1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
|
Require Import Lia.
Require Coq.Strings.Ascii.
Require Coq.Strings.String.
Require Import Coq.Program.Equality.
Require Import Coq.ZArith.ZArith.
Require Import Coq.ZArith.Znat.
Require Import List.
Import ListNotations.
Module Primitives.
(* TODO: use more *)
Declare Scope Primitives_scope.
(*** Result *)
Inductive error :=
| Failure
| OutOfFuel.
Inductive result A :=
| Return : A -> result A
| Fail_ : error -> result A.
Arguments Return {_} a.
Arguments Fail_ {_}.
Definition bind {A B} (m: result A) (f: A -> result B) : result B :=
match m with
| Fail_ e => Fail_ e
| Return x => f x
end.
Definition return_ {A: Type} (x: A) : result A := Return x.
Definition fail_ {A: Type} (e: error) : result A := Fail_ e.
Notation "x <- c1 ; c2" := (bind c1 (fun x => c2))
(at level 61, c1 at next level, right associativity).
(** Monadic assert *)
Definition massert (b: bool) : result unit :=
if b then Return tt else Fail_ Failure.
(** Normalize and unwrap a successful result (used for globals) *)
Definition eval_result_refl {A} {x} (a: result A) (p: a = Return x) : A :=
match a as r return (r = Return x -> A) with
| Return a' => fun _ => a'
| Fail_ e => fun p' =>
False_rect _ (eq_ind (Fail_ e)
(fun e : result A =>
match e with
| Return _ => False
| Fail_ e => True
end)
I (Return x) p')
end p.
Notation "x %global" := (eval_result_refl x eq_refl) (at level 40).
Notation "x %return" := (eval_result_refl x eq_refl) (at level 40).
(* Sanity check *)
Check (if true then Return (1 + 2) else Fail_ Failure)%global = 3.
(*** Misc *)
Definition string := Coq.Strings.String.string.
Definition char := Coq.Strings.Ascii.ascii.
Definition char_of_byte := Coq.Strings.Ascii.ascii_of_byte.
Definition mem_replace_fwd (a : Type) (x : a) (y : a) : a := x .
Definition mem_replace_back (a : Type) (x : a) (y : a) : a := y .
(*** Scalars *)
Definition i8_min : Z := -128%Z.
Definition i8_max : Z := 127%Z.
Definition i16_min : Z := -32768%Z.
Definition i16_max : Z := 32767%Z.
Definition i32_min : Z := -2147483648%Z.
Definition i32_max : Z := 2147483647%Z.
Definition i64_min : Z := -9223372036854775808%Z.
Definition i64_max : Z := 9223372036854775807%Z.
Definition i128_min : Z := -170141183460469231731687303715884105728%Z.
Definition i128_max : Z := 170141183460469231731687303715884105727%Z.
Definition u8_min : Z := 0%Z.
Definition u8_max : Z := 255%Z.
Definition u16_min : Z := 0%Z.
Definition u16_max : Z := 65535%Z.
Definition u32_min : Z := 0%Z.
Definition u32_max : Z := 4294967295%Z.
Definition u64_min : Z := 0%Z.
Definition u64_max : Z := 18446744073709551615%Z.
Definition u128_min : Z := 0%Z.
Definition u128_max : Z := 340282366920938463463374607431768211455%Z.
(** The bounds of [isize] and [usize] vary with the architecture. *)
Axiom isize_min : Z.
Axiom isize_max : Z.
Definition usize_min : Z := 0%Z.
Axiom usize_max : Z.
Open Scope Z_scope.
(** We provide those lemmas to reason about the bounds of [isize] and [usize] *)
Axiom isize_min_bound : isize_min <= i32_min.
Axiom isize_max_bound : i32_max <= isize_max.
Axiom usize_max_bound : u32_max <= usize_max.
Inductive scalar_ty :=
| Isize
| I8
| I16
| I32
| I64
| I128
| Usize
| U8
| U16
| U32
| U64
| U128
.
Definition scalar_min (ty: scalar_ty) : Z :=
match ty with
| Isize => isize_min
| I8 => i8_min
| I16 => i16_min
| I32 => i32_min
| I64 => i64_min
| I128 => i128_min
| Usize => usize_min
| U8 => u8_min
| U16 => u16_min
| U32 => u32_min
| U64 => u64_min
| U128 => u128_min
end.
