summaryrefslogtreecommitdiff
path: root/backends/hol4/divDefExampleScript.sml
blob: 338385ab0c5f96bd289a582741627aa5f34e1512 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
(* Manually written examples of how to use the fixed-point operator from divDefScript *)

open HolKernel boolLib bossLib Parse
open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory

open primitivesArithTheory primitivesBaseTacLib ilistTheory primitivesTheory
open primitivesLib
open divDefTheory

val _ = new_theory "divDefExample"

(* Rewrite the goal once, and on the left part of the goal seen as an application *)
fun pure_once_rewrite_left_tac ths =
  CONV_TAC (PATH_CONV "l" (PURE_ONCE_REWRITE_CONV ths))

(*=============================================
 * Example 1: nth (simply recursive function)
 *=============================================*)

Datatype:
  list_t =
    ListCons 't list_t
  | ListNil
End

(* We want to use the fixed-point operator ‘fix’ to define a function ‘nth’
   which satisfies the following equation: *)

val nth_qt = 
  nth (ls : 't list_t) (i : u32) : 't result =
    case ls of
    | ListCons x tl =>
      if u32_to_int i = (0:int)
      then (Return x)
      else
        do
        i0 <- u32_sub i (int_to_u32 1);
        nth tl i0
        od
    | ListNil => Fail Failure


(* When generating a recursive definition, we apply a fixed-point operator to a
   non-recursive function *body*, in which the recursive calls are handled to
   a continuation. In case we define a group of mutually recursive
   definitions, we generate *one* single body for the whole group of definitions.
   It works as follows.

   The input of the body is an enumeration: we start by branching over this input such
   that every branch corresponds to one function in the mutually recursive group.
   Whenever we make a recursive call, we wrap the input parameters into the proper
   variant before calling the continuation: in effect this allows us to choose
   the function from the group which gets evaluated.

   Moreover, because of constraints on the way the fixed-point operator is defined,
   the input of the body must have the same type as its output: we also
   store the outputs of the functions in this big enumeration.

   In order to make this work, we need to shape the body so that:
   - input values (at call sites) and output values (when returning) are properly
     injected into the enumeration
   - whenever we get an output value (which is an enumeration) from a recursive
     call, we extract the value from the proper variant of the enumeration

   We encode the enumeration with a nested sum type, whose constructors
   are ‘INL’ and ‘INR’.

   In the case of ‘nth’, we generate the encoding below, with the following
   peculiarities:
   - the input type is ‘: ('t list_t # u32) + 't’ the same as the output type
     (modulo the ‘:result’). ‘:'t list_t # u32’ is for the input value, while
     ‘t’ is for the output.
 *)

val nth_body_def = Define 
  nth_body
    (* The continuation is used for the recursive calls - this is required
       by the fixed-point operator *)
    (f : (('t list_t # u32) + 't) -> (('t list_t # u32) + 't) result)
    
    (* The input. Its type is: nth input type + nth output type *)
    (x : (('t list_t # u32) + 't)) :

    (* The output type is the same as the input type - this constraint
       comes from limitations in the way we can define the fixed-point
       operator inside the HOL logic *)
    (('t list_t # u32) + 't) result =

    (* Destruct the input. We need this to call the proper function in case
       of mutually recursive definitions, but also to eliminate arguments
       which correspond to the output value (the input type is the same
       as the output type). *)
    case x of
    | INL x => ( (* Input case: normal function call *)
      (* Body of nth *)
      let (ls, i) = x in
      case ls of
      | ListCons x tl =>
        if u32_to_int i = (0:int)
        then Return (INR x)
        else
          do
          i0 <- u32_sub i (int_to_u32 1);
          (* Recursive call: we call the continuation.

