summaryrefslogtreecommitdiff
path: root/tests/lean/misc
diff options
context:
space:
mode:
Diffstat (limited to 'tests/lean/misc')
-rw-r--r--tests/lean/misc/constants/Base/Primitives.lean392
-rw-r--r--tests/lean/misc/constants/Constants.lean141
-rw-r--r--tests/lean/misc/constants/lakefile.lean18
-rw-r--r--tests/lean/misc/external/Base/Primitives.lean392
-rw-r--r--tests/lean/misc/external/External/Funs.lean93
-rw-r--r--tests/lean/misc/external/External/Opaque.lean28
-rw-r--r--tests/lean/misc/external/External/Types.lean8
-rw-r--r--tests/lean/misc/external/lakefile.lean18
-rw-r--r--tests/lean/misc/loops/Base/Primitives.lean392
-rw-r--r--tests/lean/misc/loops/Loops/Clauses/Clauses.lean209
-rw-r--r--tests/lean/misc/loops/Loops/Clauses/Template.lean210
-rw-r--r--tests/lean/misc/loops/Loops/Funs.lean740
-rw-r--r--tests/lean/misc/loops/Loops/Types.lean9
-rw-r--r--tests/lean/misc/loops/lakefile.lean18
-rw-r--r--tests/lean/misc/no_nested_borrows/Base/Primitives.lean392
-rw-r--r--tests/lean/misc/no_nested_borrows/NoNestedBorrows.lean556
-rw-r--r--tests/lean/misc/no_nested_borrows/lakefile.lean18
-rw-r--r--tests/lean/misc/paper/Base/Primitives.lean392
-rw-r--r--tests/lean/misc/paper/Paper.lean128
-rw-r--r--tests/lean/misc/paper/lakefile.lean18
20 files changed, 0 insertions, 4172 deletions
diff --git a/tests/lean/misc/constants/Base/Primitives.lean b/tests/lean/misc/constants/Base/Primitives.lean
deleted file mode 100644
index 5b64e908..00000000
--- a/tests/lean/misc/constants/Base/Primitives.lean
+++ /dev/null
@@ -1,392 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ...,
--- USize. They are generally defined in an idiomatic style, except that there is
--- not a single type class to rule them all (more on that below). The absence of
--- type class is intentional, and allows the Lean compiler to efficiently map
--- them to machine integers during compilation.
-
--- USize is designed properly: you cannot reduce `getNumBits` using the
--- simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really
--- support, at least officially, 16-bit microcontrollers, so this seems like a
--- fine design decision for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic|
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => decide
- | _, Or.inr rfl => decide)
-
--- This is how the macro is expected to be used
-#eval USize.ofNatCore 0 (by intlit)
-
--- Also works for other integer types (at the expense of a needless disjunction)
-#eval UInt32.ofNatCore 0 (by intlit)
-
--- The machine integer operations (e.g. sub) are always total, which is not what
--- we want. We therefore define "checked" variants, below. Note that we add a
--- tiny bit of complexity for the USize variant: we first check whether the
--- result is < 2^32; if it is, we can compute the definition, rather than
--- returning a term that is computationally stuck (the comparison to USize.size
--- cannot reduce at compile-time, per the remark about regarding `getNumBits`).
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def USize.checked_sub (n: USize) (m: USize): Result USize :=
- -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?
- if n >= m then
- let n' := USize.toNat n
- let m' := USize.toNat n
- let r := USize.ofNatCore (n' - m') (by
- have h: n' - m' <= n' := by
- apply Nat.sub_le_of_le_add
- case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left
- apply Nat.lt_of_le_of_lt h
- apply n.val.isLt
- )
- return r
- else
- fail integerOverflow
-
-@[simp]
-theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size :=
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide)
- | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide)
-
-def USize.checked_add (n: USize) (m: USize): Result USize :=
- if h: n.val + m.val < USize.size then
- .ret ⟨ n.val + m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_rem (n: USize) (m: USize): Result USize :=
- if h: m > 0 then
- .ret ⟨ n.val % m.val, by
- have h1: ↑m.val < USize.size := m.val.isLt
- have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h
- apply Nat.lt_trans h2 h1
- ⟩
- else
- .fail integerOverflow
-
-def USize.checked_mul (n: USize) (m: USize): Result USize :=
- if h: n.val * m.val < USize.size then
- .ret ⟨ n.val * m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_div (n: USize) (m: USize): Result USize :=
- if m > 0 then
- .ret ⟨ n.val / m.val, by
- have h1: ↑n.val < USize.size := n.val.isLt
- have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val
- apply Nat.lt_of_le_of_lt h2 h1
- ⟩
- else
- .fail integerOverflow
-
--- Test behavior...
-#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
-
-#eval USize.checked_sub 20 10
--- NOTE: compare with concrete behavior here, which I do not think we want
-#eval USize.sub 0 1
-#eval UInt8.add 255 255
-
--- We now define a type class that subsumes the various machine integer types, so
--- as to write a concise definition for scalar_cast, rather than exhaustively
--- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- and fails if a cast operation would involve a truncation or modulo.
-
-class MachineInteger (t: Type) where
- size: Nat
- val: t -> Fin size
- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
-set_option hygiene false in
-run_cmd
- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
- Lean.Elab.Command.elabCommand (← `(
- namespace $typeName
- instance: MachineInteger $typeName where
- size := size
- val := val
- ofNatCore := ofNatCore
- end $typeName
- ))
-
--- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- Lean to infer `src`.
-
-def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
- if h: MachineInteger.val x < MachineInteger.size dst then
- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
- else
- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
--- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size)
--- rather than maximum values (usize_max).
-def Vec (α : Type u) := { l : List α // List.length l < USize.size }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by {
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => simp
- | _, Or.inr rfl => simp
- } ⟩
-
-#check vec_new
-
-def vec_len (α : Type u) (v : Vec α) : USize :=
- let ⟨ v, l ⟩ := v
- USize.ofNatCore (List.length v) l
-
-#eval vec_len Nat (vec_new Nat)
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
--- NOTE: old version trying to use a subtype notation, but probably better to
--- leave Result elimination to auxiliary lemmas with suitable preconditions
--- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one
--- make the proof work in that case? Probably need to import tactics from
--- mathlib to deal with inequalities... would love to see an example.
-def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) //
- match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}
- :=
- if h : List.length v.val + 1 < USize.size then
- ⟨ return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩, by simp ⟩
- else
- ⟨ fail maximumSizeExceeded, by simp ⟩
-
-#eval do
- -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with
- -- fields val and property. However, Lean's elaborator can automatically
- -- select the `val` field if the context provides a type annotation. We
- -- annotate `x`, which relieves us of having to write `.val` on the right-hand
- -- side of the monadic let.
- let v := vec_new Nat
- let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here?
