diff options
Diffstat (limited to 'tests')
-rw-r--r-- | tests/hashmap/Hashmap.Properties.fst | 234 |
1 files changed, 46 insertions, 188 deletions
diff --git a/tests/hashmap/Hashmap.Properties.fst b/tests/hashmap/Hashmap.Properties.fst index 7436ec5f..e7236189 100644 --- a/tests/hashmap/Hashmap.Properties.fst +++ b/tests/hashmap/Hashmap.Properties.fst @@ -287,19 +287,23 @@ let list_t_index (#t : Type0) (ls : list_t t) (i : nat{i < list_t_len ls}) : bin let slots_t_v (#t : Type0) (slots : slots_t t) : assoc_list t = flatten (map list_t_v slots) +// TODO: use more +type slot_s (t : Type0) = list (binding t) +type slots_s (t : Type0) = list (slot_s t) + /// High-level type for the hash-map, seen as a list of associative lists (one /// list per slot) -type hash_map_slots t = list (assoc_list t) +type hash_map_slots t = list (slot_s t) /// High-level type for the hash-map, seen as a an associative list -type hash_map t = assoc_list t +type hash_map_s t = assoc_list t /// Representation function for [hash_map_t] as a list of slots let hash_map_t_slots_v (#t : Type0) (hm : hash_map_t t) : hash_map_slots t = map list_t_v hm.hash_map_slots /// Representation function for [hash_map_t] -let hash_map_t_v (#t : Type0) (hm : hash_map_t t) : hash_map t = +let hash_map_t_v (#t : Type0) (hm : hash_map_t t) : hash_map_s t = flatten (hash_map_t_slots_v hm) let hash_key (k : key) : hash = @@ -466,10 +470,6 @@ let slot_t_inv_from_funs_lem () *) -// TODO: use more -type slot_s (t : Type0) = list (binding t) -type slots_s (t : Type0) = list (slot_s t) - let slots_inv (#t : Type0) (slots : slots_s t{length slots <= usize_max}) : Type0 = forall(i:nat{i < length slots}). {:pattern index slots i} @@ -553,8 +553,7 @@ let hash_map_t_inv_repr (#t : Type0) (hm : hash_map_t t) (al : assoc_list t) : T hash_map_t_is_al hm al *) -(*** Proofs *) -(**** allocate_slots *) +(*** allocate_slots *) /// Auxiliary lemma val slots_t_all_nil_inv_lem @@ -624,7 +623,7 @@ let rec hash_map_allocate_slots_fwd_lem t slots n = end #pop-options -(**** new_with_capacity *) +(*** new_with_capacity *) /// Under proper conditions, [new_with_capacity] doesn't fail and returns an empty hash map. val hash_map_new_with_capacity_fwd_lem (t : Type0) (capacity : usize) @@ -671,7 +670,7 @@ let hash_map_new_with_capacity_fwd_lem (t : Type0) (capacity : usize) end #pop-options -(**** new *) +(*** new *) /// [new] doesn't fail and returns an empty hash map val hash_map_new_fwd_lem_fun (t : Type0) : Lemma @@ -695,7 +694,7 @@ let hash_map_new_fwd_lem_fun t = slots_t_v_all_nil_is_empty_lem hm.hash_map_slots #pop-options -(**** clear_slots *) +(*** clear_slots *) /// [clear_slots] doesn't fail and simply clears the slots starting at index i #push-options "--fuel 1" let rec hash_map_clear_slots_fwd_back_lem @@ -736,7 +735,7 @@ let rec hash_map_clear_slots_fwd_back_lem else () #pop-options -(**** clear *) +(*** clear *) /// [clear] doesn't fail and turns the hash map into an empty map val hash_map_clear_fwd_back_lem_fun (t : Type0) (self : hash_map_t t) : @@ -771,7 +770,7 @@ let hash_map_clear_fwd_back_lem_fun t self = end #pop-options -(**** len *) +(*** len *) /// [len]: we link it to a non-failing function. /// Rk.: we might want to make an analysis to not use an error monad to translate @@ -785,9 +784,9 @@ val hash_map_len_fwd_lem (t : Type0) (self : hash_map_t t) : let hash_map_len_fwd_lem t self = () -(**** insert_in_list *) +(*** insert_in_list *) -(***** insert_in_list'fwd *) +(**** insert_in_list'fwd *) /// [insert_in_list_fwd]: returns true iff the key is not in the list (functional version) val hash_map_insert_in_list_fwd_lem @@ -820,7 +819,7 @@ let rec hash_map_insert_in_list_fwd_lem t key value ls = end #pop-options -(***** insert_in_list'back *) +(**** insert_in_list'back *) /// The proofs about [insert_in_list] backward are easier to do in several steps: /// extrinsic proofs to the rescue! @@ -919,7 +918,7 @@ let hash_map_insert_in_list_back_lem_s t key value ls = | None -> hash_map_insert_in_list_back_lem_append_s t key value ls | Some _ -> hash_map_insert_in_list_back_lem_update_s t key value ls -(***** Invariants of insert_in_list_s *) +(**** Invariants of insert_in_list_s *) /// Auxiliary lemmas /// We work on [hash_map_insert_in_list_s], the "high-level" version of [insert_in_list'back]. @@ -1199,9 +1198,9 @@ let hash_map_insert_in_list_back_lem t len key value ls = hash_map_insert_in_list_back_lem_s t key value ls; hash_map_insert_in_list_s_lem t len key value (list_t_v ls) -(**** insert_no_resize *) +(*** insert_no_resize *) -(***** Refinement proof *) +(**** Refinement proof *) /// Same strategy as for [insert_in_list]: we introduce a high-level version of /// the function, and reason about it. /// We work on [hash_map_slots] (we use a higher-level view of the hash-map, but @@ -1314,7 +1313,7 @@ let hash_map_insert_no_resize_fwd_back_lem t self key value = end end -(***** find after insert *) +(**** find after insert *) /// Lemmas about what happens if we call [find] after an insertion val hash_map_insert_no_resize_s_get_same_lem @@ -1367,173 +1366,32 @@ let hash_map_insert_no_resize_s_get_diff_lem #t hm key value key' = end end -(* -/// We also do a disjunction over the cases - -/// [insert_no_resize]: if the key is not in the map, we insert a new binding -val hash_map_insert_no_resize_fwd_back_lem_insert - (t : Type0) (self : hash_map_t t) (key : usize) (value : t) : - Lemma - (requires ( - hash_map_t_inv self /\ - // The key is not in the map - None? (hash_map_t_find_s self key))) - (ensures ( - match hash_map_insert_no_resize_fwd_back t self key value with - | Fail -> False // Can't fail - | Return hm -> - // The invariant is preserved - hash_map_t_inv hm /\ - // The number of elements is the same - hash_map_t_len_s hm = hash_map_t_len_s self /\ - // The map has been updated with the new binding - (hash_map_t_find_s self key == Some value) /\ - // The other bindings are left unchanged - hash_map_t_v hm == find_update (same_key key) (hash_map_t_v self) (key,value))) - -/// The following function captures the "essence" of what [insert_no_resize] does -let hash_map_t_insert_no_resize - (#t : Type0) (hm : hash_map_t t) (key : usize) (value : t) : - result hash_map_t t - // Check if we need to add an element but reached saturation - if None? (hash_map_t_find_s self key) && hash_map_t_len_s self = usize_max then Fail - else - // We didn't saturate: we can insert the element - match hash_map_insert_no_resize_fwd_back_lem_insert with - | Fail -> Fail // Shouldn't get there, but taken care of by proofs below - | - - match hash_map_t_find_s self key with - | None -> - hash_map_t_len_s self = usize_max - - None? (hash_map_t_find_s self key) /\ - hash_map_t_len_s self = usize_max - -/// [insert_no_resize]: we prove a simple "functional" version of what happens, -/// to simplify further reasoning. -val hash_map_insert_no_resize_fwd_back_lem_fun - (t : Type0) (self : hash_map_t t) (key : usize) (value : t) : - Lemma - (ensures ( - match hash_map_insert_no_resize_fwd_back t self key value with - | Fail -> - // It can fail only if the key is not in the map, and we reached saturation - None? (hash_map_t_find_s self key) /\ - hash_map_t_len_s self = usize_max - | Return hm -> - // If we succeeded, we simply updated the proper slot - let len = - let i = hash_mod_key key - let slots' = - // The invariant is preserved - hash_map_t_inv hm /\ - // The map has been updated - hash_map_t_v hm == find_update (same_key key) (hash_map_t_v self) (key,value))) +(*** remove_elements_from_list *) -/// [insert_no_resize]: if the key is in the map, we succeed and update the binding. -val hash_map_insert_no_resize_fwd_back_lem_update - (t : Type0) (self : hash_map_t t) (key : usize) (value : t) : - Lemma - (requires ( - hash_map_t_inv self /\ - // The key is in the map - Some? (find (same_key key) (hash_map_t_v self)))) - (ensures ( - match hash_map_insert_no_resize_fwd_back t self key value with - | Fail -> False +type hash_map_slots_res (t : Type0) = res:result (hash_map_slots t){ + match res with + | Fail -> True | Return hm -> - // The invariant is preserved - hash_map_t_inv hm /\ - // The map has been updated - hash_map_t_v hm == find_update (same_key key) (hash_map_t_v self) (key,value))) - - -(* -(**** insert_no_resize *) - -/// Same as for [insert_in_list]: we do the proofs in several, modular steps. -/// The strategy is to study the two disjoint cases: -/// - the key is already in the map (we update the binding) -/// - the key is not in the map (we add a binding) -/// -/// We gradually prove that the resulting map, in the two cases, can be seen -/// as the result of: -/// - filtering the bindings for the key we want to insert -/// - pushing the new binding at the front -/// -/// We then prove a less "functional" variant of the result, which states that, -/// after the insertion: -/// - [key] maps to [value] -/// - forall key' <> key, the binding is unchanged -/// -/// This way, we have a consistent, high-level description of the insertion. -/// -/// Rk.: with multimaps the high-level spec would be even simpler: we would push -/// an element to the front of the list. - -/// [insert_no_resize]: if the key is in the map, we succeed and update the binding. -val hash_map_insert_no_resize_fwd_back_lem_update - (t : Type0) (self : hash_map_t t) (key : usize) (value : t) : - Lemma - (requires ( - hash_map_t_inv self /\ - // The key is in the map - Some? (find (same_key key) (hash_map_t_v self)))) - (ensures ( - match hash_map_insert_no_resize_fwd_back t self key value with - | Fail -> False + length hm <= usize_max /\ + length hm > 0 + } + +let hash_map_move_elements_from_list_s + (t : Type0) (hm : hash_map_slots t{length hm <= usize_max /\ length hm > 0}) + (ls : slot t) : + Pure (result (hash_map_slots t)) + (requires True) + (ensures (fun res -> + match res with + | Fail -> True + | Return hm' -> length hm' = length hm)) = + let add_elem (hm_res : result hash_map_slots t) (value,key) : + Pure (res= + match hm_res with + | Fail -> Fail | Return hm -> - // The invariant is preserved - hash_map_t_inv hm /\ - // The map has been updated - hash_map_t_v hm == find_update (same_key key) (hash_map_t_v self) (key,value))) - -let hash_map_insert_no_resize_fwd_back_lem_update t self key value = - begin match hash_key_fwd key with - | Fail -> () - | Return i -> - let i0 = self.hash_map_num_entries in - let p = self.hash_map_max_load_factor in - let i1 = self.hash_map_max_load in - let v = self.hash_map_slots in - let i2 = vec_len (list_t t) v in - begin match usize_rem i i2 with - | Fail -> () - | Return hash_mod -> - begin match vec_index_mut_fwd (list_t t) v hash_mod with - | Fail -> () - | Return l -> - // The key must be in the slot - TODO: update invariant - assume(Some? (find (same_key key) (list_t_v l))); - hash_map_insert_in_list_fwd_lem t key value l; - begin match hash_map_insert_in_list_fwd t key value l with - | Fail -> () - | Return b -> - assert(not b); - if b then assert(False) - else - begin - hash_map_insert_in_list_back_lem_update t key value l; - match hash_map_insert_in_list_back t key value l with - | Fail -> () - | Return l0 -> - begin - match vec_index_mut_back (list_t t) v hash_mod l0 with - | Fail -> () - | Return v0 -> - let hm1 = Mkhash_map_t i0 p i1 v0 in - assume(hash_map_t_inv hm1); - assume(hash_map_t_v hm1 == find_update (same_key key) (hash_map_t_v self) (key,value)) - end - end - end - end - end - end - - -/// [insert_in_list]: inserting a binding is equivalent to: -/// - filtering the list -/// - pushing the binding to the front - + hash_map_insert_no_resize_s hm + fold_left (fun hm_res (value,key) -> + match ls with + | [] -> Return hm + | |