diff options
Diffstat (limited to 'tests')
-rw-r--r-- | tests/lean/Hashmap/Properties.lean | 70 |
1 files changed, 34 insertions, 36 deletions
diff --git a/tests/lean/Hashmap/Properties.lean b/tests/lean/Hashmap/Properties.lean index 5be778e7..a2fa0d7d 100644 --- a/tests/lean/Hashmap/Properties.lean +++ b/tests/lean/Hashmap/Properties.lean @@ -9,7 +9,7 @@ namespace List -- TODO: rewrite rule: match x == y with ... -> if x = y then ... else ... ? (actually doesn't work because of sugar) -- TODO: move? @[simp] -def lookup' {α : Type} (ls: _root_.List (Usize × α)) (key: Usize) : Option α := +def lookup' {α : Type} (ls: List (Usize × α)) (key: Usize) : Option α := match ls with | [] => none | (k, x) :: tl => if k = key then some x else lookup' tl key @@ -18,29 +18,27 @@ end List namespace hashmap -namespace List +namespace AList -def v {α : Type} (ls: List α) : _root_.List (Usize × α) := +def v {α : Type} (ls: AList α) : List (Usize × α) := match ls with | Nil => [] | Cons k x tl => (k, x) :: v tl -@[simp] theorem v_nil (α : Type) : (Nil : List α).v = [] := by rfl -@[simp] theorem v_cons {α : Type} k x (tl: List α) : (Cons k x tl).v = (k, x) :: v tl := by rfl +@[simp] theorem v_nil (α : Type) : (Nil : AList α).v = [] := by rfl +@[simp] theorem v_cons {α : Type} k x (tl: AList α) : (Cons k x tl).v = (k, x) :: v tl := by rfl @[simp] -abbrev lookup {α : Type} (ls: List α) (key: Usize) : Option α := +abbrev lookup {α : Type} (ls: AList α) (key: Usize) : Option α := ls.v.lookup' key @[simp] -abbrev len {α : Type} (ls : List α) : Int := ls.v.len +abbrev len {α : Type} (ls : AList α) : Int := ls.v.len -end List +end AList namespace HashMap -abbrev Core.List := _root_.List - namespace List end List @@ -55,7 +53,7 @@ theorem match_lawful_beq [BEq α] [LawfulBEq α] [DecidableEq α] (x y : α) : (x == y) = (if x = y then true else false) := by split <;> simp_all -def distinct_keys (ls : Core.List (Usize × α)) := ls.pairwise_rel (λ x y => x.fst ≠ y.fst) +def distinct_keys (ls : List (Usize × α)) := ls.pairwise_rel (λ x y => x.fst ≠ y.fst) def hash_mod_key (k : Usize) (l : Int) : Int := match hash_key k with @@ -66,33 +64,33 @@ def hash_mod_key (k : Usize) (l : Int) : Int := theorem hash_mod_key_eq : hash_mod_key k l = k.val % l := by simp [hash_mod_key, hash_key] -def slot_s_inv_hash (l i : Int) (ls : Core.List (Usize × α)) : Prop := +def slot_s_inv_hash (l i : Int) (ls : List (Usize × α)) : Prop := ls.allP (λ (k, _) => hash_mod_key k l = i) @[simp] -def slot_s_inv (l i : Int) (ls : Core.List (Usize × α)) : Prop := +def slot_s_inv (l i : Int) (ls : List (Usize × α)) : Prop := distinct_keys ls ∧ slot_s_inv_hash l i ls -def slot_t_inv (l i : Int) (s : List α) : Prop := slot_s_inv l i s.v +def slot_t_inv (l i : Int) (s : AList α) : Prop := slot_s_inv l i s.v -- Interpret the hashmap as a list of lists -def v (hm : HashMap α) : Core.List (Core.List (Usize × α)) := - hm.slots.val.map List.v +def v (hm : HashMap α) : List (List (Usize × α)) := + hm.slots.val.map AList.v -- Interpret the hashmap as an associative list -def al_v (hm : HashMap α) : Core.List (Usize × α) := +def al_v (hm : HashMap α) : List (Usize × α) := hm.v.flatten -- TODO: automatic derivation -instance : Inhabited (List α) where +instance : Inhabited (AList α) where default := .Nil @[simp] -def slots_s_inv (s : Core.List (List α)) : Prop := +def slots_s_inv (s : List (AList α)) : Prop := ∀ (i : Int), 0 ≤ i → i < s.len → slot_t_inv s.len i (s.index i) -def slots_t_inv (s : alloc.vec.Vec (List α)) : Prop := +def slots_t_inv (s : alloc.vec.Vec (AList α)) : Prop := slots_s_inv s.v @[simp] @@ -117,7 +115,7 @@ attribute [-simp] Bool.exists_bool -- of heart beats set_option maxHeartbeats 1000000 -theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α) +theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: AList α) (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v) (hdk : distinct_keys l0.v) : ∃ b l1, @@ -144,7 +142,7 @@ theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) ( simp [insert_in_list] rw [insert_in_list_loop] simp (config := {contextual := true}) - [List.