- -- TODO: strengthen post-condition above and do a demo to show that we can
- -- safely eliminate the `fail` case
- return (vec_len Nat x)
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val + 1 <= 4294967295 then
- return ⟨ List.concat v.val x,
- by
- rw [List.length_concat]
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: List.length v.val + 1 < USize.size then
- return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------------
--- SANITY CHECKS --
--------------------
-
--- TODO: add more once we have signed integers
-
-#assert (USize.checked_rem 1 2 == .ret 1)
diff --git a/tests/lean/misc/constants/Constants.lean b/tests/lean/misc/constants/Constants.lean
deleted file mode 100644
index 57f6e403..00000000
--- a/tests/lean/misc/constants/Constants.lean
+++ /dev/null
@@ -1,141 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [constants]
-import Base.Primitives
-
-structure OpaqueDefs where
-
- /- [constants::X0] -/
- def x0_body : Result UInt32 := Result.ret (UInt32.ofNatCore 0 (by intlit))
- def x0_c : UInt32 := eval_global x0_body (by simp)
-
- /- [core::num::u32::{9}::MAX] -/
- def core_num_u32_max_body : Result UInt32 :=
- Result.ret (UInt32.ofNatCore 4294967295 (by intlit))
- def core_num_u32_max_c : UInt32 :=
- eval_global core_num_u32_max_body (by simp)
-
- /- [constants::X1] -/
- def x1_body : Result UInt32 := Result.ret core_num_u32_max_c
- def x1_c : UInt32 := eval_global x1_body (by simp)
-
- /- [constants::X2] -/
- def x2_body : Result UInt32 := Result.ret (UInt32.ofNatCore 3 (by intlit))
- def x2_c : UInt32 := eval_global x2_body (by simp)
-
- /- [constants::incr] -/
- def incr_fwd (n : UInt32) : Result UInt32 :=
- UInt32.checked_add n (UInt32.ofNatCore 1 (by intlit))
-
- /- [constants::X3] -/
- def x3_body : Result UInt32 := incr_fwd (UInt32.ofNatCore 32 (by intlit))
- def x3_c : UInt32 := eval_global x3_body (by simp)
-
- /- [constants::mk_pair0] -/
- def mk_pair0_fwd (x : UInt32) (y : UInt32) : Result (UInt32 × UInt32) :=
- Result.ret (x, y)
-
- /- [constants::Pair] -/
- structure pair_t (T1 T2 : Type) where pair_x : T1 pair_y : T2
-
- /- [constants::mk_pair1] -/
- def mk_pair1_fwd (x : UInt32) (y : UInt32) : Result (pair_t UInt32 UInt32) :=
- Result.ret { pair_x := x, pair_y := y }
-
- /- [constants::P0] -/
- def p0_body : Result (UInt32 × UInt32) :=
- mk_pair0_fwd (UInt32.ofNatCore 0 (by intlit))
- (UInt32.ofNatCore 1 (by intlit))
- def p0_c : (UInt32 × UInt32) := eval_global p0_body (by simp)
-
- /- [constants::P1] -/
- def p1_body : Result (pair_t UInt32 UInt32) :=
- mk_pair1_fwd (UInt32.ofNatCore 0 (by intlit))
- (UInt32.ofNatCore 1 (by intlit))
- def p1_c : pair_t UInt32 UInt32 := eval_global p1_body (by simp)
-
- /- [constants::P2] -/
- def p2_body : Result (UInt32 × UInt32) :=
- Result.ret
- ((UInt32.ofNatCore 0 (by intlit)),
- (UInt32.ofNatCore 1 (by intlit)))
- def p2_c : (UInt32 × UInt32) := eval_global p2_body (by simp)
-
- /- [constants::P3] -/
- def p3_body : Result (pair_t UInt32 UInt32) :=
- Result.ret
- {
- pair_x := (UInt32.ofNatCore 0 (by intlit)),
- pair_y := (UInt32.ofNatCore 1 (by intlit))
- }
- def p3_c : pair_t UInt32 UInt32 := eval_global p3_body (by simp)
-
- /- [constants::Wrap] -/
- structure wrap_t (T : Type) where wrap_val : T
-
- /- [constants::Wrap::{0}::new] -/
- def wrap_new_fwd (T : Type) (val : T) : Result (wrap_t T) :=
- Result.ret { wrap_val := val }
-
- /- [constants::Y] -/
- def y_body : Result (wrap_t Int32) :=
- wrap_new_fwd Int32 (Int32.ofNatCore 2 (by intlit))
- def y_c : wrap_t Int32 := eval_global y_body (by simp)
-
- /- [constants::unwrap_y] -/
- def unwrap_y_fwd : Result Int32 :=
- Result.ret y_c.wrap_val
-
- /- [constants::YVAL] -/
- def yval_body : Result Int32 := unwrap_y_fwd
- def yval_c : Int32 := eval_global yval_body (by simp)
-
- /- [constants::get_z1::Z1] -/
- def get_z1_z1_body : Result Int32 :=
- Result.ret (Int32.ofNatCore 3 (by intlit))
- def get_z1_z1_c : Int32 := eval_global get_z1_z1_body (by simp)
-
- /- [constants::get_z1] -/
- def get_z1_fwd : Result Int32 :=
- Result.ret get_z1_z1_c
-
- /- [constants::add] -/
- def add_fwd (a : Int32) (b : Int32) : Result Int32 :=
- Int32.checked_add a b
-
- /- [constants::Q1] -/
- def q1_body : Result Int32 := Result.ret (Int32.ofNatCore 5 (by intlit))
- def q1_c : Int32 := eval_global q1_body (by simp)
-
- /- [constants::Q2] -/
- def q2_body : Result Int32 := Result.ret q1_c
- def q2_c : Int32 := eval_global q2_body (by simp)
-
- /- [constants::Q3] -/
- def q3_body : Result Int32 := add_fwd q2_c (Int32.ofNatCore 3 (by intlit))
- def q3_c : Int32 := eval_global q3_body (by simp)
-
- /- [constants::get_z2] -/
- def get_z2_fwd : Result Int32 :=
- do
- let i ← get_z1_fwd
- let i0 ← add_fwd i q3_c
- add_fwd q1_c i0
-
- /- [constants::S1] -/
- def s1_body : Result UInt32 := Result.ret (UInt32.ofNatCore 6 (by intlit))
- def s1_c : UInt32 := eval_global s1_body (by simp)
-
- /- [constants::S2] -/
- def s2_body : Result UInt32 := incr_fwd s1_c
- def s2_c : UInt32 := eval_global s2_body (by simp)
-
- /- [constants::S3] -/
- def s3_body : Result (pair_t UInt32 UInt32) := Result.ret p3_c
- def s3_c : pair_t UInt32 UInt32 := eval_global s3_body (by simp)
-
- /- [constants::S4] -/
- def s4_body : Result (pair_t UInt32 UInt32) :=
- mk_pair1_fwd (UInt32.ofNatCore 7 (by intlit))
- (UInt32.ofNatCore 8 (by intlit))
- def s4_c : pair_t UInt32 UInt32 := eval_global s4_body (by simp)
-
diff --git a/tests/lean/misc/constants/lakefile.lean b/tests/lean/misc/constants/lakefile.lean
deleted file mode 100644
index ed8eebc2..00000000
--- a/tests/lean/misc/constants/lakefile.lean
+++ /dev/null
@@ -1,18 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «constants» {
- -- add package configuration options here
-}
-
-lean_lib «Base» {
- -- add library configuration options here
-}
-
-lean_lib «Constants» {
- -- add library configuration options here
-}
-
diff --git a/tests/lean/misc/external/Base/Primitives.lean b/tests/lean/misc/external/Base/Primitives.lean
deleted file mode 100644
index 5b64e908..00000000
--- a/tests/lean/misc/external/Base/Primitives.lean
+++ /dev/null
@@ -1,392 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ...,
--- USize. They are generally defined in an idiomatic style, except that there is
--- not a single type class to rule them all (more on that below). The absence of
--- type class is intentional, and allows the Lean compiler to efficiently map
--- them to machine integers during compilation.
-
--- USize is designed properly: you cannot reduce `getNumBits` using the
--- simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really
--- support, at least officially, 16-bit microcontrollers, so this seems like a
--- fine design decision for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic|
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => decide
- | _, Or.inr rfl => decide)
-
--- This is how the macro is expected to be used
-#eval USize.ofNatCore 0 (by intlit)
-
--- Also works for other integer types (at the expense of a needless disjunction)
-#eval UInt32.ofNatCore 0 (by intlit)
-
--- The machine integer operations (e.g. sub) are always total, which is not what
--- we want. We therefore define "checked" variants, below. Note that we add a
--- tiny bit of complexity for the USize variant: we first check whether the
--- result is < 2^32; if it is, we can compute the definition, rather than
--- returning a term that is computationally stuck (the comparison to USize.size
--- cannot reduce at compile-time, per the remark about regarding `getNumBits`).
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def USize.checked_sub (n: USize) (m: USize): Result USize :=
- -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?
- if n >= m then
- let n' := USize.toNat n
- let m' := USize.toNat n
- let r := USize.ofNatCore (n' - m') (by
- have h: n' - m' <= n' := by
- apply Nat.sub_le_of_le_add
- case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left
- apply Nat.lt_of_le_of_lt h
- apply n.val.isLt
- )
- return r
- else
- fail integerOverflow
-
-@[simp]
-theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size :=
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide)
- | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide)
-
-def USize.checked_add (n: USize) (m: USize): Result USize :=
- if h: n.val + m.val < USize.size then
- .ret ⟨ n.val + m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_rem (n: USize) (m: USize): Result USize :=
- if h: m > 0 then
- .ret ⟨ n.val % m.val, by
- have h1: ↑m.val < USize.size := m.val.isLt
- have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h
- apply Nat.lt_trans h2 h1
- ⟩
- else
- .fail integerOverflow
-
-def USize.checked_mul (n: USize) (m: USize): Result USize :=
- if h: n.val * m.val < USize.size then
- .ret ⟨ n.val * m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_div (n: USize) (m: USize): Result USize :=
- if m > 0 then
- .ret ⟨ n.val / m.val, by
- have h1: ↑n.val < USize.size := n.val.isLt
- have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val
- apply Nat.lt_of_le_of_lt h2 h1
- ⟩
- else
- .fail integerOverflow
-
--- Test behavior...
-#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
-
-#eval USize.checked_sub 20 10
--- NOTE: compare with concrete behavior here, which I do not think we want
-#eval USize.sub 0 1
-#eval UInt8.add 255 255
-
--- We now define a type class that subsumes the various machine integer types, so
--- as to write a concise definition for scalar_cast, rather than exhaustively
--- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- and fails if a cast operation would involve a truncation or modulo.
-
-class MachineInteger (t: Type) where
- size: Nat
- val: t -> Fin size
- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
-set_option hygiene false in
-run_cmd
- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
- Lean.Elab.Command.elabCommand (← `(
- namespace $typeName
- instance: MachineInteger $typeName where
- size := size
- val := val
- ofNatCore := ofNatCore
- end $typeName
- ))
-
--- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- Lean to infer `src`.
-
-def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
- if h: MachineInteger.val x < MachineInteger.size dst then
- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
- else
- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
--- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size)
--- rather than maximum values (usize_max).
