix f) x’ doesn't diverge, we can exhibit some fuel *)
Theorem fix_not_diverge_implies_fix_fuel:
  ∀N f. is_valid_fp_body N f 
     ∀x. f (fix f) x  Diverge 
       ∃n. f (fix f) x = f (fix_fuel n f) x
Proof
  metis_tac [fix_not_diverge_implies_fix_fuel_aux]
QED    

Theorem fix_fixed_diverges:
  ∀N f. is_valid_fp_body N f  ∀x. ~( n. fix_fuel_P f x n)  fix f x = f (fix f) x
Proof
  (* We do the proof by contraposition: if ‘f (fix f) x’ doesn't diverge, we
     can exhibit some fuel (lemma [fix_not_diverge_implies_fix_fuel]) *)
  rw [fix_def] >>
  imp_res_tac fix_not_diverge_implies_fix_fuel >>
  pop_assum (qspec_assume ‘x’) >>
  fs [fix_fuel_P_def, is_diverge_def] >>
  (* Case analysis: we have to prove that the ‘Return’ and ‘Fail’ cases lead
     to a contradiction *)
  Cases_on ‘f (fix f) x >> gvs [] >>
  first_x_assum (qspec_assume ‘SUC n’) >> fs [fix_fuel_def] >>
  pop_assum mp_tac >> case_tac >> fs []
QED

(* If ‘g (fix_fuel n f) x’ doesn't diverge, then it is equal to ‘g (fix f) x’ *)
Theorem fix_fuel_not_diverge_eq_fix_aux:
  ∀N M g f. is_valid_fp_body M f 
    is_valid_fp_body N g 
     ∀n x. g (fix_fuel n f) x  Diverge 
       g (fix f) x = g (fix_fuel n f) x
Proof
  Induct_on ‘N’
  >-(fs [is_valid_fp_body_def]) >>
  rw [is_valid_fp_body_def] >>
  first_x_assum (qspec_assume ‘x’) >> rw []
  >-(first_assum (qspecl_assume [‘fix f’, ‘fix_fuel 0 f’]) >> fs []) >>
  (* Use the validity hypothesis *)
  fs [] >> pop_assum ignore_tac >>
  (* For ‘fix f y = fix_fuel n f y’: use the monotonicity property *)
  sg ‘fix_fuel_P f y n
  >-(Cases_on ‘fix_fuel n f y >> fs [fix_fuel_P_def, is_diverge_def, bind_def]) >>
  sg ‘fix f y = fix_fuel n f y >-(metis_tac [fix_fuel_eq_fix])>>
  (* Case disjunction on the call to ‘f’ *)
  Cases_on ‘fix_fuel n f y >> gvs [bind_def] >>
  (* We have to prove that: ‘h (fix f) a = h (fix_fuel n f) a’: use the induction hypothesis *)
  metis_tac []
QED

Theorem fix_fuel_not_diverge_eq_fix:
  ∀N f. is_valid_fp_body N f 
     ∀n x. f (fix_fuel n f) x  Diverge 
       f (fix f) x = f (fix_fuel n f) x
Proof
  metis_tac [fix_fuel_not_diverge_eq_fix_aux]
QED

Theorem fix_fixed_terminates:
  ∀N f. is_valid_fp_body N f  ∀x n. fix_fuel_P f x n  fix f x = f (fix f) x
Proof
  (* The proof simply uses the lemma [fix_fuel_not_diverge_eq_fix] *)
  rw [fix_fuel_P_def, is_diverge_def, fix_def] >> case_tac >> fs [] >>
  (* We can prove that ‘fix_fuel ($LEAST ...) f x ≠ Diverge’ *)
  qspecl_assume [‘f’, ‘n’, ‘x’] fix_fuel_P_least >>
  pop_assum sg_premise_tac >-(Cases_on ‘fix_fuel n f x >> fs []) >>
  fs [fix_fuel_P_def, is_diverge_def] >>
  (* *)
  Cases_on ‘($LEAST (fix_fuel_P f x)) >> fs [fix_fuel_def] >>
  irule (GSYM fix_fuel_not_diverge_eq_fix) >>
  Cases_on ‘f (fix_fuel n'' f) x >> fs [] >> metis_tac []
QED

