summaryrefslogtreecommitdiff
path: root/backends/hol4/Test.sml
blob: c10d64ce4f53a1c426448eeaf577b70aa02fc58a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
open HolKernel boolLib bossLib Parse

val primitives_theory_name = "Primitives"
val _ = new_theory primitives_theory_name

(* SML declarations  *)
(* for example: *)
(*val th = save_thm("SKOLEM_AGAIN",SKOLEM_THM) *)

local open boolTheory integerTheory wordsTheory stringTheory in end

Datatype:
  error = Failure
End

Datatype:
  result = Return 'a | Fail error | Loop
End

Type M = ``: 'a result``

(* TODO: rename *)
val st_ex_bind_def = Define `
  (st_ex_bind : 'a M -> ('a -> 'b M) -> 'b M) x f =
    case x of
      Return y => f y
    | Fail e => Fail e
    | Loop => Loop`;

val st_ex_return_def = Define `
  (st_ex_return : 'a -> 'a M) x =
    Return x`;

Overload monad_bind[local] = ``st_ex_bind``
Overload monad_unitbind[local] = ``\x y. st_ex_bind x (\z. y)``
Overload monad_ignore_bind[local] = ``\x y. st_ex_bind x (\z. y)``
(*Overload ex_bind[local] = ``st_ex_bind`` *)
(* Overload ex_return[local] = ``st_ex_return`` *)
(*Overload failwith = ``raise_Fail``*)

(* Temporarily allow the monadic syntax *)
val _ = monadsyntax.temp_add_monadsyntax ();

val test1_def = Define `
  test1 (x : bool) = Return x`

val is_true_def = Define 
  is_true (x : bool) = if x then Return () else Fail Failure

val test1_def = Define 
  test1 (x : bool) = Return x

val test_monad_def = Define `
  test_monad v =
    do
      x <- Return v;
      Return x
    od`;


val test_monad2_def = Define `
  test_monad2 =
    do
      x <- Return T;
      Return x
    od`;

val test_monad3_def = Define `
  test_monad3 x =
    do
      is_true x;
      Return x
    od`;

(**
 *  Arithmetic
 *)

open intLib

val test_int1 = Define ‘int1 = 32
val test_int2 = Define ‘int2 = -32

Theorem INT_THM1:
  !(x y : int). x > 0 ==> y > 0 ==> x + y > 0
Proof
  ARITH_TAC
QED

Theorem INT_THM2:
  !(x : int). T
Proof
  rw[]
QED

val _ = prefer_int ()

val x = “-36217863217862718”

(* Deactivate notations for int *)
val _ = deprecate_int ()
open arithmeticTheory


val m = Hol_pp.print_apropos
val f = Hol_pp.print_find

(* Display types on/off: M-h C-t *)
(* Move back: M-h b *)

val _ = numLib.deprecate_num ()
val _ = numLib.prefer_num ()

Theorem NAT_THM1:
  !(n : num). n < n + 1
Proof
  Induct_on ‘n’ >> DECIDE_TAC
QED

Theorem NAT_THM2:
  !(n : num). n < n + (1 : num)
Proof
  gen_tac >>
  Induct_on ‘n’ >- (
    PURE_REWRITE_TAC [ADD, NUMERAL_DEF, BIT1, ALT_ZERO] >>
    PURE_REWRITE_TAC [prim_recTheory.LESS_0_0]) >>
  PURE_REWRITE_TAC [ADD] >>
  irule prim_recTheory.LESS_MONO >>
  asm_rewrite_tac []
QED


val x = “1278361286371286:num”


(********************** PRIMITIVES *)
val _ = prefer_int ()

val _ = new_type ("u32", 0)
val _ = new_type ("i32", 0)

(*val u32_min_def = Define ‘u32_min = (0:int)’*)
val u32_max_def = Define ‘u32_max = (4294967295:int)

(* TODO: change that *)
val usize_max_def = Define ‘usize_max = (4294967295:int)

val i32_min_def = Define ‘i32_min = (-2147483648:int)
val i32_max_def = Define ‘i32_max = (2147483647:int)

val _ = new_constant ("u32_to_int", “:u32 -> int”)
val _ = new_constant ("i32_to_int", “:i32 -> int”)

val _ = new_constant ("int_to_u32", “:int -> u32”)
val _ = new_constant ("int_to_i32", “:int -> i32”)


(* TODO: change to "...of..." *)
val u32_to_int_bounds =
  new_axiom (
    "u32_to_int_bounds",
    “!n. 0 <= u32_to_int n /\ u32_to_int n <= u32_max”)

val i32_to_int_bounds =
  new_axiom (
    "i32_to_int_bounds",
    “!n. i32_min <= i32_to_int n /\ i32_to_int n <= i32_max”)

val int_to_u32_id =
  new_axiom (
    "int_to_u32_id",
    “!n. 0 <= n /\ n <= u32_max ==>
     u32_to_int (int_to_u32 n) = n”)

val int_to_i32_id =
  new_axiom (
    "int_to_i32_id",
    “!n. i32_min <= n /\ n <= i32_max ==>
     i32_to_int (int_to_i32 n) = n”)

val mk_u32_def = Define
  ‘mk_u32 n =
    if 0 <= n /\ n <= u32_max then Return (int_to_u32 n)
    else Fail Failure

val u32_add_def = Define ‘u32_add x y = mk_u32 ((u32_to_int x) + (u32_to_int y))

Theorem MK_U32_SUCCESS:
  !n. 0 <= n /\ n <= u32_max ==>
  mk_u32 n = Return (int_to_u32 n)
Proof
  rw[mk_u32_def]
QED

Theorem U32_ADD_EQ:
  !x y.
    u32_to_int x + u32_to_int y <= u32_max ==>
    ?z. u32_add x y = Return z /\ u32_to_int z = u32_to_int x + u32_to_int y
Proof
  rpt gen_tac >>
  rpt DISCH_TAC >>
  exists_tac “int_to_u32 (u32_to_int x + u32_to_int y) >>
  imp_res_tac MK_U32_SUCCESS >>
  (* There is probably a better way of doing this *)
  sg ‘0 <= u32_to_int x >- (rw[u32_to_int_bounds]) >>
  sg ‘0 <= u32_to_int y >- (rw[u32_to_int_bounds]) >>
  fs [u32_add_def] >>
  irule int_to_u32_id >>
  fs[]
QED

val u32_sub_def = Define ‘u32_sub x y = mk_u32 ((u32_to_int x) - (u32_to_int y))