             We must wrap the input (here, in INL) then extract the
             proper output (this last part is really important in
             case of mutually recursive definitions).
           *)
          x <- (case f (INL (tl, i0)) of
                | Fail e => Fail e
                | Diverge => Diverge
                | Return r =>
                  case r of
                  | INL _ => Fail Failure
                  | INR x => Return x);

          (* Wrap the return value *)
          Return (INR x)
          od
      | ListNil => Fail Failure)
    | INR _ => (* Output case: invalid, we fail *)
      Fail Failure


(* Then, we prove that the body we just defined satisfies the validity property
   required by the fixed-point theorem.

   Remark:
   We first prove the theorem with ‘SUC (SUC n)’ where ‘n’ is a variable
   to prevent this quantity from being rewritten to 2 during the proofs. *)
Theorem nth_body_is_valid_aux:
  is_valid_fp_body (SUC (SUC n)) nth_body
Proof
  pure_once_rewrite_tac [is_valid_fp_body_def] >>
  gen_tac >>
  (* Expand *)
  fs [nth_body_def, bind_def] >>
  (* Simply explore all paths *)
  Cases_on ‘x’ >> fs [] >>
  Cases_on ‘x'’ >> fs [] >>
  Cases_on ‘q’ >> fs [] >>
  Cases_on ‘u32_to_int r = 0 >> fs [] >>
  Cases_on ‘u32_sub r (int_to_u32 1) >> fs [] >>
  fs [case_result_switch_eq] >>
  (* Recursive call *)
  disj2_tac >>
  qexists ‘\g x. case case x of INL v => Fail Failure | INR x => Return x of
             Return x => Return (INR x)
           | Fail e => Fail e
           | Diverge => Diverge >>
  qexists ‘INL (l, a) >>
  conj_tac
  >-(pure_once_rewrite_tac [is_valid_fp_body_def] >> fs []) >>
  gen_tac >>
  (* Explore all paths *)
  Cases_on ‘g (INL (l,a)) >> fs [] >>
  Cases_on ‘a'’ >> fs []
QED

Theorem nth_body_is_valid:
  is_valid_fp_body (SUC (SUC 0)) nth_body
Proof
  irule nth_body_is_valid_aux
QED

(* We can now define ‘nth’ in terms of the fixed-point operator applied to ‘nth_body’.

   Important points:
   - we apply ‘fix’ to ‘fix_body’
   - we wrap the input to take the proper branch (‘INL (ls, i)’)
   - we extract the output to have a function with the proper output type

   This definition satisfies the equation we want (see next theorem). *)
val nth_raw_def = Define 
  nth (ls : 't list_t) (i : u32) =
    case fix nth_body (INL (ls, i)) of
    | Fail e => Fail e
    | Diverge => Diverge
    | Return r =>
      case r of
      | INL _ => Fail Failure
      | INR x => Return x


(* We finally prove the target unfolding equation for ‘nth’ *)
Theorem nth_def:
  ∀ls i. nth (ls : 't list_t) (i : u32) : 't result =
    case ls of
    | ListCons x tl =>
      if u32_to_int i = (0:int)
      then (Return x)
      else
        do
        i0 <- u32_sub i (int_to_u32 1);
        nth tl i0
        od
    | ListNil => Fail Failure
Proof
  rpt strip_tac >>
  (* Expand the raw definition *)
  pure_rewrite_tac [nth_raw_def] >>
  (* Use the fixed-point equality - the rewrite must only be applied *on the left* of the equality, in the goal *)
  pure_once_rewrite_left_tac [HO_MATCH_MP fix_fixed_eq nth_body_is_valid] >>
  (* Expand the body definition *)
  pure_rewrite_tac [nth_body_def] >>
  (* Explore all the paths - maybe we can be smarter, but this is fast and really easy *)
  fs [bind_def] >>
  Cases_on ‘ls’ >> fs [] >>
  Cases_on ‘u32_to_int i = 0 >> fs [] >>
  Cases_on ‘u32_sub i (int_to_u32 1) >> fs [] >>
  Cases_on ‘fix nth_body (INL (l,a)) >> fs [] >>
  Cases_on ‘a'’ >> fs []
QED