(*
Type ft = ``: 'a -> ('a result + (num # num # 'a))``

val fix_fuel_def = Define ‘
  (fix_fuel (0 : num) (fs : ('a ft) list)
            (i : num) (x : 'a) : 'a result = Diverge) ∧
  
  (fix_fuel (SUC n) fs i x =
    case EL i fs x of
    | INL r => r
    | INR (j, k, y) =>
      case fix_fuel n fs j y of
      | Fail e => Fail e
      | Diverge => Diverge
      | Return z =>
        fix_fuel n fs k z)


val fix_fuel_P_def = Define ‘
  fix_fuel_P fs i x n = ~(is_diverge (fix_fuel n fs i x))


val fix_def = Define ‘
  fix (fs : ('a ft) list) (i : num) (x : 'a) : 'a result =
    if (∃ n. fix_fuel_P fs i x n)
    then fix_fuel ($LEAST (fix_fuel_P fs i x)) fs i x
    else Diverge


Theorem fix_fuel_mono:
  ∀f. is_valid_fp_body f ⇒
    ∀n x. fix_fuel_P f x n ⇒
     ∀ m. n ≤ m ⇒
       fix_fuel n f x = fix_fuel m f x
Proof
  ntac 2 strip_tac >>
  Induct_on ‘n’ >> rpt strip_tac
  >- (fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >>
  Cases_on ‘m’ >- int_tac >> fs [] >>
  fs [is_valid_fp_body_def] >>
  fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def] >>

  (*(* Use the validity property *)
  last_assum (qspec_assume ‘x’) >> (* TODO: consume? *) *)

  (*pop_assum ignore_tac >> (* TODO: not sure *) *)
  Induct_on ‘N’ >- fs [eval_ftree_def] >>
  rw [] >>
  rw [eval_ftree_def] >>
  Cases_on ‘h x’ >> fs [] >>
  Cases_on ‘y’ >> fs [] >>
  Cases_on ‘y'’ >> fs [] >>
  
  last_assum (qspec_assume ‘q’) >>
  Cases_on ‘fix_fuel n f q’ >> fs [] >>
  
  Cases_on ‘N’ >> fs [eval_ftree_def] >>
  
  Cases_on ‘y’ >> fs [] >>
  Cases_on ‘y'’ >> fs [] >>
  rw [] >>
  (* This makes a case disjunction on the validity property *)
  rw []
  >-((* Case 1: the continuation doesn't matter *) fs []) >>
  (* Case 2: the continuation *does* matter (i.e., there is a recursive call *)
  (* Instantiate the validity property with the different continuations *)
  first_assum (qspec_assume ‘fix_fuel n f’) >>
  first_assum (qspec_assume ‘fix_fuel n' f’) >>
  last_assum (qspec_assume ‘y’) >>
  fs []
QED



Type ft = ``: ('a -> 'a result) -> 'a -> ('a result + (num # 'a))``

val fix_fuel_def = Define ‘
  (fix_fuel (0 : num) (fs : ('a ft) list) (g : 'a -> 'a result)
            (i : num) (x : 'a) : 'a result = Diverge) ∧
  
  (fix_fuel (SUC n) fs g i x =
    case EL i fs g x of
    | INL r => r
    | INR (j, y) =>
      case g y of
      | Fail e => Fail e
      | Diverge => Diverge
      | Return z => fix_fuel n fs g j z)


val fix_fuel_def = Define ‘
  (fix_fuel (0 : num) (fs : ('a ft) list) g (i : num) (x : 'a) : 'a result = Diverge) ∧
  