Theorem U32_SUB_EQ:
  !x y.
    0 <= u32_to_int x - u32_to_int y ==>
    ?z. u32_sub x y = Return z /\ u32_to_int z = u32_to_int x - u32_to_int y
Proof
  rpt gen_tac >>
  rpt DISCH_TAC >>
  exists_tac “int_to_u32 (u32_to_int x - u32_to_int y) >>
  imp_res_tac MK_U32_SUCCESS >>
  (* There is probably a better way of doing this *)
  sg ‘u32_to_int x  u32_to_int y  u32_max >-(
    sg ‘u32_to_int x <= u32_max >- (rw[u32_to_int_bounds]) >>
    sg ‘0 <= u32_to_int y >- (rw[u32_to_int_bounds]) >>
    COOPER_TAC
  ) >>
  fs [u32_sub_def] >>
  irule int_to_u32_id >>
  fs[]
QED

val mk_i32_def = Define
  ‘mk_i32 n =
    if i32_min <= n /\ n <= i32_max then Return (int_to_i32 n)
    else Fail Failure

val i32_add_def = Define ‘i32_add x y = mk_i32 ((i32_to_int x) + (i32_to_int y))

Theorem MK_I32_SUCCESS:
  !n. i32_min <= n /\ n <= i32_max ==>
  mk_i32 n = Return (int_to_i32 n)
Proof
  rw[mk_i32_def]
QED

Theorem I32_ADD_EQ:
  !x y.
    i32_min <= i32_to_int x + i32_to_int y ==>
    i32_to_int x + i32_to_int y <= i32_max ==>
    ?z. i32_add x y = Return z /\ i32_to_int z = i32_to_int x + i32_to_int y
Proof
  rpt gen_tac >>
  rpt DISCH_TAC >>
  exists_tac “int_to_i32 (i32_to_int x + i32_to_int y) >>
  imp_res_tac MK_I32_SUCCESS >>
  fs [i32_min_def, i32_add_def] >>
  irule int_to_i32_id >>
  fs[i32_min_def]
QED

open listTheory

val _ = new_type ("vec", 1)
val _ = new_constant ("vec_to_list", “:'a vec -> 'a list”)

val VEC_TO_LIST_NUM_BOUNDS =
  new_axiom (
    "VEC_TO_LIST_BOUNDS",
    “!v. let l = LENGTH (vec_to_list v) in
     (0:num) <= l /\ l <= (4294967295:num)”)

Theorem VEC_TO_LIST_INT_BOUNDS:
  !v. let l = int_of_num (LENGTH (vec_to_list v)) in
     0 <= l /\ l <= u32_max
Proof
  gen_tac >>
  rw [u32_max_def] >>
  assume_tac VEC_TO_LIST_NUM_BOUNDS >>
  fs[]
QED

val VEC_LEN_DEF = Define ‘vec_len v = int_to_u32 (int_of_num (LENGTH (vec_to_list v)))

(*
(* Useless *)
Theorem VEC_LEN_BOUNDS:
  !v. u32_min <= u32_to_int (vec_len v) /\ u32_to_int (vec_len v) <= u32_max
Proof
  gen_tac >>
  qspec_then ‘v’ assume_tac VEC_TO_LIST_INT_BOUNDS >>
  fs[VEC_LEN_DEF] >>
  IMP_RES_TAC int_to_u32_id >>
  fs[]
QED
*)

(* The type parameters are ordered in alphabetical order *)
Datatype:
  test = Variant1 'b | Variant2 'a
End

Datatype:
  test2 = Variant1_1 'T2 | Variant2_1 'T1
End

Datatype:
  test2 = Variant1_2 'T1 | Variant2_2 'T2
End

(*
“Variant1_1 3”
“Variant1_2 3”

type_of “CONS 3”
*)

(* TODO: argument order, we must also omit arguments in new type *)
Datatype:
  list_t =
    ListCons 't list_t
  | ListNil
End

val list_nth_mut_loop_loop_fwd_def = Define 
  list_nth_mut_loop_loop_fwd (ls : 't list_t) (i : u32) : 't result =
  case ls of
  | ListCons x tl =>
    if u32_to_int i = (0:int)
    then Return x
    else
      do
      i0 <- u32_sub i (int_to_u32 1);
      list_nth_mut_loop_loop_fwd tl i0
      od
  | ListNil => 
    Fail Failure


(*
CoInductive coind:
 !x y. coind x /\ coind y ==> coind (x + y)
End
*)

(*
(* This generates inconsistent theorems *)
CoInductive loop:
 !x. loop x = if x then loop x else 0
End

CoInductive loop:
 !(x : int). loop x = if x > 0 then loop (x - 1) else 0
End
*)

(* This terminates *)
val list_nth_mut_loop_loop_fwd_def = Define 
  list_nth_mut_loop_loop_fwd (ls : 't list_t) (i : u32) : 't result =
  case ls of
  | ListCons x tl =>
    if u32_to_int i = (0:int)
    then Return x
    else
      do
      i0 <- u32_sub i (int_to_u32 1);
      list_nth_mut_loop_loop_fwd tl i0
      od
  | ListNil => 
    Fail Failure


(* This is sort of a coinductive definition.

   This can be justified:
   - we first define a version [nth_fuel] which uses fuel (and is thus terminating)
   - we define the predicate P:
     P ls i n = case nth_fuel n ls i of Return _ => T |  _ => F
   - we then use [LEAST] (least upper bound for natural numbers) to define nth as:
     “nth ls i = if (?n. P n) then nth_fuel (LEAST (P ls i)) ls i else Fail Loop ”
   - we finally prove that nth satisfies the proper equation.