-def Vec (α : Type u) := { l : List α // List.length l < USize.size }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by {
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => simp
- | _, Or.inr rfl => simp
- } ⟩
-
-#check vec_new
-
-def vec_len (α : Type u) (v : Vec α) : USize :=
- let ⟨ v, l ⟩ := v
- USize.ofNatCore (List.length v) l
-
-#eval vec_len Nat (vec_new Nat)
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
--- NOTE: old version trying to use a subtype notation, but probably better to
--- leave Result elimination to auxiliary lemmas with suitable preconditions
--- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one
--- make the proof work in that case? Probably need to import tactics from
--- mathlib to deal with inequalities... would love to see an example.
-def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) //
- match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}
- :=
- if h : List.length v.val + 1 < USize.size then
- ⟨ return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩, by simp ⟩
- else
- ⟨ fail maximumSizeExceeded, by simp ⟩
-
-#eval do
- -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with
- -- fields val and property. However, Lean's elaborator can automatically
- -- select the `val` field if the context provides a type annotation. We
- -- annotate `x`, which relieves us of having to write `.val` on the right-hand
- -- side of the monadic let.
- let v := vec_new Nat
- let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here?
- -- TODO: strengthen post-condition above and do a demo to show that we can
- -- safely eliminate the `fail` case
- return (vec_len Nat x)
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val + 1 <= 4294967295 then
- return ⟨ List.concat v.val x,
- by
- rw [List.length_concat]
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: List.length v.val + 1 < USize.size then
- return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------------
--- SANITY CHECKS --
--------------------
-
--- TODO: add more once we have signed integers
-
-#assert (USize.checked_rem 1 2 == .ret 1)
diff --git a/tests/lean/misc/external/External/Funs.lean b/tests/lean/misc/external/External/Funs.lean
deleted file mode 100644
index 4e1f36a1..00000000
--- a/tests/lean/misc/external/External/Funs.lean
+++ /dev/null
@@ -1,93 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [external]: function definitions
-import Base.Primitives
-import External.Types
-import External.Opaque
-
-section variable (opaque_defs: OpaqueDefs)
-
-/- [external::swap] -/
-def swap_fwd
- (T : Type) (x : T) (y : T) (st : State) : Result (State × Unit) :=
- do
- let (st0, _) ← opaque_defs.core_mem_swap_fwd T x y st
- let (st1, _) ← opaque_defs.core_mem_swap_back0 T x y st st0
- let (st2, _) ← opaque_defs.core_mem_swap_back1 T x y st st1
- Result.ret (st2, ())
-
-/- [external::swap] -/
-def swap_back
- (T : Type) (x : T) (y : T) (st : State) (st0 : State) :
- Result (State × (T × T))
- :=
- do
- let (st1, _) ← opaque_defs.core_mem_swap_fwd T x y st
- let (st2, x0) ← opaque_defs.core_mem_swap_back0 T x y st st1
- let (_, y0) ← opaque_defs.core_mem_swap_back1 T x y st st2
- Result.ret (st0, (x0, y0))
-
-/- [external::test_new_non_zero_u32] -/
-def test_new_non_zero_u32_fwd
- (x : UInt32) (st : State) :
- Result (State × core_num_nonzero_non_zero_u32_t)
- :=
- do
- let (st0, opt) ← opaque_defs.core_num_nonzero_non_zero_u32_new_fwd x st
- opaque_defs.core_option_option_unwrap_fwd core_num_nonzero_non_zero_u32_t
- opt st0
-
-/- [external::test_vec] -/
-def test_vec_fwd : Result Unit :=
- do
- let v := vec_new UInt32
- let _ ← vec_push_back UInt32 v (UInt32.ofNatCore 0 (by intlit))
- Result.ret ()
-
-/- Unit test for [external::test_vec] -/
-#assert (test_vec_fwd == .ret ())
-
-/- [external::custom_swap] -/
-def custom_swap_fwd
- (T : Type) (x : T) (y : T) (st : State) : Result (State × T) :=
- do
- let (st0, _) ← opaque_defs.core_mem_swap_fwd T x y st
- let (st1, x0) ← opaque_defs.core_mem_swap_back0 T x y st st0
- let (st2, _) ← opaque_defs.core_mem_swap_back1 T x y st st1
- Result.ret (st2, x0)
-
-/- [external::custom_swap] -/
-def custom_swap_back
- (T : Type) (x : T) (y : T) (st : State) (ret0 : T) (st0 : State) :
- Result (State × (T × T))
- :=
- do
- let (st1, _) ← opaque_defs.core_mem_swap_fwd T x y st
- let (st2, _) ← opaque_defs.core_mem_swap_back0 T x y st st1
- let (_, y0) ← opaque_defs.core_mem_swap_back1 T x y st st2
- Result.ret (st0, (ret0, y0))
-
-/- [external::test_custom_swap] -/
-def test_custom_swap_fwd
- (x : UInt32) (y : UInt32) (st : State) : Result (State × Unit) :=
- do
- let (st0, _) ← custom_swap_fwd UInt32 x y st
- Result.ret (st0, ())
-
-/- [external::test_custom_swap] -/
-def test_custom_swap_back
- (x : UInt32) (y : UInt32) (st : State) (st0 : State) :
- Result (State × (UInt32 × UInt32))
- :=
- custom_swap_back UInt32 x y st (UInt32.ofNatCore 1 (by intlit)) st0
-
-/- [external::test_swap_non_zero] -/
-def test_swap_non_zero_fwd
- (x : UInt32) (st : State) : Result (State × UInt32) :=
- do
- let (st0, _) ← swap_fwd UInt32 x (UInt32.ofNatCore 0 (by intlit)) st
- let (st1, (x0, _)) ←
- swap_back UInt32 x (UInt32.ofNatCore 0 (by intlit)) st st0
- if h: x0 = (UInt32.ofNatCore 0 (by intlit))
- then Result.fail Error.panic
- else Result.ret (st1, x0)
-
diff --git a/tests/lean/misc/external/External/Opaque.lean b/tests/lean/misc/external/External/Opaque.lean
deleted file mode 100644
index d3582de3..00000000
--- a/tests/lean/misc/external/External/Opaque.lean
+++ /dev/null
@@ -1,28 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [external]: opaque function definitions
-import Base.Primitives
-import External.Types
-
-structure OpaqueDefs where
-
- /- [core::mem::swap] -/
- core_mem_swap_fwd (T : Type) : T -> T -> State -> Result (State × Unit)
-
- /- [core::mem::swap] -/
- core_mem_swap_back0
- (T : Type) : T -> T -> State -> State -> Result (State × T)
-
- /- [core::mem::swap] -/
- core_mem_swap_back1
- (T : Type) : T -> T -> State -> State -> Result (State × T)
-
- /- [core::num::nonzero::NonZeroU32::{14}::new] -/
- core_num_nonzero_non_zero_u32_new_fwd
- :
- UInt32 -> State -> Result (State × (Option
- core_num_nonzero_non_zero_u32_t))
-
- /- [core::option::Option::{0}::unwrap] -/
- core_option_option_unwrap_fwd
- (T : Type) : Option T -> State -> Result (State × T)
-
diff --git a/tests/lean/misc/external/External/Types.lean b/tests/lean/misc/external/External/Types.lean
deleted file mode 100644
index 386832f4..00000000
--- a/tests/lean/misc/external/External/Types.lean
+++ /dev/null
@@ -1,8 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [external]: type definitions
-import Base.Primitives
-
-/- [core::num::nonzero::NonZeroU32] -/
-axiom core_num_nonzero_non_zero_u32_t : Type
-/- The state type used in the state-error monad -/ axiom State : Type
-
diff --git a/tests/lean/misc/external/lakefile.lean b/tests/lean/misc/external/lakefile.lean
deleted file mode 100644
index b883f4b9..00000000
--- a/tests/lean/misc/external/lakefile.lean
+++ /dev/null
@@ -1,18 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «external» {
- -- add package configuration options here
-}
-
-lean_lib «Base» {
- -- add library configuration options here
-}
-
-lean_lib «External» {
- -- add library configuration options here
-}
-
diff --git a/tests/lean/misc/loops/Base/Primitives.lean b/tests/lean/misc/loops/Base/Primitives.lean
deleted file mode 100644
index 5b64e908..00000000
--- a/tests/lean/misc/loops/Base/Primitives.lean
+++ /dev/null
@@ -1,392 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ...,
--- USize. They are generally defined in an idiomatic style, except that there is
--- not a single type class to rule them all (more on that below). The absence of
--- type class is intentional, and allows the Lean compiler to efficiently map
--- them to machine integers during compilation.
-
--- USize is designed properly: you cannot reduce `getNumBits` using the
--- simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really
--- support, at least officially, 16-bit microcontrollers, so this seems like a
--- fine design decision for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic|
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => decide
- | _, Or.inr rfl => decide)
-
--- This is how the macro is expected to be used
-#eval USize.ofNatCore 0 (by intlit)
-
--- Also works for other integer types (at the expense of a needless disjunction)
-#eval UInt32.ofNatCore 0 (by intlit)
-
--- The machine integer operations (e.g. sub) are always total, which is not what
--- we want. We therefore define "checked" variants, below. Note that we add a
--- tiny bit of complexity for the USize variant: we first check whether the
--- result is < 2^32; if it is, we can compute the definition, rather than
--- returning a term that is computationally stuck (the comparison to USize.size
--- cannot reduce at compile-time, per the remark about regarding `getNumBits`).