(*=======================================================*
 * Example 2: even, odd (mutually recursive definitions)
 *=======================================================*)

(* We consider the following group of mutually recursive definitions: *)

val even_odd_qt = Defn.parse_quote 
 (even (i : int) : bool result = if i = 0 then Return T else odd (i - 1)) /\
 (odd (i : int) : bool result = if i = 0 then Return F else even (i - 1))


(* Similarly to ‘nth’, we need to introduce a body on which to apply the
   fixed-point operator. Here, the body is slightly more complex because
   we have mutually recursive functions.

   In particular, the input/output types is a sum of 4 types:
   input of even + output of even + input of odd + output of odd
   
   That is: ‘: int + bool + int + bool’

   As a consequence, the body is a case with 4 branches.
 *)

val even_odd_body_def = Define 
  even_odd_body
    (* The body takes a continuation - required by the fixed-point operator *)
    (f : (int + bool + int + bool) -> (int + bool + int + bool) result)

    (* The type of the input is:
       input of even + output of even + input of odd + output of odd *)
    (x : int + bool + int + bool) :

    (* The output type is the same as the input type - this constraint
       comes from limitations in the way we can define the fixed-point
       operator inside the HOL logic *)
    (int + bool + int + bool) result =

  (* Case disjunction over the input, in order to figure out which
     function from the group is actually called (even, or odd). *)
  case x of
  | INL i => (* Input of even *)
    (* Body of even *)
    if i = 0 then Return (INR (INL T))
    else
      (* Recursive calls are calls to the continuation f, wrapped
         in the proper variant: here we call odd *)
      (case f (INR (INR (INL (i - 1)))) of
       | Fail e => Fail e
       | Diverge => Diverge
       | Return r =>
         (* Extract the proper value from the enumeration: here, the
            call is tail-call so this is not really necessary, but we
            might need to retrieve the output of the call to odd, which
            is a boolean, and do something more complex with it. *)
         case r of
         | INL _ => Fail Failure
         | INR (INL _) => Fail Failure
         | INR (INR (INL _)) => Fail Failure
         | INR (INR (INR b)) => (* Extract the output of odd *)
           (* Return: inject into the variant for the output of even *)
           Return (INR (INL b))
         )
  | INR (INL _) => (* Output of even *)
    (* We must ignore this one *)
    Fail Failure
  | INR (INR (INL i)) =>
    (* Body of odd *)
    if i = 0 then Return (INR (INR (INR F)))
    else
      (* Call to even *)
      (case f (INL (i - 1)) of
       | Fail e => Fail e
       | Diverge => Diverge
       | Return r =>
         (* Extract the proper value from the enumeration *)
         case r of
         | INL _ => Fail Failure
         | INR (INL b) => (* Extract the output of even *)
           (* Return: inject into the variant for the output of odd *)
           Return (INR (INR (INR b)))
         | INR (INR (INL _)) => Fail Failure
         | INR (INR (INR _)) => Fail Failure
         )
  | INR (INR (INR _)) => (* Output of odd *)
    (* We must ignore this one *)
    Fail Failure