     We would need the following intermediate lemma:
     !n.
       n < LEAST (P ls i) ==> nth_fuel n ls i = Fail _ /\
       n >= LEAST (P ls i) ==> nth_fuel n ls i = nth_fuel (LEAST P ls i) ls i
     
 *)
val _ = new_constant ("nth", “:'t list_t -> u32 -> 't result”)
val nth_def = new_axiom ("nth_def", 
 nth (ls : 't list_t) (i : u32) : 't result =
  case ls of
  | ListCons x tl =>
    if u32_to_int i = (0:int)
    then Return x
    else
      do
      i0 <- u32_sub i (int_to_u32 1);
      nth tl i0
      od
  | ListNil => 
    Fail Failure
 ”)


(*** Examples of proofs on [nth] *)
val list_t_v_def = Define 
  list_t_v ListNil = [] /\
  list_t_v (ListCons x tl) = x :: list_t_v tl


(* TODO: move *)
open dep_rewrite
open integerTheory

(* Ignore a theorem.

   To be used in conjunction with {!pop_assum} for instance.
 *)
fun IGNORE_TAC (_ : thm) : tactic = ALL_TAC


Theorem INT_OF_NUM_INJ:
  !n m. &n = &m ==> n = m
Proof
  rpt strip_tac >>
  fs [Num]
QED

Theorem NUM_SUB_EQ:
  !(x y z : int). x = y - z ==> 0 <= x ==> 0 <= z ==> Num y = Num z + Num x
Proof
  rpt strip_tac >>
  sg ‘0 <= y >- COOPER_TAC >>
  rfs [] >>
  (* Convert to integers *)
  irule INT_OF_NUM_INJ >>
  imp_res_tac (GSYM INT_OF_NUM) >>
  (* Associativity of & *)
  PURE_REWRITE_TAC [GSYM INT_ADD] >>
  fs []
QED

Theorem NUM_SUB_1_EQ:
  !(x y : int). x = y - 1 ==> 0 <= x ==> Num y = SUC (Num x)
Proof
  rpt strip_tac >>
  (* Get rid of the SUC *)
  sg ‘SUC (Num x) = 1 + Num x >-(rw [ADD]) >> rw [] >>
  (* Massage a bit the goal *)
  qsuff_tac ‘Num y = Num (y  1) + Num 1 >- COOPER_TAC >>
  (* Apply the general theorem *)
  irule NUM_SUB_EQ >>
  COOPER_TAC
QED

(* TODO: remove *)
Theorem NUM_SUB_1_EQ1:
  !i. 0 <= i - 1 ==> Num i = SUC (Num (i-1))
Proof
  rpt strip_tac >>
  (* 0 <= i *)
  sg ‘0 <= i >- COOPER_TAC >>
  (* Get rid of the SUC *)
  sg ‘SUC (Num (i - 1)) = 1 + Num (i - 1) >-(rw [ADD]) >>
  rw [] >>
  (* Convert to integers*)
  irule INT_OF_NUM_INJ >>
  imp_res_tac (GSYM INT_OF_NUM) >>
  (* Associativity of & *)
  PURE_REWRITE_TAC [GSYM INT_ADD] >>
  fs []
QED

(* TODO:
   - list all the integer variables, and insert bounds in the assumptions
   - replace u32_min by 0?
   - i - 1
   - auto lookup of spec lemmas
*)

(* Add a list of theorems in the assumptions - TODO: move *)
fun ASSUME_TACL (thms : thm list) : tactic =
  let
    (* TODO: use MAP_EVERY *)
    fun t thms =
      case thms of
        [] => ALL_TAC
      | thm :: thms => ASSUME_TAC thm >> t thms
  in
  t thms
  end

(* The map from integer type to bounds lemmas *)
val integer_bounds_lemmas =
  Redblackmap.fromList String.compare
  [
    ("u32", u32_to_int_bounds),
    ("i32", i32_to_int_bounds)
  ]

(* The map from integer type to conversion lemmas *)
val integer_conversion_lemmas =
  Redblackmap.fromList String.compare
  [
    ("u32", int_to_u32_id),
    ("i32", int_to_i32_id)
  ]

val integer_conversion_lemmas_list =
  map snd (Redblackmap.listItems integer_conversion_lemmas)

(* Not sure how term nets work, nor how we are supposed to convert Term.term
   to mlibTerm.term.

   TODO: it seems we need to explore the term and convert everything to strings.
 *)
fun term_to_mlib_term (t : term) : mlibTerm.term =
  mlibTerm.string_to_term (term_to_string t)

(*
(* The lhs of the conclusion of the integer conversion lemmas - we use this for
   pattern matching *)
val integer_conversion_lhs_concls =
  let
    val thms = map snd (Redblackmap.listItems integer_conversion_lemmas);
    val concls = map (lhs o concl o UNDISCH_ALL o SPEC_ALL) thms;
  in concls end
*)

(*
val integer_conversion_concls_net =
  let
    val maplets = map (fn x => fst (dest_eq x) |-> ()) integer_conversion_concls;

    val maplets = map (fn x => fst (mlibTerm.dest_eq x) |-> ()) integer_conversion_concls;
    val maplets = map (fn x => fst (mlibThm.dest_unit_eq x) |-> ()) integer_conversion_concls;
    val parameters = { fifo=false };
  in mlibTermnet.from_maplets parameters maplets end

mlibTerm.string_to_term (term_to_string “u32_to_int (int_to_u32 n) = n”)
term_to_quote

SIMP_CONV
mlibThm.dest_thm u32_to_int_bounds
mlibThm.dest_unit u32_to_int_bounds
*)

(* The integer types *)
val integer_types_names =
  Redblackset.fromList String.compare
  (map fst (Redblackmap.listItems integer_bounds_lemmas))

val all_integer_bounds = [
  u32_max_def,
  i32_min_def,
  i32_max_def
]

(* Small utility: compute the set of assumptions in the context.

   We isolate this code in a utility in order to be able to improve it:
   for now we simply put all the assumptions in a set, but in the future
   we might want to split the assumptions which are conjunctions in order
   to be more precise.
 *)
fun compute_asms_set ((asms,g) : goal) : term Redblackset.set =
  Redblackset.fromList Term.compare asms

(* See {!assume_bounds_for_all_int_vars}.