Definition scalar_max (ty: scalar_ty) : Z :=
match ty with
| Isize => isize_max
| I8 => i8_max
| I16 => i16_max
| I32 => i32_max
| I64 => i64_max
| I128 => i128_max
| Usize => usize_max
| U8 => u8_max
| U16 => u16_max
| U32 => u32_max
| U64 => u64_max
| U128 => u128_max
end.
(** We use the following conservative bounds to make sure we can compute bound
checks in most situations *)
Definition scalar_min_cons (ty: scalar_ty) : Z :=
match ty with
| Isize => i32_min
| Usize => u32_min
| _ => scalar_min ty
end.
Definition scalar_max_cons (ty: scalar_ty) : Z :=
match ty with
| Isize => i32_max
| Usize => u32_max
| _ => scalar_max ty
end.
Lemma scalar_min_cons_valid : forall ty, scalar_min ty <= scalar_min_cons ty .
Proof.
destruct ty; unfold scalar_min_cons, scalar_min; try lia.
- pose isize_min_bound; lia.
- apply Z.le_refl.
Qed.
Lemma scalar_max_cons_valid : forall ty, scalar_max ty >= scalar_max_cons ty .
Proof.
destruct ty; unfold scalar_max_cons, scalar_max; try lia.
- pose isize_max_bound; lia.
- pose usize_max_bound. lia.
Qed.
Definition scalar (ty: scalar_ty) : Type :=
{ x: Z | scalar_min ty <= x <= scalar_max ty }.
Definition to_Z {ty} (x: scalar ty) : Z := proj1_sig x.
(** Bounds checks: we start by using the conservative bounds, to make sure we
can compute in most situations, then we use the real bounds (for [isize]
and [usize]). *)
Definition scalar_ge_min (ty: scalar_ty) (x: Z) : bool :=
Z.leb (scalar_min_cons ty) x || Z.leb (scalar_min ty) x.
Definition scalar_le_max (ty: scalar_ty) (x: Z) : bool :=
Z.leb x (scalar_max_cons ty) || Z.leb x (scalar_max ty).
Lemma scalar_ge_min_valid (ty: scalar_ty) (x: Z) :
scalar_ge_min ty x = true -> scalar_min ty <= x .
Proof.
unfold scalar_ge_min.
pose (scalar_min_cons_valid ty).
lia.
Qed.
Lemma scalar_le_max_valid (ty: scalar_ty) (x: Z) :
scalar_le_max ty x = true -> x <= scalar_max ty .
Proof.
unfold scalar_le_max.
pose (scalar_max_cons_valid ty).
lia.
Qed.
Definition scalar_in_bounds (ty: scalar_ty) (x: Z) : bool :=
scalar_ge_min ty x && scalar_le_max ty x .
Lemma scalar_in_bounds_valid (ty: scalar_ty) (x: Z) :
scalar_in_bounds ty x = true -> scalar_min ty <= x <= scalar_max ty .
Proof.
unfold scalar_in_bounds.
intros H.
destruct (scalar_ge_min ty x) eqn:Hmin.
- destruct (scalar_le_max ty x) eqn:Hmax.
+ pose (scalar_ge_min_valid ty x Hmin).
pose (scalar_le_max_valid ty x Hmax).
lia.
+ inversion H.
- inversion H.
Qed.
Import Sumbool.
Definition mk_scalar (ty: scalar_ty) (x: Z) : result (scalar ty) :=
match sumbool_of_bool (scalar_in_bounds ty x) with
| left H => Return (exist _ x (scalar_in_bounds_valid _ _ H))
| right _ => Fail_ Failure
end.
Definition scalar_add {ty} (x y: scalar ty) : result (scalar ty) := mk_scalar ty (to_Z x + to_Z y).
Definition scalar_sub {ty} (x y: scalar ty) : result (scalar ty) := mk_scalar ty (to_Z x - to_Z y).
Definition scalar_mul {ty} (x y: scalar ty) : result (scalar ty) := mk_scalar ty (to_Z x * to_Z y).
Definition scalar_div {ty} (x y: scalar ty) : result (scalar ty) :=
if to_Z y =? 0 then Fail_ Failure else
mk_scalar ty (to_Z x / to_Z y).