  (fix_fuel (SUC n) fs g i x =
    case EL i fs x of
    | INL r => r
    | INR (j, y) =>
      case g y of
      | Fail e => Fail e
      | Diverge => Diverge
      | Return z => fix_fuel n fs g j z)


val fix_fuel_def = Define ‘
  (fix_fuel (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = Diverge) ∧
  (fix_fuel (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = f (fix_fuel n f) x)


val fix_fuel_P_def = Define ‘
  fix_fuel_P f x n = ~(is_diverge (fix_fuel n f x))


val fix_def = Define ‘
  fix (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result =
    if (∃ n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge


(*Datatype:
  ftree = Rec (('a -> ('a result + ('a # num))) # ftree list) | NRec ('a -> 'a result)
End

Type frtree = ``: ('b -> ('b result + ('a # num))) list``
Type ftree = “: ('a, 'b) frtree # ('b result + ('a # num))”
*)

val eval_ftree_def = Define ‘
  (eval_ftree 0 (g : 'a -> 'a result)
    (fs : ('a -> ('a result + ('a # num))) list) x = Diverge) ∧

  (eval_ftree (SUC n) g fs x =
    case x of
    | INL r => r
    | INR (y, i) =>
      case g y of
      | Fail e => Fail e
      | Diverge => Diverge
      | Return z =>
        let f = EL i fs in
        eval_ftree n g fs (f z))


Theorem fix_fuel_mono:
  ∀N fs i.
  let f = (\g x. eval_ftree N g fs (INR (x, i))) in
  ∀n x. fix_fuel_P f x n ⇒
  ∀ m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x
Proof
  Induct_on ‘N’
  >-(
    fs [eval_ftree_def] >>

  ntac 2 strip_tac >>
  Induct_on ‘n’ >> rpt strip_tac
  >- (fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >>
  Cases_on ‘m’ >- int_tac >> fs [] >>
  fs [is_valid_fp_body_def] >>
  fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def] >>


val is_valid_fp_body_def = Define ‘
  is_valid_fp_body (f : ('a -> 'b result) -> 'a -> 'b result) =
    (∃N ft. ∀x g. f g x = eval_ftree N g ft (x, i))


val eval_ftree_def = Define ‘
  (eval_ftree 0 (g : 'a -> 'b result)
    (fs : ('b -> ('b result + ('a # num))) list, x : 'b result + ('a # num)) = Diverge) ∧
  
  (eval_ftree (SUC n) g (fs, x) =
    case x of
    | INL r => r
    | INR (y, i) =>
      case g y of
      | Fail e => Fail e
      | Diverge => Diverge
      | Return z =>
        let f = EL i fs in
        eval_ftree n g (fs, f z))


val is_valid_fp_body_def = Define ‘
  is_valid_fp_body (f : ('a -> 'b result) -> 'a -> 'b result) =
    (∃N ft h. ∀x g. f g x = eval_ftree N g (ft, h x))


Theorem fix_fuel_mono:
  let f = (\x. eval_ftree N g (ft, h x)) in
  ∀n x. fix_fuel_P f x n ⇒
   ∀ m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x
Proof


Theorem fix_fuel_mono:
  ∀f. is_valid_fp_body f ⇒
    ∀n x. fix_fuel_P f x n ⇒
     ∀ m. n ≤ m ⇒
       fix_fuel n f x = fix_fuel m f x
Proof
  ntac 2 strip_tac >>
  Induct_on ‘n’ >> rpt strip_tac
  >- (fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >>
  Cases_on ‘m’ >- int_tac >> fs [] >>
  fs [is_valid_fp_body_def] >>
  fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def] >>

  (*(* Use the validity property *)
  last_assum (qspec_assume ‘x’) >> (* TODO: consume? *) *)