   This tactic is in charge of adding assumptions for one variable.
 *)

fun assume_bounds_for_int_var
  (asms_set: term Redblackset.set) (var : string) (ty : string) :
  tactic =
  let
    (* Lookup the lemma to apply *)
    val lemma = Redblackmap.find (integer_bounds_lemmas, ty);
    (* Instantiate the lemma *)
    val ty_t = mk_type (ty, []);
    val var_t = mk_var (var, ty_t);
    val lemma = SPEC var_t lemma;
    (* Split the theorem into a list of conjuncts.

       The bounds are typically a conjunction:
       {[
         ⊢ 0 ≤ u32_to_int x ∧ u32_to_int x ≤ u32_max: thm
       ]}
     *)
    val lemmas = CONJUNCTS lemma;
    (* Filter the conjuncts: some of them might already be in the context,
       we don't want to introduce them again, as it would pollute it.
     *)
    val lemmas = filter (fn lem => not (Redblackset.member (asms_set, concl lem))) lemmas;
   in
  (* Introduce the assumptions in the context *)
  ASSUME_TACL lemmas
  end

(* Destruct if possible a term of the shape: [x y],
   where [x] is not a comb.

   Returns [(x, y)]
 *)
fun dest_single_comb (t : term) : (term * term) option =
  case strip_comb t of
    (x, [y]) => SOME (x, y)
  | _ => NONE

(** Destruct if possible a term of the shape: [x (y z)].
    Returns [(x, y, z)]
 *)
fun dest_single_comb_twice (t : term) : (term * term * term) option =
  case dest_single_comb t of
    NONE => NONE
  | SOME (x, y) =>
    case dest_single_comb y of
      NONE => NONE
    | SOME (y, z) => SOME (x, y, z)

(* A utility map to lookup integer conversion lemmas *)
val integer_conversion_pat_map =
  let
    val thms = map snd (Redblackmap.listItems integer_conversion_lemmas);
    val tl = map (lhs o concl o UNDISCH_ALL o SPEC_ALL) thms;
    val tl = map (valOf o dest_single_comb_twice) tl;
    val tl = map (fn (x, y, _) => (x, y)) tl;
    val m = Redblackmap.fromList Term.compare tl
  in m end

(* Introduce bound assumptions for all the machine integers in the context.

   Exemple:
   ========
   If there is “x : u32” in the input set, then we introduce:
   {[
     0 <= u32_to_int x
     u32_to_int x <= u32_max
   ]}
 *)
fun assume_bounds_for_all_int_vars (asms, g) =
  let
    (* Compute the set of integer variables in the context *)
    val vars = free_varsl (g :: asms);
    (* Compute the set of assumptions already present in the context *)
    val asms_set = compute_asms_set (asms, g);
    (* Filter the variables to keep only the ones with type machine integer,
       decompose the types at the same time *)
    fun decompose_var (v : term) : (string * string) =
      let
        val (v, ty) = dest_var v;
        val {Args=args, Thy=thy, Tyop=ty} = dest_thy_type ty;
        val _ = assert null args;
        val _ = assert (fn thy => thy = primitives_theory_name) thy;
        val _ = assert (fn ty => Redblackset.member (integer_types_names, ty)) ty;
      in (v, ty) end;
    val vars = mapfilter decompose_var vars; 
    (* Add assumptions for one variable *)
    fun add_var_asm (v, ty) : tactic =
      assume_bounds_for_int_var asms_set v ty;    
    (* Add assumptions for all the variables *)
    (* TODO: use MAP_EVERY *)
    fun add_vars_asm vl : tactic =
      case vl of
        [] => ALL_TAC
      | v :: vl =>
        add_var_asm v >> add_vars_asm vl;
  in
    add_vars_asm vars (asms, g)
  end

(*
dest_thy_type “:u32”
val massage : tactic = assume_bounds_for_all_int_vars
val vl = vars
val (v::vl) = vl
*)

(*
val (asms, g) = top_goal ()
fun bounds_for_ints_in_list (vars : (string * hol_type) list) : tactic =
  foldl
  FAIL_TAC ""
val var = "x"
val ty = "u32"

val asms_set = Redblackset.fromList Term.compare asms;

val x = “1: int”
val ty = "u32"

val thm = lemma
*)

(* Given a theorem of the shape:
   {[
     A0, ..., An ⊢ B0 ==> ... ==> Bm ==> concl
   ]}

   Rewrite it so that it has the shape:
   {[
     ⊢ (A0 /\ ... /\ An /\ B0 /\ ... /\ Bm) ==> concl
   ]}
 *)
fun thm_to_conj_implies (thm : thm) : thm =
  let
    (* Discharge all the assumptions *)
    val thm = DISCH_ALL thm;
    (* Rewrite the implications as one conjunction *)
    val thm = PURE_REWRITE_RULE [GSYM satTheory.AND_IMP] thm;
  in thm end

(* If the current goal is [asms ⊢ g], and given a lemma of the form
   [⊢ H ==> C], do the following:
   - attempt to prove [asms ⊢ H] using the given tactic
   - if it succeeds, call the theorem tactic with the theorem [asms ⊢ C]
   
   If the lemma is not an implication, we directly call the theorem tactic.
 *)
fun prove_premise_then_apply (prove_hyp: tactic) (then_tac: thm_tactic) (thm : thm)  : tactic =
  let
    val c = concl thm;
    (* First case: there is a premise to prove *)
    fun prove_premise_then (h : term) =
      SUBGOAL_THEN h (fn h_thm => then_tac (MP thm h_thm)) >- prove_hyp;
    (* Second case: no premise to prove *)
    val no_prove_premise_then = then_tac thm;
  in
    if is_imp c then prove_premise_then (fst (dest_imp c)) else no_prove_premise_then
  end