Definition scalar_rem {ty} (x y: scalar ty) : result (scalar ty) := mk_scalar ty (Z.rem (to_Z x) (to_Z y)).
Definition scalar_neg {ty} (x: scalar ty) : result (scalar ty) := mk_scalar ty (-(to_Z x)).
(** Cast an integer from a [src_ty] to a [tgt_ty] *)
(* TODO: check the semantics of casts in Rust *)
Definition scalar_cast (src_ty tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) :=
mk_scalar tgt_ty (to_Z x).
(** Comparisons *)
Definition scalar_leb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
Z.leb (to_Z x) (to_Z y) .
Definition scalar_ltb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
Z.ltb (to_Z x) (to_Z y) .
Definition scalar_geb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
Z.geb (to_Z x) (to_Z y) .
Definition scalar_gtb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
Z.gtb (to_Z x) (to_Z y) .
Definition scalar_eqb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
Z.eqb (to_Z x) (to_Z y) .
Definition scalar_neqb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
negb (Z.eqb (to_Z x) (to_Z y)) .
(** The scalar types *)
Definition isize := scalar Isize.
Definition i8 := scalar I8.
Definition i16 := scalar I16.
Definition i32 := scalar I32.
Definition i64 := scalar I64.
Definition i128 := scalar I128.
Definition usize := scalar Usize.
Definition u8 := scalar U8.
Definition u16 := scalar U16.
Definition u32 := scalar U32.
Definition u64 := scalar U64.
Definition u128 := scalar U128.
(** Negaion *)
Definition isize_neg := @scalar_neg Isize.
Definition i8_neg := @scalar_neg I8.
Definition i16_neg := @scalar_neg I16.
Definition i32_neg := @scalar_neg I32.
Definition i64_neg := @scalar_neg I64.
Definition i128_neg := @scalar_neg I128.
(** Division *)
Definition isize_div := @scalar_div Isize.
Definition i8_div := @scalar_div I8.
Definition i16_div := @scalar_div I16.
Definition i32_div := @scalar_div I32.
Definition i64_div := @scalar_div I64.
Definition i128_div := @scalar_div I128.
Definition usize_div := @scalar_div Usize.
Definition u8_div := @scalar_div U8.
Definition u16_div := @scalar_div U16.
Definition u32_div := @scalar_div U32.
Definition u64_div := @scalar_div U64.
Definition u128_div := @scalar_div U128.
(** Remainder *)
Definition isize_rem := @scalar_rem Isize.
Definition i8_rem := @scalar_rem I8.
Definition i16_rem := @scalar_rem I16.
Definition i32_rem := @scalar_rem I32.
Definition i64_rem := @scalar_rem I64.
Definition i128_rem := @scalar_rem I128.
Definition usize_rem := @scalar_rem Usize.
Definition u8_rem := @scalar_rem U8.
Definition u16_rem := @scalar_rem U16.
Definition u32_rem := @scalar_rem U32.
Definition u64_rem := @scalar_rem U64.
Definition u128_rem := @scalar_rem U128.
(** Addition *)
Definition isize_add := @scalar_add Isize.
Definition i8_add := @scalar_add I8.
Definition i16_add := @scalar_add I16.
Definition i32_add := @scalar_add I32.
Definition i64_add := @scalar_add I64.
Definition i128_add := @scalar_add I128.
Definition usize_add := @scalar_add Usize.
Definition u8_add := @scalar_add U8.
Definition u16_add := @scalar_add U16.
Definition u32_add := @scalar_add U32.
Definition u64_add := @scalar_add U64.
Definition u128_add := @scalar_add U128.
(** Substraction *)
Definition isize_sub := @scalar_sub Isize.
Definition i8_sub := @scalar_sub I8.
Definition i16_sub := @scalar_sub I16.
Definition i32_sub := @scalar_sub I32.
Definition i64_sub := @scalar_sub I64.
Definition i128_sub := @scalar_sub I128.
Definition usize_sub := @scalar_sub Usize.
Definition u8_sub := @scalar_sub U8.
Definition u16_sub := @scalar_sub U16.
Definition u32_sub := @scalar_sub U32.
Definition u64_sub := @scalar_sub U64.
Definition u128_sub := @scalar_sub U128.
(** Multiplication *)
Definition isize_mul := @scalar_mul Isize.
Definition i8_mul := @scalar_mul I8.
Definition i16_mul := @scalar_mul I16.