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def USize.checked_sub (n: USize) (m: USize): Result USize :=
- -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?
- if n >= m then
- let n' := USize.toNat n
- let m' := USize.toNat n
- let r := USize.ofNatCore (n' - m') (by
- have h: n' - m' <= n' := by
- apply Nat.sub_le_of_le_add
- case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left
- apply Nat.lt_of_le_of_lt h
- apply n.val.isLt
- )
- return r
- else
- fail integerOverflow
-
-@[simp]
-theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size :=
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide)
- | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide)
-
-def USize.checked_add (n: USize) (m: USize): Result USize :=
- if h: n.val + m.val < USize.size then
- .ret ⟨ n.val + m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_rem (n: USize) (m: USize): Result USize :=
- if h: m > 0 then
- .ret ⟨ n.val % m.val, by
- have h1: ↑m.val < USize.size := m.val.isLt
- have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h
- apply Nat.lt_trans h2 h1
- ⟩
- else
- .fail integerOverflow
-
-def USize.checked_mul (n: USize) (m: USize): Result USize :=
- if h: n.val * m.val < USize.size then
- .ret ⟨ n.val * m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_div (n: USize) (m: USize): Result USize :=
- if m > 0 then
- .ret ⟨ n.val / m.val, by
- have h1: ↑n.val < USize.size := n.val.isLt
- have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val
- apply Nat.lt_of_le_of_lt h2 h1
- ⟩
- else
- .fail integerOverflow
-
--- Test behavior...
-#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
-
-#eval USize.checked_sub 20 10
--- NOTE: compare with concrete behavior here, which I do not think we want
-#eval USize.sub 0 1
-#eval UInt8.add 255 255
-
--- We now define a type class that subsumes the various machine integer types, so
--- as to write a concise definition for scalar_cast, rather than exhaustively
--- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- and fails if a cast operation would involve a truncation or modulo.
-
-class MachineInteger (t: Type) where
- size: Nat
- val: t -> Fin size
- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
-set_option hygiene false in
-run_cmd
- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
- Lean.Elab.Command.elabCommand (← `(
- namespace $typeName
- instance: MachineInteger $typeName where
- size := size
- val := val
- ofNatCore := ofNatCore
- end $typeName
- ))
-
--- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- Lean to infer `src`.
-
-def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
- if h: MachineInteger.val x < MachineInteger.size dst then
- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
- else
- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
--- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size)
--- rather than maximum values (usize_max).
-def Vec (α : Type u) := { l : List α // List.length l < USize.size }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by {
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => simp
- | _, Or.inr rfl => simp
- } ⟩
-
-#check vec_new
-
-def vec_len (α : Type u) (v : Vec α) : USize :=
- let ⟨ v, l ⟩ := v
- USize.ofNatCore (List.length v) l
-
-#eval vec_len Nat (vec_new Nat)
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
--- NOTE: old version trying to use a subtype notation, but probably better to
--- leave Result elimination to auxiliary lemmas with suitable preconditions
--- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one
--- make the proof work in that case? Probably need to import tactics from
--- mathlib to deal with inequalities... would love to see an example.
-def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) //
- match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}
- :=
- if h : List.length v.val + 1 < USize.size then
- ⟨ return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩, by simp ⟩
- else
- ⟨ fail maximumSizeExceeded, by simp ⟩
-
-#eval do
- -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with
- -- fields val and property. However, Lean's elaborator can automatically
- -- select the `val` field if the context provides a type annotation. We
- -- annotate `x`, which relieves us of having to write `.val` on the right-hand
- -- side of the monadic let.
- let v := vec_new Nat
- let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here?
- -- TODO: strengthen post-condition above and do a demo to show that we can
- -- safely eliminate the `fail` case
- return (vec_len Nat x)
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val + 1 <= 4294967295 then
- return ⟨ List.concat v.val x,
- by
- rw [List.length_concat]
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: List.length v.val + 1 < USize.size then
- return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------------
--- SANITY CHECKS --
--------------------
-
--- TODO: add more once we have signed integers
-
-#assert (USize.checked_rem 1 2 == .ret 1)
diff --git a/tests/lean/misc/loops/Loops/Clauses/Clauses.lean b/tests/lean/misc/loops/Loops/Clauses/Clauses.lean
deleted file mode 100644
index 5ddb65ca..00000000
--- a/tests/lean/misc/loops/Loops/Clauses/Clauses.lean
+++ /dev/null
@@ -1,209 +0,0 @@
--- [loops]: decreases clauses
-import Base.Primitives
-import Loops.Types
-
-/- [loops::sum]: termination measure -/
-@[simp]
-def sum_loop_terminates (max : UInt32) (i : UInt32) (s : UInt32) := (max, i, s)
-
-syntax "sum_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| sum_loop_decreases $max $i $s) =>`(tactic| sorry)
-
-/- [loops::sum_with_mut_borrows]: termination measure -/
-@[simp]
-def sum_with_mut_borrows_loop_terminates (max : UInt32) (mi : UInt32)
- (ms : UInt32) :=
- (max, mi, ms)
-
-syntax "sum_with_mut_borrows_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| sum_with_mut_borrows_loop_decreases $max $mi $ms) =>`(tactic| sorry)
-
-/- [loops::sum_with_shared_borrows]: termination measure -/
-@[simp]
-def sum_with_shared_borrows_loop_terminates (max : UInt32) (i : UInt32)
- (s : UInt32) :=
- (max, i, s)
-
-syntax "sum_with_shared_borrows_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| sum_with_shared_borrows_loop_decreases $max $i $s) =>`(tactic| sorry)
-
-/- [loops::clear]: termination measure -/
-@[simp] def clear_loop_terminates (v : vec UInt32) (i : USize) := (v, i)
-
-syntax "clear_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| clear_loop_decreases $v $i) =>`(tactic| sorry)
-
-/- [loops::list_mem]: termination measure -/
-@[simp]
-def list_mem_loop_terminates (x : UInt32) (ls : list_t UInt32) := (x, ls)
-
-syntax "list_mem_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_mem_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop]: termination measure -/
-@[simp]
-def list_nth_mut_loop_loop_terminates (T : Type) (ls : list_t T) (i : UInt32)
- :=
- (ls, i)
-
-syntax "list_nth_mut_loop_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_loop_loop_decreases $ls $i) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop]: termination measure -/
-@[simp]
-def list_nth_shared_loop_loop_terminates (T : Type) (ls : list_t T)
- (i : UInt32) :=
- (ls, i)
-
-syntax "list_nth_shared_loop_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_loop_loop_decreases $ls $i) =>`(tactic| sorry)
-
-/- [loops::get_elem_mut]: termination measure -/
-@[simp]
-def get_elem_mut_loop_terminates (x : USize) (ls : list_t USize) := (x, ls)
-
-syntax "get_elem_mut_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| get_elem_mut_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::get_elem_shared]: termination measure -/
-@[simp]
-def get_elem_shared_loop_terminates (x : USize) (ls : list_t USize) := (x, ls)
-
-syntax "get_elem_shared_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| get_elem_shared_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_with_id]: termination measure -/
-@[simp]
-def list_nth_mut_loop_with_id_loop_terminates (T : Type) (i : UInt32)
- (ls : list_t T) :=
- (i, ls)
-
-syntax "list_nth_mut_loop_with_id_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_with_id]: termination measure -/
-@[simp]
-def list_nth_shared_loop_with_id_loop_terminates (T : Type) (i : UInt32)
- (ls : list_t T) :=
- (i, ls)
-
-syntax "list_nth_shared_loop_with_id_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_pair]: termination measure -/
-@[simp]
-def list_nth_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_mut_loop_pair_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_pair]: termination measure -/
-@[simp]
-def list_nth_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_shared_loop_pair_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_mut_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_mut_loop_pair_merge_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_shared_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_shared_loop_pair_merge_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_shared_loop_pair]: termination measure -/
-@[simp]
-def list_nth_mut_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_mut_shared_loop_pair_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_shared_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_shared_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_mut_shared_loop_pair_merge_loop_terminates (T : Type)
- (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_mut_shared_loop_pair_merge_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_mut_loop_pair]: termination measure -/
-@[simp]
-def list_nth_shared_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_shared_mut_loop_pair_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_mut_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_shared_mut_loop_pair_merge_loop_terminates (T : Type)
- (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_shared_mut_loop_pair_merge_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