(* Call a function on all the subterms of a term *)
fun dep_apply_in_subterms
  (f : string Redblackset.set -> term -> unit)
  (bound_vars : string Redblackset.set)
  (t : term) : unit =
  let
    val dep = dep_apply_in_subterms f;
    val _ = f bound_vars t;
  in
  case dest_term t of
    VAR (name, ty) => ()
  | CONST {Name=name, Thy=thy, Ty=ty} => ()
  | COMB (app, arg) =>
    let
      val _ = dep bound_vars app;
      val _ = dep bound_vars arg;
    in () end
  | LAMB (bvar, body) =>
    let
      val (varname, ty) = dest_var bvar;
      val bound_vars = Redblackset.add (bound_vars, varname);
      val _ = dep bound_vars body;
    in () end
  end

(* Return the set of free variables appearing in the residues of a term substitution *)
fun free_vars_in_subst_residue (s: (term, term) Term.subst) : string Redblackset.set =
  let
    val free_vars = free_varsl (map (fn {redex=_, residue=x} => x) s);
    val free_vars = map (fst o dest_var) free_vars;
    val free_vars = Redblackset.fromList String.compare free_vars;
  in free_vars end

(* Attempt to instantiate a rewrite theorem.

   Remark: this theorem should be of the form:
   H ⊢ x = y
   
   (without quantified variables).
   
   **REMARK**: the function raises a HOL_ERR exception if it fails.
   
   [forbid_vars]: forbid substituting with those vars (typically because
   we are maching in a subterm under lambdas, and some of those variables
   are bounds in the outer lambdas).
*)
fun inst_match_concl (forbid_vars : string Redblackset.set) (th : thm) (t : term) : thm =
  let
    (* Retrieve the lhs of the conclusion of the theorem *)
    val l = lhs (concl th);
    (* Match this lhs with the term *)
    val (var_s, ty_s) = match_term l t;
    (* Check that we are allowed to perform the substitution *)
    val free_vars = free_vars_in_subst_residue var_s;
    val _ = assert Redblackset.isEmpty (Redblackset.intersection (free_vars, forbid_vars));
  in
    (* Perform the substitution *)
    INST var_s (INST_TYPE ty_s th)
  end

(*
val forbid_vars = Redblackset.empty String.compare
val t = “u32_to_int (int_to_u32 x)”
val t = “u32_to_int (int_to_u32 3)”
val th = (UNDISCH_ALL o SPEC_ALL) int_to_u32_id
*)

(* Attempt to instantiate a theorem by matching its first premise.

   Note that we make the hypothesis tha all the free variables which need
   to be instantiated appear in the first premise, of course (the caller should
   enforce this).

   Remark: this theorem should be of the form:
   ⊢ H0 ==> ... ==> Hn ==> H
   
   (without quantified variables).
   
   **REMARK**: the function raises a HOL_ERR exception if it fails.
   
   [forbid_vars]: see [inst_match_concl]
*)
fun inst_match_first_premise
  (forbid_vars : string Redblackset.set) (th : thm) (t : term) : thm =
  let
    (* Retrieve the first premise *)
    val l = (fst o dest_imp o concl) th;
    (* Match this with the term *)
    val (var_s, ty_s) = match_term l t;
    (* Check that we are allowed to perform the substitution *)
    val free_vars = free_vars_in_subst_residue var_s;
    val _ = assert Redblackset.isEmpty (Redblackset.intersection (free_vars, forbid_vars));
  in
    (* Perform the substitution *)
    INST var_s (INST_TYPE ty_s th)
  end

(*
val forbid_vars = Redblackset.empty String.compare
val t = “u32_to_int z = u32_to_int i − 1”
val th = SPEC_ALL NUM_SUB_1_EQ
*)

(* Call a matching function on all the subterms in the provided list of term.
   This is a generic function.

   [try_match] should return an instantiated theorem, as well as a term which
   identifies this theorem (the lhs of the equality, if this is a rewriting
   theorem for instance - we use this to check for collisions, and discard
   redundant instantiations).
 *)
fun inst_match_in_terms
  (try_match: string Redblackset.set -> term -> term * thm)
  (tl : term list) : thm list =
  let
    (* We use a map when storing the theorems, to avoid storing the same theorem twice *)
    val inst_thms: (term, thm) Redblackmap.dict ref = ref (Redblackmap.mkDict Term.compare);
    fun try_instantiate bvars t =
      let
        val (inst_th_tm, inst_th) = try_match bvars t;
      in
        inst_thms := Redblackmap.insert (!inst_thms, inst_th_tm, inst_th)
      end
      handle HOL_ERR _ => ();
    (* Explore the term *)
    val _ = app (dep_apply_in_subterms try_instantiate (Redblackset.empty String.compare)) tl;
  in
    map snd (Redblackmap.listItems (!inst_thms))
  end

(* Given a rewriting theorem [th] which has premises, return all the
   instantiations of this theorem which make its conclusion match subterms
   in the provided list of term.
 *)
fun inst_match_concl_in_terms (th : thm) (tl : term list) : thm list =
  let
    val th = (UNDISCH_ALL o SPEC_ALL) th;
    fun try_match bvars t =
      let
        val inst_th = inst_match_concl bvars th t;
      in
        (lhs (concl inst_th), inst_th)
      end;
  in
    inst_match_in_terms try_match tl
  end

(*
val t = “!x. u32_to_int (int_to_u32 x) = u32_to_int (int_to_u32 y)”
val th = int_to_u32_id

val thms = inst_match_concl_in_terms int_to_u32_id [t]
*)


(* Given a theorem [th] which has premises, return all the
   instantiations of this theorem which make its first premise match subterms
   in the provided list of term.
 *)
fun inst_match_first_premise_in_terms (th : thm) (tl : term list) : thm list =
  let
    val th = SPEC_ALL th;
    fun try_match bvars t =
      let
        val inst_th = inst_match_first_premise bvars th t;
      in
        ((fst o dest_imp o concl) inst_th, inst_th)
      end;
  in
    inst_match_in_terms try_match tl
  end

(*
val t = “x = y - 1 ==> T”
val th = SPEC_ALL NUM_SUB_1_EQ

val thms = inst_match_first_premise_in_terms th [t]
*)