Definition i32_mul := @scalar_mul I32.
Definition i64_mul := @scalar_mul I64.
Definition i128_mul := @scalar_mul I128.
Definition usize_mul := @scalar_mul Usize.
Definition u8_mul := @scalar_mul U8.
Definition u16_mul := @scalar_mul U16.
Definition u32_mul := @scalar_mul U32.
Definition u64_mul := @scalar_mul U64.
Definition u128_mul := @scalar_mul U128.
(** Small utility *)
Definition usize_to_nat (x: usize) : nat := Z.to_nat (to_Z x).
(** Notations *)
Notation "x %isize" := ((mk_scalar Isize x)%return) (at level 9).
Notation "x %i8" := ((mk_scalar I8 x)%return) (at level 9).
Notation "x %i16" := ((mk_scalar I16 x)%return) (at level 9).
Notation "x %i32" := ((mk_scalar I32 x)%return) (at level 9).
Notation "x %i64" := ((mk_scalar I64 x)%return) (at level 9).
Notation "x %i128" := ((mk_scalar I128 x)%return) (at level 9).
Notation "x %usize" := ((mk_scalar Usize x)%return) (at level 9).
Notation "x %u8" := ((mk_scalar U8 x)%return) (at level 9).
Notation "x %u16" := ((mk_scalar U16 x)%return) (at level 9).
Notation "x %u32" := ((mk_scalar U32 x)%return) (at level 9).
Notation "x %u64" := ((mk_scalar U64 x)%return) (at level 9).
Notation "x %u128" := ((mk_scalar U128 x)%return) (at level 9).
Notation "x s= y" := (scalar_eqb x y) (at level 80) : Primitives_scope.
Notation "x s<> y" := (scalar_neqb x y) (at level 80) : Primitives_scope.
Notation "x s<= y" := (scalar_leb x y) (at level 80) : Primitives_scope.
Notation "x s< y" := (scalar_ltb x y) (at level 80) : Primitives_scope.
Notation "x s>= y" := (scalar_geb x y) (at level 80) : Primitives_scope.
Notation "x s> y" := (scalar_gtb x y) (at level 80) : Primitives_scope.
(** Constants *)
Definition core_u8_max := u8_max %u32.
Definition core_u16_max := u16_max %u32.
Definition core_u32_max := u32_max %u32.
Definition core_u64_max := u64_max %u64.
Definition core_u128_max := u64_max %u128.
Axiom core_usize_max : usize. (** TODO *)
Definition core_i8_max := i8_max %i32.
Definition core_i16_max := i16_max %i32.
Definition core_i32_max := i32_max %i32.
Definition core_i64_max := i64_max %i64.
Definition core_i128_max := i64_max %i128.
Axiom core_isize_max : isize. (** TODO *)
(*** Range *)
Record range (T : Type) := mk_range {
start: T;
end_: T;
}.
Arguments mk_range {_}.
(*** Arrays *)
Definition array T (n : usize) := { l: list T | Z.of_nat (length l) = to_Z n}.
Lemma le_0_usize_max : 0 <= usize_max.
Proof.
pose (H := usize_max_bound).
unfold u32_max in H.
lia.
Qed.
Lemma eqb_imp_eq (x y : Z) : Z.eqb x y = true -> x = y.
Proof.
lia.
Qed.
(* TODO: finish the definitions *)
Axiom mk_array : forall (T : Type) (n : usize) (l : list T), array T n.
(* For initialization *)
Axiom array_repeat : forall {T : Type} (n : usize) (x : T), array T n.
Axiom array_index_shared : forall (T : Type) (n : usize) (x : array T n) (i : usize), result T.
Axiom array_index_mut_fwd : forall (T : Type) (n : usize) (x : array T n) (i : usize), result T.
Axiom array_index_mut_back : forall (T : Type) (n : usize) (x : array T n) (i : usize) (nx : T), result (array T n).
(*** Slice *)
Definition slice T := { l: list T | Z.of_nat (length l) <= usize_max}.
Axiom slice_len : forall (T : Type) (s : slice T), usize.
Axiom slice_index_shared : forall (T : Type) (x : slice T) (i : usize), result T.
Axiom slice_index_mut_fwd : forall (T : Type) (x : slice T) (i : usize), result T.