diff --git a/tests/lean/misc/loops/Loops/Clauses/Template.lean b/tests/lean/misc/loops/Loops/Clauses/Template.lean
deleted file mode 100644
index d1e72d65..00000000
--- a/tests/lean/misc/loops/Loops/Clauses/Template.lean
+++ /dev/null
@@ -1,210 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [loops]: templates for the decreases clauses
-import Base.Primitives
-import Loops.Types
-
-/- [loops::sum]: termination measure -/
-@[simp]
-def sum_loop_terminates (max : UInt32) (i : UInt32) (s : UInt32) := (max, i, s)
-
-/- [loops::sum]: decreases_by tactic -/
-syntax "sum_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| sum_loop_decreases $max $i $s) =>`(tactic| sorry)
-
-/- [loops::sum_with_mut_borrows]: termination measure -/
-@[simp]
-def sum_with_mut_borrows_loop_terminates (max : UInt32) (mi : UInt32)
- (ms : UInt32) :=
- (max, mi, ms)
-
-/- [loops::sum_with_mut_borrows]: decreases_by tactic -/
-syntax "sum_with_mut_borrows_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| sum_with_mut_borrows_loop_decreases $max $mi $ms) =>`(tactic| sorry)
-
-/- [loops::sum_with_shared_borrows]: termination measure -/
-@[simp]
-def sum_with_shared_borrows_loop_terminates (max : UInt32) (i : UInt32)
- (s : UInt32) :=
- (max, i, s)
-
-/- [loops::sum_with_shared_borrows]: decreases_by tactic -/
-syntax "sum_with_shared_borrows_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| sum_with_shared_borrows_loop_decreases $max $i $s) =>`(tactic| sorry)
-
-/- [loops::clear]: termination measure -/
-@[simp] def clear_loop_terminates (v : Vec UInt32) (i : USize) := (v, i)
-
-/- [loops::clear]: decreases_by tactic -/
-syntax "clear_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| clear_loop_decreases $v $i) =>`(tactic| sorry)
-
-/- [loops::list_mem]: termination measure -/
-@[simp]
-def list_mem_loop_terminates (x : UInt32) (ls : list_t UInt32) := (x, ls)
-
-/- [loops::list_mem]: decreases_by tactic -/
-syntax "list_mem_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_mem_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop]: termination measure -/
-@[simp]
-def list_nth_mut_loop_loop_terminates (T : Type) (ls : list_t T) (i : UInt32)
- :=
- (ls, i)
-
-/- [loops::list_nth_mut_loop]: decreases_by tactic -/
-syntax "list_nth_mut_loop_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_loop_loop_decreases $ls $i) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop]: termination measure -/
-@[simp]
-def list_nth_shared_loop_loop_terminates (T : Type) (ls : list_t T)
- (i : UInt32) :=
- (ls, i)
-
-/- [loops::list_nth_shared_loop]: decreases_by tactic -/
-syntax "list_nth_shared_loop_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_loop_loop_decreases $ls $i) =>`(tactic| sorry)
-
-/- [loops::get_elem_mut]: termination measure -/
-@[simp]
-def get_elem_mut_loop_terminates (x : USize) (ls : list_t USize) := (x, ls)
-
-/- [loops::get_elem_mut]: decreases_by tactic -/
-syntax "get_elem_mut_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| get_elem_mut_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::get_elem_shared]: termination measure -/
-@[simp]
-def get_elem_shared_loop_terminates (x : USize) (ls : list_t USize) := (x, ls)
-
-/- [loops::get_elem_shared]: decreases_by tactic -/
-syntax "get_elem_shared_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| get_elem_shared_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_with_id]: termination measure -/
-@[simp]
-def list_nth_mut_loop_with_id_loop_terminates (T : Type) (i : UInt32)
- (ls : list_t T) :=
- (i, ls)
-
-/- [loops::list_nth_mut_loop_with_id]: decreases_by tactic -/
-syntax "list_nth_mut_loop_with_id_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_with_id]: termination measure -/
-@[simp]
-def list_nth_shared_loop_with_id_loop_terminates (T : Type) (i : UInt32)
- (ls : list_t T) :=
- (i, ls)
-
-/- [loops::list_nth_shared_loop_with_id]: decreases_by tactic -/
-syntax "list_nth_shared_loop_with_id_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_pair]: termination measure -/
-@[simp]
-def list_nth_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_mut_loop_pair]: decreases_by tactic -/
-syntax "list_nth_mut_loop_pair_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_pair]: termination measure -/
-@[simp]
-def list_nth_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_shared_loop_pair]: decreases_by tactic -/
-syntax "list_nth_shared_loop_pair_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_mut_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_mut_loop_pair_merge]: decreases_by tactic -/
-syntax "list_nth_mut_loop_pair_merge_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_shared_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_shared_loop_pair_merge]: decreases_by tactic -/
-syntax "list_nth_shared_loop_pair_merge_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_shared_loop_pair]: termination measure -/
-@[simp]
-def list_nth_mut_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_mut_shared_loop_pair]: decreases_by tactic -/
-syntax "list_nth_mut_shared_loop_pair_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_shared_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_shared_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_mut_shared_loop_pair_merge_loop_terminates (T : Type)
- (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_mut_shared_loop_pair_merge]: decreases_by tactic -/
-syntax "list_nth_mut_shared_loop_pair_merge_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_mut_loop_pair]: termination measure -/
-@[simp]
-def list_nth_shared_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_shared_mut_loop_pair]: decreases_by tactic -/
-syntax "list_nth_shared_mut_loop_pair_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_mut_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_shared_mut_loop_pair_merge_loop_terminates (T : Type)
- (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_shared_mut_loop_pair_merge]: decreases_by tactic -/
-syntax "list_nth_shared_mut_loop_pair_merge_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
diff --git a/tests/lean/misc/loops/Loops/Funs.lean b/tests/lean/misc/loops/Loops/Funs.lean
deleted file mode 100644
index 5a81ebff..00000000
--- a/tests/lean/misc/loops/Loops/Funs.lean
+++ /dev/null
@@ -1,740 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [loops]: function definitions
-import Base.Primitives
-import Loops.Types
-import Loops.Clauses.Clauses
-
-/- [loops::sum] -/
-def sum_loop_fwd (max : UInt32) (i : UInt32) (s : UInt32) : (Result UInt32) :=
- if h: i < max
- then
- do
- let s0 ← UInt32.checked_add s i
- let i0 ← UInt32.checked_add i (UInt32.ofNatCore 1 (by intlit))
- sum_loop_fwd max i0 s0
- else UInt32.checked_mul s (UInt32.ofNatCore 2 (by intlit))
-termination_by sum_loop_fwd max i s => sum_loop_terminates max i s
-decreasing_by sum_loop_decreases max i s
-
-/- [loops::sum] -/
-def sum_fwd (max : UInt32) : Result UInt32 :=
- sum_loop_fwd max (UInt32.ofNatCore 0 (by intlit))
- (UInt32.ofNatCore 0 (by intlit))
-
-/- [loops::sum_with_mut_borrows] -/
-def sum_with_mut_borrows_loop_fwd
- (max : UInt32) (mi : UInt32) (ms : UInt32) : (Result UInt32) :=
- if h: mi < max
- then
- do
- let ms0 ← UInt32.checked_add ms mi
- let mi0 ← UInt32.checked_add mi (UInt32.ofNatCore 1 (by intlit))
- sum_with_mut_borrows_loop_fwd max mi0 ms0
- else UInt32.checked_mul ms (UInt32.ofNatCore 2 (by intlit))
-termination_by sum_with_mut_borrows_loop_fwd max mi ms =>
- sum_with_mut_borrows_loop_terminates max mi ms
-decreasing_by sum_with_mut_borrows_loop_decreases max mi ms
-
-/- [loops::sum_with_mut_borrows] -/
-def sum_with_mut_borrows_fwd (max : UInt32) : Result UInt32 :=
- sum_with_mut_borrows_loop_fwd max (UInt32.ofNatCore 0 (by intlit))
- (UInt32.ofNatCore 0 (by intlit))
-
-/- [loops::sum_with_shared_borrows] -/
-def sum_with_shared_borrows_loop_fwd
- (max : UInt32) (i : UInt32) (s : UInt32) : (Result UInt32) :=
- if h: i < max
- then
- do
- let i0 ← UInt32.checked_add i (UInt32.ofNatCore 1 (by intlit))
- let s0 ← UInt32.checked_add s i0
- sum_with_shared_borrows_loop_fwd max i0 s0
- else UInt32.checked_mul s (UInt32.ofNatCore 2 (by intlit))
-termination_by sum_with_shared_borrows_loop_fwd max i s =>
- sum_with_shared_borrows_loop_terminates max i s
-decreasing_by sum_with_shared_borrows_loop_decreases max i s
-
-/- [loops::sum_with_shared_borrows] -/
-def sum_with_shared_borrows_fwd (max : UInt32) : Result UInt32 :=
- sum_with_shared_borrows_loop_fwd max (UInt32.ofNatCore 0 (by intlit))
- (UInt32.ofNatCore 0 (by intlit))
-
-/- [loops::clear] -/
-def clear_loop_fwd_back (v : Vec UInt32) (i : USize) : (Result (Vec UInt32)) :=
- let i0 := vec_len UInt32 v
- if h: i < i0
- then
- do
- let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit))
- let v0 ← vec_index_mut_back UInt32 v i (UInt32.ofNatCore 0 (by intlit))
- clear_loop_fwd_back v0 i1
- else Result.ret v
-termination_by clear_loop_fwd_back v i => clear_loop_terminates v i
-decreasing_by clear_loop_decreases v i
-
-/- [loops::clear] -/
-def clear_fwd_back (v : Vec UInt32) : Result (Vec UInt32) :=
- clear_loop_fwd_back v (USize.ofNatCore 0 (by intlit))
-
-/- [loops::list_mem] -/
-def list_mem_loop_fwd (x : UInt32) (ls : list_t UInt32) : (Result Bool) :=
- match h: ls with
- | list_t.ListCons y tl =>
- if h: y = x
- then Result.ret true
- else list_mem_loop_fwd x tl
- | list_t.ListNil => Result.ret false
-termination_by list_mem_loop_fwd x ls => list_mem_loop_terminates x ls
-decreasing_by list_mem_loop_decreases x ls
-
-/- [loops::list_mem] -/
-def list_mem_fwd (x : UInt32) (ls : list_t UInt32) : Result Bool :=
- list_mem_loop_fwd x ls
-
-/- [loops::list_nth_mut_loop] -/
-def list_nth_mut_loop_loop_fwd
- (T : Type) (ls : list_t T) (i : UInt32) : (Result T) :=
- match h: ls with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret x
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_mut_loop_loop_fwd T tl i0
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_loop_loop_fwd ls i =>