(* Attempt to apply dependent rewrites with a theorem by matching its
   conclusion with subterms of the goal.
 *)
fun apply_dep_rewrites_match_concl_tac
  (prove_premise : tactic) (then_tac : thm_tactic) (th : thm) : tactic =
  fn (asms, g) =>
    let
      (* Discharge the assumptions so that the goal is one single term *)
      val thms = inst_match_concl_in_terms th (g :: asms);
      val thms = map thm_to_conj_implies thms;
    in
      (* Apply each theorem *)
      MAP_EVERY (prove_premise_then_apply prove_premise then_tac) thms (asms, g)
    end

(*
val (asms, g) = ([
  “u32_to_int z = u32_to_int i − u32_to_int (int_to_u32 1)”,
  “u32_to_int (int_to_u32 2) = 2”
], “T”)

apply_dep_rewrites_match_concl_tac
  (FULL_SIMP_TAC simpLib.empty_ss all_integer_bounds >> COOPER_TAC)
  (fn th => FULL_SIMP_TAC simpLib.empty_ss [th])
  int_to_u32_id
*)

(* Attempt to apply dependent rewrites with a theorem by matching its
   first premise with subterms of the goal.
 *)
fun apply_dep_rewrites_match_first_premise_tac
  (prove_premise : tactic) (then_tac : thm_tactic) (th : thm) : tactic =
  fn (asms, g) =>
    let
      (* Discharge the assumptions so that the goal is one single term *)
      val thms = inst_match_first_premise_in_terms th (g :: asms);
      val thms = map thm_to_conj_implies thms;
      fun apply_tac th =
        let
          val th = thm_to_conj_implies th;
        in
          prove_premise_then_apply prove_premise then_tac th
        end;
    in
      (* Apply each theorem *)
      MAP_EVERY apply_tac thms (asms, g)
    end

(* See {!rewrite_all_int_conversion_ids}.

   Small utility which takes care of one rewriting.

   TODO: we actually don't use it. REMOVE?
 *)
fun rewrite_int_conversion_id
  (asms_set: term Redblackset.set) (x : term) (ty : string) :
  tactic =
  let
    (* Lookup the theorem *)
    val lemma = Redblackmap.find (integer_conversion_lemmas, ty);
    (* Instantiate *)
    val lemma = SPEC x lemma;
    (* Rewrite the lemma. The lemma typically has the shape:
       ⊢ u32_min <= x /\ x <= u32_max ==> u32_to_int (int_to_u32 x) = x
       
       Make sure the lemma has the proper shape, attempt to prove the premise,
       then use the conclusion if it succeeds.
     *)
    val lemma = thm_to_conj_implies lemma;
    (* Retrieve the conclusion of the lemma - we do this to check if it is not
       already in the assumptions *)
    val c = concl (UNDISCH_ALL lemma);
    val already_in_asms = Redblackset.member (asms_set, c);
    (* Small utility: the tactic to prove the premise *)
    val prove_premise =
      (* We might need to unfold the bound definitions, in particular if the
         term is a constant (e.g.,  “3:int”) *)
      FULL_SIMP_TAC simpLib.empty_ss all_integer_bounds >>
      COOPER_TAC;
    (* Rewrite with a lemma, then assume it *)
    fun rewrite_then_assum (thm : thm) : tactic =
      FULL_SIMP_TAC simpLib.empty_ss [thm] >> assume_tac thm;
  in
    (* If the conclusion is not already in the assumptions, prove it, use
       it to rewrite the goal and add it in the assumptions, otherwise do nothing *)
    if already_in_asms then ALL_TAC
    else prove_premise_then_apply prove_premise rewrite_then_assum lemma
 end

(* Look for conversions from integers to machine integers and back.
   {[
     u32_to_int (int_to_u32 x)
   ]}

   Attempts to prove and apply equalities of the form:
   {[
     u32_to_int (int_to_u32 x) = x
   ]}
   
   **REMARK**: this function can fail, if it doesn't manage to prove the
   premises of the theorem to apply.

   TODO: update
 *)
val rewrite_with_dep_int_lemmas : tactic =
  (* We're not trying to be smart: we just try to rewrite with each theorem at
     a time *)
  let
    val prove_premise = FULL_SIMP_TAC simpLib.empty_ss all_integer_bounds >> COOPER_TAC;
    val then_tac1 = (fn th => FULL_SIMP_TAC simpLib.empty_ss [th]);
    val rewr_tac1 = apply_dep_rewrites_match_concl_tac prove_premise then_tac1;
    val then_tac2 = (fn th => FULL_SIMP_TAC simpLib.empty_ss [th]);
    val rewr_tac2 = apply_dep_rewrites_match_first_premise_tac prove_premise then_tac2;
  in
      MAP_EVERY rewr_tac1 integer_conversion_lemmas_list >>
      MAP_EVERY rewr_tac2 [NUM_SUB_1_EQ]
  end

(*
apply_dep_rewrites_match_first_premise_tac prove_premise then_tac NUM_SUB_1_EQ

sg ‘u32_to_int z = u32_to_int i − 1 /\ 0 ≤ u32_to_int z’ >- prove_premise

prove_premise_then_apply prove_premise

val thm = thm_to_conj_implies  (SPECL [“u32_to_int z”, “u32_to_int i”] NUM_SUB_1_EQ)

val h = “u32_to_int z = u32_to_int i − 1 ∧ 0 ≤ u32_to_int z”
*)

(* Massage a bit the goal, for instance by introducing integer bounds in the
   assumptions.
*)
val massage : tactic =
  assume_bounds_for_all_int_vars >>
  rewrite_with_dep_int_lemmas

(*
SIMP_CONV arith_ss [ADD] “1 + (x : num)”
SIMP_CONV list_ss [ADD, EL] “EL (Num (1+x)) (t::list_t_v ls)”

m “1 + x = SUC x”
*)

Theorem nth_lem:
  !(ls : 't list_t) (i : u32).
    u32_to_int i < int_of_num (LENGTH (list_t_v ls)) ==>
    case nth ls i of
    | Return x => x = EL (Num (u32_to_int i)) (list_t_v ls)
    | Fail _ => F
    | Loop => F
Proof
  Induct_on ‘ls’ >> fs [list_t_v_def, HD] >~ [‘ListNil’] >>
  rpt strip_tac >> massage >>
  PURE_ONCE_REWRITE_TAC [nth_def] >> rw [] >-(intLib.COOPER_TAC) >>
  (* TODO: we need specialized tactics here - first: subgoal *)
  sg ‘0 <= u32_to_int i - u32_to_int (int_to_u32 1) >-(
    massage >> COOPER_TAC
  ) >>
  (* TODO: automate (should be in a massage) *)
  imp_res_tac U32_SUB_EQ >> fs [st_ex_bind_def, list_t_v_def] >> rw [] >>
  massage >> fs [] >> rw [] >>
  (* TODO: automate this: we should be able to analyze the ‘nth ls z’,
     notice there is a quantified assumption in the context,
     and instantiate it properly.

