summaryrefslogtreecommitdiff
path: root/backends/hol4/divDefExampleTheory.sig
blob: 29e98856689fb03cf29b0e6e5e3e78322905f9c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
signature divDefExampleTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val even_odd_body_def : thm
    val list_t_TY_DEF : thm
    val list_t_case_def : thm
    val list_t_size_def : thm
    val nth_body_def : thm
  
  (*  Theorems  *)
    val datatype_list_t : thm
    val even_def : thm
    val even_odd_body_is_valid : thm
    val even_odd_body_is_valid_aux : thm
    val list_t_11 : thm
    val list_t_Axiom : thm
    val list_t_case_cong : thm
    val list_t_case_eq : thm
    val list_t_distinct : thm
    val list_t_induction : thm
    val list_t_nchotomy : thm
    val nth_body_is_valid : thm
    val nth_body_is_valid_aux : thm
    val nth_def : thm
    val odd_def : thm
  
  val divDefExample_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [divDef] Parent theory of "divDefExample"
   
   [even_odd_body_def]  Definition
      
      ⊢ ∀f x.
          even_odd_body f x =
          case x of
            INL 0 => Return (INR (INL T))
          | INL i =>
            (case f (INR (INR (INL (i − 1)))) of
               Return (INL v) => Fail Failure
             | Return (INR (INL v2)) => Fail Failure
             | Return (INR (INR (INL v4))) => Fail Failure
             | Return (INR (INR (INR b))) => Return (INR (INL b))
             | Fail e => Fail e
             | Diverge => Diverge)
          | INR (INL v8) => Fail Failure
          | INR (INR (INL 0)) => Return (INR (INR (INR F)))
          | INR (INR (INL i')) =>
            (case f (INL (i' − 1)) of
               Return (INL v) => Fail Failure
             | Return (INR (INL b)) => Return (INR (INR (INR b)))
             | Return (INR (INR v3)) => Fail Failure
             | Fail e => Fail e
             | Diverge => Diverge)
          | INR (INR (INR v11)) => Fail Failure
   
   [list_t_TY_DEF]  Definition
      
      ⊢ ∃rep.
          TYPE_DEFINITION
            (λa0'.
                 ∀ $var$('list_t').
                   (∀a0'.
                      (∃a0 a1.
                         a0' =
                         (λa0 a1.
                              ind_type$CONSTR 0 a0
                                (ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
                           a0 a1 ∧ $var$('list_t') a1) ∨
                      a0' =
                      ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒
                      $var$('list_t') a0') ⇒
                   $var$('list_t') a0') rep
   
   [list_t_case_def]  Definition
      
      ⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧
        ∀f v. list_t_CASE ListNil f v = v
   
   [list_t_size_def]  Definition
      
      ⊢ (∀f a0 a1.
           list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧
        ∀f. list_t_size f ListNil = 0
   
   [nth_body_def]  Definition
      
      ⊢ ∀f x.
          nth_body f x =
          case x of
            INL x =>
              (let
                 (ls,i) = x
               in
                 case ls of
                   ListCons x tl =>
                     if u32_to_int i = 0 then Return (INR x)
                     else
                       do
                         i0 <- u32_sub i (int_to_u32 1);
                         x <-
                           case f (INL (tl,i0)) of
                             Return (INL v) => Fail Failure
                           | Return (INR x) => Return x
                           | Fail e => Fail e
                           | Diverge => Diverge;
                         Return (INR x)
                       od
                 | ListNil => Fail Failure)
          | INR v3 => Fail Failure
   
   [datatype_list_t]  Theorem
      
      ⊢ DATATYPE (list_t ListCons ListNil)
   
   [even_def]  Theorem
      
      ⊢ ∀i. even i = if i = 0 then Return T else odd (i − 1)
   
   [even_odd_body_is_valid]  Theorem
      
      ⊢ is_valid_fp_body (SUC (SUC 0)) even_odd_body
   
   [even_odd_body_is_valid_aux]  Theorem
      
      ⊢ is_valid_fp_body (SUC (SUC n)) even_odd_body
   
   [list_t_11]  Theorem
      
      ⊢ ∀a0 a1 a0' a1'.
          ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
   
   [list_t_Axiom]  Theorem
      
      ⊢ ∀f0 f1. ∃fn.
          (∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧
          fn ListNil = f1
   
   [list_t_case_cong]  Theorem
      
      ⊢ ∀M M' f v.
          M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧
          (M' = ListNil ⇒ v = v') ⇒
          list_t_CASE M f v = list_t_CASE M' f' v'
   
   [list_t_case_eq]  Theorem
      
      ⊢ list_t_CASE x f v = v' ⇔
        (∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v'
   
   [list_t_distinct]  Theorem
      
      ⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil
   
   [list_t_induction]  Theorem
      
      ⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l
   
   [list_t_nchotomy]  Theorem
      
      ⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil
   
   [nth_body_is_valid]  Theorem
      
      ⊢ is_valid_fp_body (SUC (SUC 0)) nth_body
   
   [nth_body_is_valid_aux]  Theorem
      
      ⊢ is_valid_fp_body (SUC (SUC n)) nth_body
   
   [nth_def]  Theorem
      
      ⊢ ∀ls i.
          nth ls i =
          case ls of
            ListCons x tl =>
              if u32_to_int i = 0 then Return x
              else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od
          | ListNil => Fail Failure
   
   [odd_def]  Theorem
      
      ⊢ ∀i. odd i = if i = 0 then Return F else even (i − 1)
   
   
*)
end