- list_nth_mut_loop_loop_terminates T ls i
-decreasing_by list_nth_mut_loop_loop_decreases ls i
-
-/- [loops::list_nth_mut_loop] -/
-def list_nth_mut_loop_fwd (T : Type) (ls : list_t T) (i : UInt32) : Result T :=
- list_nth_mut_loop_loop_fwd T ls i
-
-/- [loops::list_nth_mut_loop] -/
-def list_nth_mut_loop_loop_back
- (T : Type) (ls : list_t T) (i : UInt32) (ret0 : T) : (Result (list_t T)) :=
- match h: ls with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (list_t.ListCons ret0 tl)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let tl0 ← list_nth_mut_loop_loop_back T tl i0 ret0
- Result.ret (list_t.ListCons x tl0)
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_loop_loop_back ls i ret0 =>
- list_nth_mut_loop_loop_terminates T ls i
-decreasing_by list_nth_mut_loop_loop_decreases ls i
-
-/- [loops::list_nth_mut_loop] -/
-def list_nth_mut_loop_back
- (T : Type) (ls : list_t T) (i : UInt32) (ret0 : T) : Result (list_t T) :=
- list_nth_mut_loop_loop_back T ls i ret0
-
-/- [loops::list_nth_shared_loop] -/
-def list_nth_shared_loop_loop_fwd
- (T : Type) (ls : list_t T) (i : UInt32) : (Result T) :=
- match h: ls with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret x
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_shared_loop_loop_fwd T tl i0
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_shared_loop_loop_fwd ls i =>
- list_nth_shared_loop_loop_terminates T ls i
-decreasing_by list_nth_shared_loop_loop_decreases ls i
-
-/- [loops::list_nth_shared_loop] -/
-def list_nth_shared_loop_fwd
- (T : Type) (ls : list_t T) (i : UInt32) : Result T :=
- list_nth_shared_loop_loop_fwd T ls i
-
-/- [loops::get_elem_mut] -/
-def get_elem_mut_loop_fwd (x : USize) (ls : list_t USize) : (Result USize) :=
- match h: ls with
- | list_t.ListCons y tl =>
- if h: y = x
- then Result.ret y
- else get_elem_mut_loop_fwd x tl
- | list_t.ListNil => Result.fail Error.panic
-termination_by get_elem_mut_loop_fwd x ls => get_elem_mut_loop_terminates x ls
-decreasing_by get_elem_mut_loop_decreases x ls
-
-/- [loops::get_elem_mut] -/
-def get_elem_mut_fwd (slots : Vec (list_t USize)) (x : USize) : Result USize :=
- do
- let l ←
- vec_index_mut_fwd (list_t USize) slots (USize.ofNatCore 0 (by intlit))
- get_elem_mut_loop_fwd x l
-
-/- [loops::get_elem_mut] -/
-def get_elem_mut_loop_back
- (x : USize) (ls : list_t USize) (ret0 : USize) : (Result (list_t USize)) :=
- match h: ls with
- | list_t.ListCons y tl =>
- if h: y = x
- then Result.ret (list_t.ListCons ret0 tl)
- else
- do
- let tl0 ← get_elem_mut_loop_back x tl ret0
- Result.ret (list_t.ListCons y tl0)
- | list_t.ListNil => Result.fail Error.panic
-termination_by get_elem_mut_loop_back x ls ret0 =>
- get_elem_mut_loop_terminates x ls
-decreasing_by get_elem_mut_loop_decreases x ls
-
-/- [loops::get_elem_mut] -/
-def get_elem_mut_back
- (slots : Vec (list_t USize)) (x : USize) (ret0 : USize) :
- Result (Vec (list_t USize))
- :=
- do
- let l ←
- vec_index_mut_fwd (list_t USize) slots (USize.ofNatCore 0 (by intlit))
- let l0 ← get_elem_mut_loop_back x l ret0
- vec_index_mut_back (list_t USize) slots (USize.ofNatCore 0 (by intlit)) l0
-
-/- [loops::get_elem_shared] -/
-def get_elem_shared_loop_fwd
- (x : USize) (ls : list_t USize) : (Result USize) :=
- match h: ls with
- | list_t.ListCons y tl =>
- if h: y = x
- then Result.ret y
- else get_elem_shared_loop_fwd x tl
- | list_t.ListNil => Result.fail Error.panic
-termination_by get_elem_shared_loop_fwd x ls =>
- get_elem_shared_loop_terminates x ls
-decreasing_by get_elem_shared_loop_decreases x ls
-
-/- [loops::get_elem_shared] -/
-def get_elem_shared_fwd
- (slots : Vec (list_t USize)) (x : USize) : Result USize :=
- do
- let l ←
- vec_index_fwd (list_t USize) slots (USize.ofNatCore 0 (by intlit))
- get_elem_shared_loop_fwd x l
-
-/- [loops::id_mut] -/
-def id_mut_fwd (T : Type) (ls : list_t T) : Result (list_t T) :=
- Result.ret ls
-
-/- [loops::id_mut] -/
-def id_mut_back
- (T : Type) (ls : list_t T) (ret0 : list_t T) : Result (list_t T) :=
- Result.ret ret0
-
-/- [loops::id_shared] -/
-def id_shared_fwd (T : Type) (ls : list_t T) : Result (list_t T) :=
- Result.ret ls
-
-/- [loops::list_nth_mut_loop_with_id] -/
-def list_nth_mut_loop_with_id_loop_fwd
- (T : Type) (i : UInt32) (ls : list_t T) : (Result T) :=
- match h: ls with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret x
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_mut_loop_with_id_loop_fwd T i0 tl
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_loop_with_id_loop_fwd i ls =>
- list_nth_mut_loop_with_id_loop_terminates T i ls
-decreasing_by list_nth_mut_loop_with_id_loop_decreases i ls
-
-/- [loops::list_nth_mut_loop_with_id] -/
-def list_nth_mut_loop_with_id_fwd
- (T : Type) (ls : list_t T) (i : UInt32) : Result T :=
- do
- let ls0 ← id_mut_fwd T ls
- list_nth_mut_loop_with_id_loop_fwd T i ls0
-
-/- [loops::list_nth_mut_loop_with_id] -/
-def list_nth_mut_loop_with_id_loop_back
- (T : Type) (i : UInt32) (ls : list_t T) (ret0 : T) : (Result (list_t T)) :=
- match h: ls with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (list_t.ListCons ret0 tl)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let tl0 ← list_nth_mut_loop_with_id_loop_back T i0 tl ret0
- Result.ret (list_t.ListCons x tl0)
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_loop_with_id_loop_back i ls ret0 =>
- list_nth_mut_loop_with_id_loop_terminates T i ls
-decreasing_by list_nth_mut_loop_with_id_loop_decreases i ls
-
-/- [loops::list_nth_mut_loop_with_id] -/
-def list_nth_mut_loop_with_id_back
- (T : Type) (ls : list_t T) (i : UInt32) (ret0 : T) : Result (list_t T) :=
- do
- let ls0 ← id_mut_fwd T ls
- let l ← list_nth_mut_loop_with_id_loop_back T i ls0 ret0
- id_mut_back T ls l
-
-/- [loops::list_nth_shared_loop_with_id] -/
-def list_nth_shared_loop_with_id_loop_fwd
- (T : Type) (i : UInt32) (ls : list_t T) : (Result T) :=
- match h: ls with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret x
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_shared_loop_with_id_loop_fwd T i0 tl
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_shared_loop_with_id_loop_fwd i ls =>
- list_nth_shared_loop_with_id_loop_terminates T i ls
-decreasing_by list_nth_shared_loop_with_id_loop_decreases i ls
-
-/- [loops::list_nth_shared_loop_with_id] -/
-def list_nth_shared_loop_with_id_fwd
- (T : Type) (ls : list_t T) (i : UInt32) : Result T :=
- do
- let ls0 ← id_shared_fwd T ls
- list_nth_shared_loop_with_id_loop_fwd T i ls0
-
-/- [loops::list_nth_mut_loop_pair] -/
-def list_nth_mut_loop_pair_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- (Result (T × T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (x0, x1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_mut_loop_pair_loop_fwd T tl0 tl1 i0
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_loop_pair_loop_fwd ls0 ls1 i =>
- list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_mut_loop_pair] -/
-def list_nth_mut_loop_pair_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- Result (T × T)
- :=
- list_nth_mut_loop_pair_loop_fwd T ls0 ls1 i
-
-/- [loops::list_nth_mut_loop_pair] -/
-def list_nth_mut_loop_pair_loop_back'a
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- (Result (list_t T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (list_t.ListCons ret0 tl0)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let tl00 ← list_nth_mut_loop_pair_loop_back'a T tl0 tl1 i0 ret0
- Result.ret (list_t.ListCons x0 tl00)
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_loop_pair_loop_back'a ls0 ls1 i ret0 =>
- list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_mut_loop_pair] -/
-def list_nth_mut_loop_pair_back'a
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- Result (list_t T)
- :=
- list_nth_mut_loop_pair_loop_back'a T ls0 ls1 i ret0
-
-/- [loops::list_nth_mut_loop_pair] -/
-def list_nth_mut_loop_pair_loop_back'b
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- (Result (list_t T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (list_t.ListCons ret0 tl1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let tl10 ← list_nth_mut_loop_pair_loop_back'b T tl0 tl1 i0 ret0
- Result.ret (list_t.ListCons x1 tl10)
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_loop_pair_loop_back'b ls0 ls1 i ret0 =>
- list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_mut_loop_pair] -/
-def list_nth_mut_loop_pair_back'b
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- Result (list_t T)
- :=
- list_nth_mut_loop_pair_loop_back'b T ls0 ls1 i ret0
-
-/- [loops::list_nth_shared_loop_pair] -/
-def list_nth_shared_loop_pair_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- (Result (T × T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (x0, x1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_shared_loop_pair_loop_fwd T tl0 tl1 i0
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_shared_loop_pair_loop_fwd ls0 ls1 i =>
- list_nth_shared_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_loop_pair_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_shared_loop_pair] -/
-def list_nth_shared_loop_pair_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- Result (T × T)
- :=
- list_nth_shared_loop_pair_loop_fwd T ls0 ls1 i
-
-/- [loops::list_nth_mut_loop_pair_merge] -/
-def list_nth_mut_loop_pair_merge_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- (Result (T × T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (x0, x1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_mut_loop_pair_merge_loop_fwd T tl0 tl1 i0
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_loop_pair_merge_loop_fwd ls0 ls1 i =>
- list_nth_mut_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_loop_pair_merge_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_mut_loop_pair_merge] -/
-def list_nth_mut_loop_pair_merge_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- Result (T × T)
- :=
- list_nth_mut_loop_pair_merge_loop_fwd T ls0 ls1 i
-