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel] + [AList.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel] | Cons k v tl0 => if h: k = key then rw [insert_in_list] @@ -153,7 +151,7 @@ theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) ( exists false; simp -- TODO: why do we need to do this? split_conjs . intros; simp [*] - . simp [List.v, slot_s_inv_hash] at * + . simp [AList.v, slot_s_inv_hash] at * simp [*] . simp [*, distinct_keys] at * apply hdk @@ -162,17 +160,17 @@ theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) ( rw [insert_in_list] rw [insert_in_list_loop] simp [h] - have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by - simp_all [List.v, slot_s_inv_hash] - have : distinct_keys (List.v tl0) := by + have : slot_s_inv_hash l (hash_mod_key key l) (AList.v tl0) := by + simp_all [AList.v, slot_s_inv_hash] + have : distinct_keys (AList.v tl0) := by simp [distinct_keys] at hdk simp [hdk, distinct_keys] progress keep heq as ⟨ b, tl1 .. ⟩ simp only [insert_in_list] at heq - have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by - simp [List.v, slot_s_inv_hash] at * + have : slot_s_inv_hash l (hash_mod_key key l) (AList.v (AList.Cons k v tl1)) := by + simp [AList.v, slot_s_inv_hash] at * simp [*] - have : distinct_keys ((k, v) :: List.v tl1) := by + have : distinct_keys ((k, v) :: AList.v tl1) := by simp [distinct_keys] at * simp [*] -- TODO: canonize addition by default? @@ -180,7 +178,7 @@ theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) ( simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm] @[pspec] -theorem insert_in_list_spec {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α) +theorem insert_in_list_spec {α : Type} (l : Int) (key: Usize) (value: α) (l0: AList α) (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v) (hdk : distinct_keys l0.v) : ∃ b l1, @@ -203,7 +201,7 @@ theorem insert_in_list_spec {α : Type} (l : Int) (key: Usize) (value: α) (l0: exists l1 @[simp] -def slots_t_lookup (s : Core.List (List α)) (k : Usize) : Option α := +def slots_t_lookup (s : List (AList α)) (k : Usize) : Option α := let i := hash_mod_key k s.len let slot := s.index i slot.lookup k @@ -254,7 +252,7 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value rw [insert_no_resize] -- Simplify. Note that this also simplifies some function calls, like array index simp [hash_key, bind_tc_ok] - have _ : (alloc.vec.Vec.len (List α) hm.slots).val ≠ 0 := by + have _ : (alloc.vec.Vec.len (AList α) hm.slots).val ≠ 0 := by intro simp_all [inv] progress as ⟨ hash_mod, hhm ⟩ @@ -344,11 +342,11 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value simp only [lookup, List.lookup, len_s, al_v, HashMap.v, slots_t_lookup] at * -- We have to do a case disjunction simp_all - simp [_root_.List.update_map_eq] + simp [List.update_map_eq] -- TODO: dependent rewrites - have _ : key.val % hm.slots.val.len < (List.map List.v hm.slots.val).len := by + have _ : key.val % hm.slots.val.len < (List.map AList.v hm.slots.val).len := by simp [*] - simp [_root_.List.len_flatten_update_eq, *] + simp [List.len_flatten_update_eq, *] split <;> rename_i heq <;> simp [heq] at hlen <;> @@ -371,7 +369,7 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value have _ := hinv.right.left i hipos (by simp_all) simp [hhm, h_veq, nhm_eq] at * -- TODO: annoying, we do that because simp_all fails below -- We need a case disjunction - if h_ieq : i = key.val % _root_.List.len hm.slots.val then + if h_ieq : i = key.val % List.len hm.slots.val then -- TODO: simp_all fails: "(deterministic) timeout at 'whnf'" -- Also, it is annoying to do this kind -- of rewritings by hand. We could have a different simp |