  (*pop_assum ignore_tac >> (* TODO: not sure *) *)
  Induct_on ‘N’ >- fs [eval_ftree_def] >>
  rw [] >>
  rw [eval_ftree_def] >>
  Cases_on ‘h x’ >> fs [] >>
  Cases_on ‘y’ >> fs [] >>
  Cases_on ‘y'’ >> fs [] >>
  
  last_assum (qspec_assume ‘q’) >>
  Cases_on ‘fix_fuel n f q’ >> fs [] >>
  
  Cases_on ‘N’ >> fs [eval_ftree_def] >>
  
  Cases_on ‘y’ >> fs [] >>
  Cases_on ‘y'’ >> fs [] >>
  rw [] >>
  (* This makes a case disjunction on the validity property *)
  rw []
  >-((* Case 1: the continuation doesn't matter *) fs []) >>
  (* Case 2: the continuation *does* matter (i.e., there is a recursive call *)
  (* Instantiate the validity property with the different continuations *)
  first_assum (qspec_assume ‘fix_fuel n f’) >>
  first_assum (qspec_assume ‘fix_fuel n' f’) >>
  last_assum (qspec_assume ‘y’) >>
  fs []
QED


val length_ftree = “
(
  [
    (\n. INL (return (1 + n)))
  ],
  (case ls of
   | ListCons x tl =>
     INR (tl, 0)
   | ListNil => INL (return 0))
) : ('a list_t, int) ftree


val eval_length_ftree = mk_icomb (“eval_ftree 1 g”, length_ftree)

Theorem length_body_eq:
  eval_ftree (SUC (SUC 0)) g
  (
    [
      (\n. INL (Return (1 + n)))
    ],
    (case ls of
     | ListCons x tl =>
       INR (tl, 0)
     | ListNil => INL (Return 0))
  ) =
  case ls of
  | ListCons x tl =>
    do
      n <- g tl;
      Return (1 + n)
    od
  | ListNil => Return 0
Proof
  fs [eval_ftree_def, bind_def] >>
  Cases_on ‘ls’ >> fs []
QED

val eval_ftree_def = Define ‘
  eval_ftree 0 (fs : ('a, 'b) ftree) (g : 'a -> 'b result) (x : 'b result + ('a # num)) = Diverge ∧
  
  eval_ftree (SUC n) fs g x =
    case x of
    | INL r => r
    | INR (y, i) =>
      case g y of
      | Fail e => Fail e
      | Diverge => Diverge
      | Return z =>
        let f = EL i fs in
        eval_ftree n fs g (f z)


val length_body_funs_def = Define 


[
  (\ls. case ls of
   | ListCons x tl =>
     INR (tl, 1)
   | ListNil => INL (return 0)),
  (\n. INL (return (1 + n)))
]




“:('a, 'b) FT”

Define 

val nth_body = Define ‘
  



“INL”
“INR”


  Rec (
    case ls of
    | ListCons x tl =>
      do
        INR (tl, 0)
      od
    | ListNil => INL (return 0),
    [NRec (\n. return (1 + n))])



  case ls of
  | ListCons x tl =>
    if u32_to_int i = (0:int)
    then (Return x)
    else
      do
      i0 <- u32_sub i (int_to_u32 1);
      y <- nth tl i0;
      return y
      od
  | ListNil => Fail Failure



“:'a + 'b”
“:'a # 'b”

(*** Encoding of a function *)
Datatype:
  ('a, 'b) test = Return ('a -> 'b)
End

val tyax =
      new_type_definition ("three",
        Q.prove(`?p. (\(x,y). ~(x /\ y)) p`, cheat))

val three_bij = define_new_type_bijections
                      {name="three_tybij", ABS="abs3", REP="rep3", tyax=tyax}
type_of “rep3”
type_of “abs3”

m “”

                Q.EXISTS_TAC `(F,F)` THEN GEN_BETA_TAC THEN REWRITE_TAC []));

“Return (\x. x)”

Datatype:
  ftree = Rec ('a -> ('a result + ('a # ftree))) | NRec ('a -> 'a result)
End

Datatype:
  'a ftree = Rec ('a -> ('a result + ('a # ftree))) | NRec ('a -> 'a result)
End

Datatype:
  ftree = Rec ('a -> ('a result + ('a # ftree))) | NRec ('a -> 'a result)
End

Datatype:
  result = Return 'a | Fail error | Diverge
End

Type M = ``: 'a result``


val fix_def = Define ‘
  fix (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result =
    if (∃ n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge


val _ = export_theory ()