diff options
Diffstat (limited to 'tests')
-rw-r--r-- | tests/hashmap/Hashmap.Properties.fst | 175 |
1 files changed, 93 insertions, 82 deletions
diff --git a/tests/hashmap/Hashmap.Properties.fst b/tests/hashmap/Hashmap.Properties.fst index 7ef527b7..79ceedd3 100644 --- a/tests/hashmap/Hashmap.Properties.fst +++ b/tests/hashmap/Hashmap.Properties.fst @@ -680,7 +680,9 @@ let hash_map_slots_s_inv (#t : Type0) (hm : hash_map_slots_s t) : Type0 = let hash_map_t_base_inv (#t : Type0) (hm : hash_map_t t) : Type0 = let al = hash_map_t_v hm in // [num_entries] correctly tracks the number of entries in the table - // Note that it gives us that the length of the slots array is <= usize_max + // Note that it gives us that the length of the slots array is <= usize_max: + // [> length <= usize_max + // (because hash_map_num_entries has type `usize`) hm.hash_map_num_entries = length al /\ // Slots invariant slots_t_inv hm.hash_map_slots /\ @@ -700,8 +702,9 @@ let hash_map_t_inv (#t : Type0) (hm : hash_map_t t) : Type0 = // Base invariant hash_map_t_base_inv hm /\ // The hash map is either: not overloaded, or we can't resize it - (hm.hash_map_num_entries <= hm.hash_map_max_load - || length hm.hash_map_slots * 2 > usize_max) + (let (dividend, divisor) = hm.hash_map_max_load_factor in + hm.hash_map_num_entries <= hm.hash_map_max_load + || length hm.hash_map_slots * 2 * dividend > usize_max) /// The following predicate links the hashmap to an associative list. /// Note that it does not compute the representant: different (permuted) @@ -810,6 +813,8 @@ val hash_map_new_with_capacity_fwd_lem match hash_map_new_with_capacity_fwd t capacity max_load_dividend max_load_divisor with | Fail -> False | Return hm -> + // The hash map invariant is satisfied + hash_map_t_inv hm /\ // The hash map has the specified capacity - we need to reveal this // otherwise the pre of [hash_map_t_find_s] is not satisfied. length hm.hash_map_slots = capacity /\ @@ -836,7 +841,8 @@ let hash_map_new_with_capacity_fwd_lem (t : Type0) (capacity : usize) | Fail -> assert(False) | Return i0 -> let hm = Mkhash_map_t 0 (max_load_dividend, max_load_divisor) i0 v0 in - slots_t_all_nil_inv_lem v0 + slots_t_all_nil_inv_lem v0; + slots_t_al_v_all_nil_is_empty_lem hm.hash_map_slots end end end @@ -862,8 +868,7 @@ let hash_map_new_fwd_lem_fun t = hash_map_new_with_capacity_fwd_lem t 32 4 5; match hash_map_new_with_capacity_fwd t 32 4 5 with | Fail -> () - | Return hm -> - slots_t_al_v_all_nil_is_empty_lem hm.hash_map_slots + | Return hm -> () #pop-options (*** clear_slots *) @@ -2260,6 +2265,8 @@ val hash_map_move_elements_fwd_back_lem | Return (ntable', _), Return ntable'_v -> // The invariant is preserved hash_map_t_base_inv ntable' /\ + // We preserved the parameters + hash_map_same_params ntable' ntable /\ // The table has the same number of slots length ntable'.hash_map_slots = length ntable.hash_map_slots /\ // The count is good @@ -2333,7 +2340,7 @@ let hash_map_try_resize_s (ensures (fun _ -> True)) = let capacity = length hm.hash_map_slots in let (divid, divis) = hm.hash_map_max_load_factor in - if capacity <= usize_max / 2 && capacity <= usize_max / divid then + if capacity <= (usize_max / 2) / divid then let ncapacity : usize = capacity * 2 in begin match hash_map_new_with_capacity_fwd t ncapacity divid divis with | Fail -> Fail @@ -2376,48 +2383,37 @@ val hash_map_try_resize_fwd_back_lem_refin | Return hm1, Return hm2 -> hm1 == hm2 | _ -> False)) -let hash_map_try_resize_fwd_back_lem_refin t self = - let i = self.hash_map_num_entries in - let p = self.hash_map_max_load_factor in - let i0 = self.hash_map_max_load in - let v = self.hash_map_slots in - let i1 = vec_len (list_t t) v in - assert(usize_max = 4294967295); - begin match usize_div 4294967295 2 with - | Fail -> () - | Return i2 -> - let b = i1 <= i2 in - if b - then - let (i3, i4) = p in - begin match usize_div 4294967295 i3 with - | Fail -> () - | Return i5 -> - let b0 = i1 <= i5 in - if b0 - then - begin match usize_mul i1 2 with - | Fail -> () - | Return i6 -> - begin match hash_map_new_with_capacity_fwd t i6 i3 i4 with - | Fail -> () - | Return h -> - begin match hash_map_move_elements_fwd_back t h v 0 with - | Fail -> () - | Return (h0, v0) -> - let i7 = h0.hash_map_max_load in - let v1 = h0.hash_map_slots in - let v2 = mem_replace_back (vec (list_t t)) v0 v1 in - let self0 = Mkhash_map_t i (i3, i4) i7 v2 in - () - end - end - end - else let self0 = Mkhash_map_t i (i3, i4) i0 v in () - end - else let self0 = Mkhash_map_t i p i0 v in () - end +let hash_map_try_resize_fwd_back_lem_refin t self = () + +/// Isolating arithmetic proofs + +let gt_lem0 (n m q : nat) : + Lemma (requires (m > 0 /\ n > q)) + (ensures (n * m > q * m)) = () +let ge_lem0 (n m q : nat) : + Lemma (requires (m > 0 /\ n >= q)) + (ensures (n * m >= q * m)) = () + +let gt_ge_trans (n m p : nat) : + Lemma (requires (n > m /\ m >= p)) (ensures (n > p)) = () + +#push-options "--z3rlimit 200" +let gt_lem1 (n m q : nat) : + Lemma (requires (m > 0 /\ n > q / m)) + (ensures (n * m > q)) = + assert(n >= q / m + 1); + ge_lem0 n m (q / m + 1); + assert(n * m >= (q / m) * m + m) +#pop-options + +let gt_lem2 (n m p q : nat) : + Lemma (requires (m > 0 /\ p > 0 /\ n > (q / m) / p)) + (ensures ( + n * m * p > q)) = + gt_lem1 n p (q / m); + assert(n * p > q / m); + gt_lem1 (n * p) m q val hash_map_try_resize_s_lem (#t : Type0) (hm : hash_map_t t) : Lemma @@ -2433,55 +2429,70 @@ val hash_map_try_resize_s_lem (#t : Type0) (hm : hash_map_t t) : // It contains the same bindings as the initial map (forall (k:key). hash_map_t_find_s hm' k == hash_map_t_find_s hm k))) -(* +#restart-solver +#push-options "--z3rlimit 400" let hash_map_try_resize_s_lem #t hm = let capacity = length hm.hash_map_slots in let (divid, divis) = hm.hash_map_max_load_factor in - if capacity <= usize_max / 2 && capacity <= usize_max / divid then + if capacity <= (usize_max / 2) / divid then + begin + let ncapacity : usize = capacity * 2 in let ncapacity : usize = capacity * 2 in - assume(ncapacity * divid <= usize_max); + assert(ncapacity * divid <= usize_max); hash_map_new_with_capacity_fwd_lem t ncapacity divid divis; - begin match hash_map_new_with_capacity_fwd t ncapacity divid divis with + match hash_map_new_with_capacity_fwd t ncapacity divid divis with | Fail -> () | Return ntable -> + let slots = hm.hash_map_slots in + let al = flatten (slots_t_v slots) in + // Proving that: length al = hm.hash_map_num_entries + assert(al == flatten (map slot_t_v slots)); + assume(al == flatten (map list_t_v slots)); // THIS REQUIRES A LEMMA!!!! + assert(hash_map_t_v hm == flatten (hash_map_t_slots_v hm)); + assert(hash_map_t_v hm == flatten (map list_t_v hm.hash_map_slots)); + assert(al == hash_map_t_v hm); + assert(hash_map_t_base_inv ntable); + assert(length al = hm.hash_map_num_entries); + assert(length al <= usize_max); + hash_map_t_base_inv_implies_assoc_list_lem hm; + assert(assoc_list_inv al); + assert(hash_map_t_len_s ntable = 0); + assert(forall (k:key). hash_map_t_find_s ntable k == None); hash_map_move_elements_fwd_back_lem t ntable hm.hash_map_slots; match hash_map_move_elements_fwd_back t ntable hm.hash_map_slots 0 with | Fail -> () | Return (ntable', _) -> assume(hash_map_is_assoc_list hm (hash_map_t_v hm)); - let hm = + let hm' = { hm with hash_map_slots = ntable'.hash_map_slots; hash_map_max_load = ntable'.hash_map_max_load } in - () + assert(hash_map_t_base_inv ntable'); + assert(hash_map_t_base_inv hm'); + assume(hash_map_t_inv hm') end - else () - -let hash_map_is_assoc_list - (#t : Type0) (ntable : hash_map_t t{length ntable.hash_map_slots > 0}) - (al : assoc_list t) : Type0 = - (forall (k:key). hash_map_t_find_s ntable k == assoc_list_find k al) + else + begin + gt_lem2 capacity 2 divid usize_max; + assert(capacity * 2 * divid > usize_max) + end +#pop-options +/// The final lemma about [try_resize] +val hash_map_try_resize_fwd_back_lem (#t : Type0) (hm : hash_map_t t) : + Lemma + (requires (hash_map_t_base_inv hm)) + (ensures ( + match hash_map_try_resize_fwd_back t hm with + | Fail -> False + | Return hm' -> + // The full invariant is now satisfied (the full invariant is "base + // invariant" + the map is not overloaded (or can't be resized because + // already too big) + hash_map_t_inv hm' /\ + // It contains the same bindings as the initial map + (forall (k:key). hash_map_t_find_s hm' k == hash_map_t_find_s hm k))) - Pure (result (hash_map_t t)) - (requires ( - let (divid, divis) = hm.hash_map_max_load_factor in - divid > 0 /\ divis > 0)) - (ensures (fun _ -> True)) = - let capacity = length hm.hash_map_slots in - let (divid, divis) = hm.hash_map_max_load_factor in - if capacity <= usize_max / 2 && capacity <= usize_max / divid then - let ncapacity : usize = capacity * 2 in - begin match hash_map_new_with_capacity_fwd t ncapacity divid divis with - | Fail -> Fail - | Return ntable -> - match hash_map_move_elements_fwd_back t ntable hm.hash_map_slots 0 with - | Fail -> Fail - | Return (ntable', _) -> - let hm = - { hm with hash_map_slots = ntable'.hash_map_slots; - hash_map_max_load = ntable'.hash_map_max_load } - in - Return hm - end - else Return hm +let hash_map_try_resize_fwd_back_lem #t hm = + hash_map_try_resize_fwd_back_lem_refin t hm; + hash_map_try_resize_s_lem hm |