-/- [loops::list_nth_mut_loop_pair_merge] -/
-def list_nth_mut_loop_pair_merge_loop_back
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : (T × T)) :
- (Result ((list_t T) × (list_t T)))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then
- let (t, t0) := ret0
- Result.ret (list_t.ListCons t tl0, list_t.ListCons t0 tl1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let (tl00, tl10) ←
- list_nth_mut_loop_pair_merge_loop_back T tl0 tl1 i0 ret0
- Result.ret (list_t.ListCons x0 tl00, list_t.ListCons x1 tl10)
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_loop_pair_merge_loop_back ls0 ls1 i ret0 =>
- list_nth_mut_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_loop_pair_merge_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_mut_loop_pair_merge] -/
-def list_nth_mut_loop_pair_merge_back
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : (T × T)) :
- Result ((list_t T) × (list_t T))
- :=
- list_nth_mut_loop_pair_merge_loop_back T ls0 ls1 i ret0
-
-/- [loops::list_nth_shared_loop_pair_merge] -/
-def list_nth_shared_loop_pair_merge_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- (Result (T × T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (x0, x1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_shared_loop_pair_merge_loop_fwd T tl0 tl1 i0
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_shared_loop_pair_merge_loop_fwd ls0 ls1 i =>
- list_nth_shared_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_loop_pair_merge_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_shared_loop_pair_merge] -/
-def list_nth_shared_loop_pair_merge_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- Result (T × T)
- :=
- list_nth_shared_loop_pair_merge_loop_fwd T ls0 ls1 i
-
-/- [loops::list_nth_mut_shared_loop_pair] -/
-def list_nth_mut_shared_loop_pair_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- (Result (T × T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (x0, x1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_mut_shared_loop_pair_loop_fwd T tl0 tl1 i0
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_shared_loop_pair_loop_fwd ls0 ls1 i =>
- list_nth_mut_shared_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_shared_loop_pair_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_mut_shared_loop_pair] -/
-def list_nth_mut_shared_loop_pair_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- Result (T × T)
- :=
- list_nth_mut_shared_loop_pair_loop_fwd T ls0 ls1 i
-
-/- [loops::list_nth_mut_shared_loop_pair] -/
-def list_nth_mut_shared_loop_pair_loop_back
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- (Result (list_t T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (list_t.ListCons ret0 tl0)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let tl00 ←
- list_nth_mut_shared_loop_pair_loop_back T tl0 tl1 i0 ret0
- Result.ret (list_t.ListCons x0 tl00)
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_shared_loop_pair_loop_back ls0 ls1 i ret0 =>
- list_nth_mut_shared_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_shared_loop_pair_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_mut_shared_loop_pair] -/
-def list_nth_mut_shared_loop_pair_back
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- Result (list_t T)
- :=
- list_nth_mut_shared_loop_pair_loop_back T ls0 ls1 i ret0
-
-/- [loops::list_nth_mut_shared_loop_pair_merge] -/
-def list_nth_mut_shared_loop_pair_merge_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- (Result (T × T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (x0, x1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_mut_shared_loop_pair_merge_loop_fwd T tl0 tl1 i0
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_shared_loop_pair_merge_loop_fwd ls0 ls1 i =>
- list_nth_mut_shared_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_shared_loop_pair_merge_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_mut_shared_loop_pair_merge] -/
-def list_nth_mut_shared_loop_pair_merge_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- Result (T × T)
- :=
- list_nth_mut_shared_loop_pair_merge_loop_fwd T ls0 ls1 i
-
-/- [loops::list_nth_mut_shared_loop_pair_merge] -/
-def list_nth_mut_shared_loop_pair_merge_loop_back
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- (Result (list_t T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (list_t.ListCons ret0 tl0)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let tl00 ←
- list_nth_mut_shared_loop_pair_merge_loop_back T tl0 tl1 i0 ret0
- Result.ret (list_t.ListCons x0 tl00)
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_mut_shared_loop_pair_merge_loop_back ls0 ls1 i ret0 =>
- list_nth_mut_shared_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_shared_loop_pair_merge_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_mut_shared_loop_pair_merge] -/
-def list_nth_mut_shared_loop_pair_merge_back
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- Result (list_t T)
- :=
- list_nth_mut_shared_loop_pair_merge_loop_back T ls0 ls1 i ret0
-
-/- [loops::list_nth_shared_mut_loop_pair] -/
-def list_nth_shared_mut_loop_pair_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- (Result (T × T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (x0, x1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_shared_mut_loop_pair_loop_fwd T tl0 tl1 i0
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_shared_mut_loop_pair_loop_fwd ls0 ls1 i =>
- list_nth_shared_mut_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_mut_loop_pair_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_shared_mut_loop_pair] -/
-def list_nth_shared_mut_loop_pair_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- Result (T × T)
- :=
- list_nth_shared_mut_loop_pair_loop_fwd T ls0 ls1 i
-
-/- [loops::list_nth_shared_mut_loop_pair] -/
-def list_nth_shared_mut_loop_pair_loop_back
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- (Result (list_t T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (list_t.ListCons ret0 tl1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let tl10 ←
- list_nth_shared_mut_loop_pair_loop_back T tl0 tl1 i0 ret0
- Result.ret (list_t.ListCons x1 tl10)
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_shared_mut_loop_pair_loop_back ls0 ls1 i ret0 =>
- list_nth_shared_mut_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_mut_loop_pair_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_shared_mut_loop_pair] -/
-def list_nth_shared_mut_loop_pair_back
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- Result (list_t T)
- :=
- list_nth_shared_mut_loop_pair_loop_back T ls0 ls1 i ret0
-
-/- [loops::list_nth_shared_mut_loop_pair_merge] -/
-def list_nth_shared_mut_loop_pair_merge_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- (Result (T × T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (x0, x1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_shared_mut_loop_pair_merge_loop_fwd T tl0 tl1 i0
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_shared_mut_loop_pair_merge_loop_fwd ls0 ls1 i =>
- list_nth_shared_mut_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_mut_loop_pair_merge_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_shared_mut_loop_pair_merge] -/
-def list_nth_shared_mut_loop_pair_merge_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) :
- Result (T × T)
- :=
- list_nth_shared_mut_loop_pair_merge_loop_fwd T ls0 ls1 i
-
-/- [loops::list_nth_shared_mut_loop_pair_merge] -/
-def list_nth_shared_mut_loop_pair_merge_loop_back
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- (Result (list_t T))
- :=
- match h: ls0 with
- | list_t.ListCons x0 tl0 =>
- match h: ls1 with
- | list_t.ListCons x1 tl1 =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (list_t.ListCons ret0 tl1)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let tl10 ←
- list_nth_shared_mut_loop_pair_merge_loop_back T tl0 tl1 i0 ret0
- Result.ret (list_t.ListCons x1 tl10)
- | list_t.ListNil => Result.fail Error.panic
- | list_t.ListNil => Result.fail Error.panic
-termination_by list_nth_shared_mut_loop_pair_merge_loop_back ls0 ls1 i ret0 =>
- list_nth_shared_mut_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_mut_loop_pair_merge_loop_decreases ls0 ls1 i
-
-/- [loops::list_nth_shared_mut_loop_pair_merge] -/
-def list_nth_shared_mut_loop_pair_merge_back
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : UInt32) (ret0 : T) :
- Result (list_t T)
- :=
- list_nth_shared_mut_loop_pair_merge_loop_back T ls0 ls1 i ret0
-
diff --git a/tests/lean/misc/loops/Loops/Types.lean b/tests/lean/misc/loops/Loops/Types.lean
deleted file mode 100644
index f4b6809e..00000000
--- a/tests/lean/misc/loops/Loops/Types.lean
+++ /dev/null
@@ -1,9 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [loops]: type definitions
-import Base.Primitives
-
-/- [loops::List] -/
-inductive list_t (T : Type) :=
-| ListCons : T -> list_t T -> list_t T
-| ListNil : list_t T
-
diff --git a/tests/lean/misc/loops/lakefile.lean b/tests/lean/misc/loops/lakefile.lean
deleted file mode 100644
index 0d20ba1f..00000000
--- a/tests/lean/misc/loops/lakefile.lean
+++ /dev/null
@@ -1,18 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «loops» {
- -- add package configuration options here
-}
-
-lean_lib «Base» {
- -- add library configuration options here
-}
-
-lean_lib «Loops» {
- -- add library configuration options here
-}
-
diff --git a/tests/lean/misc/no_nested_borrows/Base/Primitives.lean b/tests/lean/misc/no_nested_borrows/Base/Primitives.lean
deleted file mode 100644
index 5b64e908..00000000
--- a/tests/lean/misc/no_nested_borrows/Base/Primitives.lean
+++ /dev/null
@@ -1,392 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ...,
--- USize. They are generally defined in an idiomatic style, except that there is
--- not a single type class to rule them all (more on that below). The absence of
--- type class is intentional, and allows the Lean compiler to efficiently map
--- them to machine integers during compilation.