(* We then prove that this body satisfies the validity condition *)
Theorem even_odd_body_is_valid_aux:
  is_valid_fp_body (SUC (SUC n)) even_odd_body
Proof
  pure_once_rewrite_tac [is_valid_fp_body_def] >>
  gen_tac >>
  (* Expand *)
  fs [even_odd_body_def, bind_def] >>
  (* Explore the body *)
  Cases_on ‘x’ >> fs []
  >-(
    Cases_on ‘x' = 0 >> fs [] >>
    (* Recursive call *)
    disj2_tac >>
    qexists ‘\g x. case x of
              | INL v => Fail Failure
              | INR (INL v2) => Fail Failure
              | INR (INR (INL v4)) => Fail Failure
              | INR (INR (INR b)) => Return (INR (INL b)) >>
    qexists ‘INR (INR (INL (x'  1))) >>
    conj_tac
    >-(pure_once_rewrite_tac [is_valid_fp_body_def] >> fs []) >>
    fs []) >>
  Cases_on ‘y’ >> fs [] >>
  Cases_on ‘y'’ >> fs [] >>
  Cases_on ‘x = 0 >> fs []  >>
  (* Recursive call *)
  disj2_tac >>
  qexists ‘\g x. case x of
                   INL v => Fail Failure
                 | INR (INL b) => Return (INR (INR (INR b)))
                 | INR (INR v3) => Fail Failure >>
  qexists ‘INL (x  1) >>
  conj_tac
  >-(pure_once_rewrite_tac [is_valid_fp_body_def] >> fs []) >>
  fs []
QED

Theorem even_odd_body_is_valid:
  is_valid_fp_body (SUC (SUC 0)) even_odd_body
Proof
  irule even_odd_body_is_valid_aux
QED

(* We finally introduce the definitions for even and odd *)
val even_raw_def = Define 
  even (i : int) =
    case fix even_odd_body (INL i) of
    | Fail e => Fail e
    | Diverge => Diverge
    | Return r =>
      case r of
      | INL _ => Fail Failure
      | INR (INL b) => Return b
      | INR (INR (INL b)) => Fail Failure
      | INR (INR (INR _)) => Fail Failure


val odd_raw_def = Define 
  odd (i : int) =
    case fix even_odd_body (INR (INR (INL i))) of
    | Fail e => Fail e
    | Diverge => Diverge
    | Return r =>
      case r of
      | INL _ => Fail Failure
      | INR (INL _) => Fail Failure
      | INR (INR (INL _)) => Fail Failure
      | INR (INR (INR b)) => Return b


Theorem even_def:
  ∀i. even (i : int) : bool result =
    if i = 0 then Return T else odd (i - 1)
Proof
  gen_tac >>
  (* Expand the definition *)
  pure_once_rewrite_tac [even_raw_def] >>
  (* Use the fixed-point equality *)
  pure_once_rewrite_left_tac [HO_MATCH_MP fix_fixed_eq even_odd_body_is_valid] >>
  (* Expand the body definition *)
  pure_rewrite_tac [even_odd_body_def] >>
  (* Expand all the definitions from the group *)
  pure_rewrite_tac [even_raw_def, odd_raw_def] >>
  (* Explore all the paths - maybe we can be smarter, but this is fast and really easy *)
  fs [bind_def] >>
  Cases_on ‘i = 0 >> fs [] >>
  Cases_on ‘fix even_odd_body (INR (INR (INL (i  1)))) >> fs [] >>
  Cases_on ‘a’ >> fs [] >>
  Cases_on ‘y’ >> fs [] >>
  Cases_on ‘y'’ >> fs []
QED

Theorem odd_def:
  ∀i. odd (i : int) : bool result =
    if i = 0 then Return F else even (i - 1)
Proof
  gen_tac >>
  (* Expand the definition *)
  pure_once_rewrite_tac [odd_raw_def] >>
  (* Use the fixed-point equality *)
  pure_once_rewrite_left_tac [HO_MATCH_MP fix_fixed_eq even_odd_body_is_valid] >>
  (* Expand the body definition *)
  pure_rewrite_tac [even_odd_body_def] >>
  (* Expand all the definitions from the group *)
  pure_rewrite_tac [even_raw_def, odd_raw_def] >>
  (* Explore all the paths - maybe we can be smarter, but this is fast and really easy *)
  fs [bind_def] >>
  Cases_on ‘i = 0 >> fs [] >>
  Cases_on ‘fix even_odd_body (INL (i  1)) >> fs [] >>
  Cases_on ‘a’ >> fs [] >>
  Cases_on ‘y’ >> fs []
QED

val _ = export_theory ()