     Remark: we can apply the resulting theorem only after rewriting it.
     Possibility:
     - do some default rewriting and try to apply it
     - if it fails, simply add it in the assumptions for the user
   *)
  pop_last_assum (qspec_then ‘z’ assume_tac) >> rfs [] >>
  pop_assum irule >>
  COOPER_TAC
QED

(***
 * Example of how to get rid of the fuel in practice
 *)
val nth_fuel_def = Define 
 nth_fuel (n : num) (ls : 't list_t) (i : u32) : 't result =
  case n of
  | 0 => Loop
  | SUC n => 
    do case ls of
    | ListCons x tl =>
      if u32_to_int i = (0:int)
      then Return x
      else
        do
        i0 <- u32_sub i (int_to_u32 1);
        nth_fuel n tl i0
        od
    | ListNil => 
      Fail Failure
    od
 

val is_loop_def = Define ‘is_loop r = case r of Loop => T | _ => F
 
val nth_fuel_P_def = Define 
  nth_fuel_P ls i n = ~is_loop (nth_fuel n ls i)


Theorem nth_fuel_mono:
  !n m ls i.
    n <= m ==>
    if is_loop (nth_fuel n ls i) then T
    else nth_fuel n ls i = nth_fuel m ls i
Proof
  Induct_on ‘n’ >- (
    rpt gen_tac >>
    DISCH_TAC >>
    PURE_ONCE_REWRITE_TAC [nth_fuel_def] >>
    rw[is_loop_def]
  ) >>
  (* Interesting case *)
  rpt gen_tac >>
  DISCH_TAC >>
  CASE_TAC >>
  Cases_on ‘m’ >- (
    (* Contradiction: SUC n < 0 *)
    sg ‘SUC n = 0 >- decide_tac >>
    fs [is_loop_def]
  ) >>
  fs [is_loop_def] >>
  pop_assum mp_tac >>
  PURE_ONCE_REWRITE_TAC [nth_fuel_def] >>
  fs [] >>
  DISCH_TAC >>
  (* We just have to explore all the paths: we can have dedicated tactics for that
     (we need to do case analysis) *)
  Cases_on ‘ls’ >> fs [] >>
  Cases_on ‘u32_to_int (i :u32) = (0 :int) >> fs [] >>
  fs [st_ex_bind_def] >>
  Cases_on ‘u32_sub (i :u32) (int_to_u32 (1 :int)) >> fs [] >>
  (* Apply the induction hypothesis *)
  first_x_assum (qspecl_then [‘n'’, ‘l’, ‘a’] assume_tac) >>
  first_x_assum imp_res_tac >>
  pop_assum mp_tac >>
  CASE_TAC
QED

Theorem nth_fuel_P_mono:
  !n m ls i.
    n <= m ==>
    nth_fuel_P ls i n ==>
    nth_fuel n ls i = nth_fuel m ls i
Proof
  rpt gen_tac >> rpt DISCH_TAC >>
  fs [nth_fuel_P_def] >>
  imp_res_tac nth_fuel_mono >>
  pop_assum (qspecl_then [‘ls’, ‘i’] assume_tac) >>
  pop_assum mp_tac >> CASE_TAC >> fs []
QED

Theorem nth_fuel_least_fail_mono:
  !n ls i.
    n < $LEAST (nth_fuel_P ls i) ==>
    nth_fuel n ls i = Loop
Proof
  rpt gen_tac >>
  disch_tac >>
  imp_res_tac whileTheory.LESS_LEAST >>
  fs [nth_fuel_P_def, is_loop_def] >>
  pop_assum mp_tac >>
  CASE_TAC
QED

Theorem nth_fuel_least_success_mono:
  !n ls i.
    $LEAST (nth_fuel_P ls i) <= n ==>
    nth_fuel n ls i = nth_fuel ($LEAST (nth_fuel_P ls i)) ls i
Proof
  rpt gen_tac >>
  disch_tac >>
  (* Case disjunction on whether there exists a fuel such that it terminates *)
  Cases_on ‘?m. nth_fuel_P ls i m >- (
    (* Terminates *)
    irule EQ_SYM >>
    irule nth_fuel_P_mono >> fs [] >>
    (* Prove that calling with the least upper bound of fuel succeeds *)    
    qspec_then ‘nth_fuel_P (ls :α list_t) (i :u32) imp_res_tac whileTheory.LEAST_EXISTS_IMP
  ) >>
  (* Doesn't terminate *)
  fs [] >>
  sg ‘~(nth_fuel_P ls i n) >- fs [] >>
  sg ‘~(nth_fuel_P ls i ($LEAST (nth_fuel_P ls i))) >- fs [] >>
  fs [nth_fuel_P_def, is_loop_def] >>
  pop_assum mp_tac >> CASE_TAC >>
  pop_assum mp_tac >>
  pop_assum mp_tac >> CASE_TAC
QED

val nth_def_raw = Define 
  nth ls i =
    if (?n. nth_fuel_P ls i n) then nth_fuel ($LEAST (nth_fuel_P ls i)) ls i
    else Loop


(* This makes the proofs easier, in that it helps us control the context *)
val nth_expand_def = Define 
  nth_expand nth ls i =
    case ls of
    | ListCons x tl =>
      if u32_to_int i = (0:int)
      then Return x
      else
        do
        i0 <- u32_sub i (int_to_u32 1);
        nth tl i0
        od
    | ListNil => 
      Fail Failure
             