Axiom slice_index_mut_back : forall (T : Type) (x : slice T) (i : usize) (nx : T), result (slice T).
(*** Subslices *)
Axiom array_to_slice_shared : forall (T : Type) (n : usize) (x : array T n), result (slice T).
Axiom array_to_slice_mut_fwd : forall (T : Type) (n : usize) (x : array T n), result (slice T).
Axiom array_to_slice_mut_back : forall (T : Type) (n : usize) (x : array T n) (s : slice T), result (array T n).
Axiom array_subslice_shared: forall (T : Type) (n : usize) (x : array T n) (r : range usize), result (slice T).
Axiom array_subslice_mut_fwd: forall (T : Type) (n : usize) (x : array T n) (r : range usize), result (slice T).
Axiom array_subslice_mut_back: forall (T : Type) (n : usize) (x : array T n) (r : range usize) (ns : slice T), result (array T n).
Axiom slice_subslice_shared: forall (T : Type) (x : slice T) (r : range usize), result (slice T).
Axiom slice_subslice_mut_fwd: forall (T : Type) (x : slice T) (r : range usize), result (slice T).
Axiom slice_subslice_mut_back: forall (T : Type) (x : slice T) (r : range usize) (ns : slice T), result (slice T).
(*** Vectors *)
Definition vec T := { l: list T | Z.of_nat (length l) <= usize_max }.
Definition vec_to_list {T: Type} (v: vec T) : list T := proj1_sig v.
Definition vec_length {T: Type} (v: vec T) : Z := Z.of_nat (length (vec_to_list v)).
Definition vec_new (T: Type) : vec T := (exist _ [] le_0_usize_max).
Lemma vec_len_in_usize {T} (v: vec T) : usize_min <= vec_length v <= usize_max.
Proof.
unfold vec_length, usize_min.
split.
- lia.
- apply (proj2_sig v).
Qed.
Definition vec_len (T: Type) (v: vec T) : usize :=
exist _ (vec_length v) (vec_len_in_usize v).
Fixpoint list_update {A} (l: list A) (n: nat) (a: A)
: list A :=
match l with
| [] => []
| x :: t => match n with
| 0%nat => a :: t
| S m => x :: (list_update t m a)
end end.
Definition vec_bind {A B} (v: vec A) (f: list A -> result (list B)) : result (vec B) :=
l <- f (vec_to_list v) ;
match sumbool_of_bool (scalar_le_max Usize (Z.of_nat (length l))) with
| left H => Return (exist _ l (scalar_le_max_valid _ _ H))
| right _ => Fail_ Failure
end.
(* The **forward** function shouldn't be used *)
Definition vec_push_fwd (T: Type) (v: vec T) (x: T) : unit := tt.
Definition vec_push_back (T: Type) (v: vec T) (x: T) : result (vec T) :=
vec_bind v (fun l => Return (l ++ [x])).
(* The **forward** function shouldn't be used *)
Definition vec_insert_fwd (T: Type) (v: vec T) (i: usize) (x: T) : result unit :=
if to_Z i <? vec_length v then Return tt else Fail_ Failure.
Definition vec_insert_back (T: Type) (v: vec T) (i: usize) (x: T) : result (vec T) :=
vec_bind v (fun l =>
if to_Z i <? Z.of_nat (length l)
then Return (list_update l (usize_to_nat i) x)
else Fail_ Failure).
(* The **backward** function shouldn't be used *)
Definition vec_index_fwd (T: Type) (v: vec T) (i: usize) : result T :=
match nth_error (vec_to_list v) (usize_to_nat i) with
| Some n => Return n
| None => Fail_ Failure
end.
Definition vec_index_back (T: Type) (v: vec T) (i: usize) (x: T) : result unit :=
if to_Z i <? vec_length v then Return tt else Fail_ Failure.
(* The **backward** function shouldn't be used *)
Definition vec_index_mut_fwd (T: Type) (v: vec T) (i: usize) : result T :=
match nth_error (vec_to_list v) (usize_to_nat i) with
| Some n => Return n
| None => Fail_ Failure
end.
Definition vec_index_mut_back (T: Type) (v: vec T) (i: usize) (x: T) : result (vec T) :=
vec_bind v (fun l =>
if to_Z i <? Z.of_nat (length l)
then Return (list_update l (usize_to_nat i) x)
else Fail_ Failure).
End Primitives.
|