(* Prove the important theorems *)
Theorem nth_def_terminates:
  !ls i.
  (?n. nth_fuel_P ls i n) ==>
  nth ls i =
    nth_expand nth ls i
Proof
  rpt strip_tac >>
  fs [nth_expand_def] >>
  PURE_ONCE_REWRITE_TAC [nth_def_raw] >>
  (* Prove that the least upper bound is <= n *)
  sg ‘$LEAST (nth_fuel_P ls i) <= n >-(
    qspec_then ‘nth_fuel_P (ls :α list_t) (i :u32) imp_res_tac whileTheory.LEAST_EXISTS_IMP >>
    spose_not_then assume_tac >> fs []
  ) >>
  (* Use the monotonicity theorem - TODO: ? *)
  imp_res_tac nth_fuel_least_success_mono >>
  (* Rewrite only on the left - TODO: easy way ?? *)
  qspecl_then [‘$LEAST (nth_fuel_P ls i)’, ‘ls’, ‘i’] assume_tac nth_fuel_def >>
  (* TODO: how to discard assumptions?? *)
  fs [] >> pop_assum (fn _ => fs []) >>
  (* Cases on the least upper bound *)
  Cases_on ‘$LEAST (nth_fuel_P ls i) >> rw [] >- (
    (* The bound is equal to 0: contradiction *)
    sg ‘nth_fuel 0 ls i = Loop >- (PURE_ONCE_REWRITE_TAC [nth_fuel_def] >> rw []) >>
    fs [nth_fuel_P_def, is_loop_def]
  ) >>
  (* Bound not equal to 0 *)
  fs [nth_fuel_P_def, is_loop_def] >>
  (* Explore all the paths *)
  fs [st_ex_bind_def] >>
  Cases_on ‘ls’ >> rw [] >> fs [] >>
  Cases_on ‘u32_sub i (int_to_u32 1) >> rw [] >> fs [] >>
  (* Recursive call: use monotonicity - we have an assumption which eliminates the Loop case *)
  Cases_on ‘nth_fuel n' l a >> rw [] >> fs [] >>
  (sg ‘nth_fuel_P l a n' >- fs [nth_fuel_P_def, is_loop_def]) >>
  (sg ‘$LEAST (nth_fuel_P l a) <= n' >-(
   qspec_then ‘nth_fuel_P l a imp_res_tac whileTheory.LEAST_EXISTS_IMP >>
   spose_not_then assume_tac >> fs [])) >>
  imp_res_tac nth_fuel_least_success_mono >> fs []
QED

(* Prove the important theorems *)
Theorem nth_def_loop:
  !ls i.
  (!n. ~nth_fuel_P ls i n) ==>
  nth ls i =
    nth_expand nth ls i
Proof
  rpt gen_tac >>
  PURE_ONCE_REWRITE_TAC [nth_def_raw] >>
  strip_tac >> rw[] >>
  (* Non-terminating case *)
  sg ‘∀n. ¬nth_fuel_P ls i (SUC n) >- rw [] >>
  fs [nth_fuel_P_def, is_loop_def] >>
  pop_assum mp_tac >>
  PURE_ONCE_REWRITE_TAC [nth_fuel_def] >>
  rw [] >>  
  fs [nth_expand_def] >>
  (* Evaluate all the paths *)
  fs [st_ex_bind_def] >>
  Cases_on ‘ls’ >> rw [] >> fs [] >>
  Cases_on ‘u32_sub i (int_to_u32 1) >> rw [] >> fs [] >>
  (* Use the definition of nth *)
  rw [nth_def_raw] >>
  first_x_assum (qspec_then ‘$LEAST (nth_fuel_P l a) assume_tac) >>
  Cases_on ‘nth_fuel ($LEAST (nth_fuel_P l a)) l a >> fs []
QED

(* The final theorem *)
Theorem nth_def:
  !ls i.
  nth ls i =
    case ls of
    | ListCons x tl =>
      if u32_to_int i = (0:int)
      then Return x
      else
        do
        i0 <- u32_sub i (int_to_u32 1);
        nth tl i0
        od
    | ListNil => 
      Fail Failure
Proof
  rpt strip_tac >>
  Cases_on ‘?n. nth_fuel_P ls i n >-(
    assume_tac nth_def_terminates >>
    fs [nth_expand_def] >>
    pop_assum irule >>
    metis_tac []) >>
  fs [] >> imp_res_tac nth_def_loop >> fs [nth_expand_def]
QED

(*

Je viens de finir ma petite expérimentation avec le fuel : ça marche bien. Par exemple, si je pose les définitions suivantes :
Datatype:
  result = Return 'a | Fail error | Loop
End

(* Omitting some definitions like the bind *)

val _ = Define ‘
 nth_fuel (n : num) (ls : 't list_t) (i : u32) : 't result =
  case n of
  | 0 => Loop
  | SUC n => 
    do case ls of
    | ListCons x tl =>
      if u32_to_int i = (0:int)
      then Return x
      else
        do
        i0 <- u32_sub i (int_to_u32 1);
        nth_fuel n tl i0
        od
    | ListNil => 
      Fail Failure
    od


val _ = Define 'is_loop r = case r of Loop => T | _ => F'
 
val _ = Define 'nth_fuel_P ls i n = ~is_loop (nth_fuel n ls i)'

(* $LEAST returns the least upper bound for a predicate (if it exists - otherwise it returns an arbitrary number) *)
val _ = Define ‘
  nth ls i =
    if (?n. nth_fuel_P ls i n) then nth_fuel ($LEAST (nth_fuel_P ls i)) ls i
    else Loop

J'arrive à montrer (c'est un chouïa technique) :
Theorem nth_def:
  !ls i.
  nth ls i =
    case ls of
    | ListCons x tl =>
      if u32_to_int i = (0:int)
      then Return x
      else
        do
        i0 <- u32_sub i (int_to_u32 1);
        nth tl i0
        od
    | ListNil => 
      Fail Failure

*)