-
--- USize is designed properly: you cannot reduce `getNumBits` using the
--- simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really
--- support, at least officially, 16-bit microcontrollers, so this seems like a
--- fine design decision for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic|
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => decide
- | _, Or.inr rfl => decide)
-
--- This is how the macro is expected to be used
-#eval USize.ofNatCore 0 (by intlit)
-
--- Also works for other integer types (at the expense of a needless disjunction)
-#eval UInt32.ofNatCore 0 (by intlit)
-
--- The machine integer operations (e.g. sub) are always total, which is not what
--- we want. We therefore define "checked" variants, below. Note that we add a
--- tiny bit of complexity for the USize variant: we first check whether the
--- result is < 2^32; if it is, we can compute the definition, rather than
--- returning a term that is computationally stuck (the comparison to USize.size
--- cannot reduce at compile-time, per the remark about regarding `getNumBits`).
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def USize.checked_sub (n: USize) (m: USize): Result USize :=
- -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?
- if n >= m then
- let n' := USize.toNat n
- let m' := USize.toNat n
- let r := USize.ofNatCore (n' - m') (by
- have h: n' - m' <= n' := by
- apply Nat.sub_le_of_le_add
- case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left
- apply Nat.lt_of_le_of_lt h
- apply n.val.isLt
- )
- return r
- else
- fail integerOverflow
-
-@[simp]
-theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size :=
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide)
- | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide)
-
-def USize.checked_add (n: USize) (m: USize): Result USize :=
- if h: n.val + m.val < USize.size then
- .ret ⟨ n.val + m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_rem (n: USize) (m: USize): Result USize :=
- if h: m > 0 then
- .ret ⟨ n.val % m.val, by
- have h1: ↑m.val < USize.size := m.val.isLt
- have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h
- apply Nat.lt_trans h2 h1
- ⟩
- else
- .fail integerOverflow
-
-def USize.checked_mul (n: USize) (m: USize): Result USize :=
- if h: n.val * m.val < USize.size then
- .ret ⟨ n.val * m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_div (n: USize) (m: USize): Result USize :=
- if m > 0 then
- .ret ⟨ n.val / m.val, by
- have h1: ↑n.val < USize.size := n.val.isLt
- have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val
- apply Nat.lt_of_le_of_lt h2 h1
- ⟩
- else
- .fail integerOverflow
-
--- Test behavior...
-#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
-
-#eval USize.checked_sub 20 10
--- NOTE: compare with concrete behavior here, which I do not think we want
-#eval USize.sub 0 1
-#eval UInt8.add 255 255
-
--- We now define a type class that subsumes the various machine integer types, so
--- as to write a concise definition for scalar_cast, rather than exhaustively
--- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- and fails if a cast operation would involve a truncation or modulo.
-
-class MachineInteger (t: Type) where
- size: Nat
- val: t -> Fin size
- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
-set_option hygiene false in
-run_cmd
- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
- Lean.Elab.Command.elabCommand (← `(
- namespace $typeName
- instance: MachineInteger $typeName where
- size := size
- val := val
- ofNatCore := ofNatCore
- end $typeName
- ))
-
--- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- Lean to infer `src`.
-
-def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
- if h: MachineInteger.val x < MachineInteger.size dst then
- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
- else
- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
--- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size)
--- rather than maximum values (usize_max).
-def Vec (α : Type u) := { l : List α // List.length l < USize.size }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by {
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => simp
- | _, Or.inr rfl => simp
- } ⟩
-
-#check vec_new
-
-def vec_len (α : Type u) (v : Vec α) : USize :=
- let ⟨ v, l ⟩ := v
- USize.ofNatCore (List.length v) l
-
-#eval vec_len Nat (vec_new Nat)
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
--- NOTE: old version trying to use a subtype notation, but probably better to
--- leave Result elimination to auxiliary lemmas with suitable preconditions
--- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one
--- make the proof work in that case? Probably need to import tactics from
--- mathlib to deal with inequalities... would love to see an example.
-def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) //
- match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}
- :=
- if h : List.length v.val + 1 < USize.size then
- ⟨ return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩, by simp ⟩
- else
- ⟨ fail maximumSizeExceeded, by simp ⟩
-
-#eval do
- -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with
- -- fields val and property. However, Lean's elaborator can automatically
- -- select the `val` field if the context provides a type annotation. We
- -- annotate `x`, which relieves us of having to write `.val` on the right-hand
- -- side of the monadic let.
- let v := vec_new Nat
- let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here?
- -- TODO: strengthen post-condition above and do a demo to show that we can
- -- safely eliminate the `fail` case
- return (vec_len Nat x)
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val + 1 <= 4294967295 then
- return ⟨ List.concat v.val x,
- by
- rw [List.length_concat]
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: List.length v.val + 1 < USize.size then
- return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------------
--- SANITY CHECKS --
--------------------
-
--- TODO: add more once we have signed integers
-
-#assert (USize.checked_rem 1 2 == .ret 1)
diff --git a/tests/lean/misc/no_nested_borrows/NoNestedBorrows.lean b/tests/lean/misc/no_nested_borrows/NoNestedBorrows.lean
deleted file mode 100644
index a20ee9fd..00000000
--- a/tests/lean/misc/no_nested_borrows/NoNestedBorrows.lean
+++ /dev/null
@@ -1,556 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [no_nested_borrows]
-import Base.Primitives
-
-structure OpaqueDefs where
-
- /- [no_nested_borrows::Pair] -/
- structure pair_t (T1 T2 : Type) where pair_x : T1 pair_y : T2
-
- /- [no_nested_borrows::List] -/
- inductive list_t (T : Type) :=
- | ListCons : T -> list_t T -> list_t T
- | ListNil : list_t T
-
- /- [no_nested_borrows::One] -/
- inductive one_t (T1 : Type) := | OneOne : T1 -> one_t T1
-
- /- [no_nested_borrows::EmptyEnum] -/
- inductive empty_enum_t := | EmptyEnumEmpty : empty_enum_t
-
- /- [no_nested_borrows::Enum] -/
- inductive enum_t := | EnumVariant1 : enum_t | EnumVariant2 : enum_t
-
- /- [no_nested_borrows::EmptyStruct] -/
- structure empty_struct_t where
-
- /- [no_nested_borrows::Sum] -/
- inductive sum_t (T1 T2 : Type) :=
- | SumLeft : T1 -> sum_t T1 T2
- | SumRight : T2 -> sum_t T1 T2
-
- /- [no_nested_borrows::neg_test] -/
- def neg_test_fwd (x : Int32) : Result Int32 :=
- Int32.checked_neg x
-
- /- [no_nested_borrows::add_test] -/
- def add_test_fwd (x : UInt32) (y : UInt32) : Result UInt32 :=
- UInt32.checked_add x y
-
- /- [no_nested_borrows::subs_test] -/
- def subs_test_fwd (x : UInt32) (y : UInt32) : Result UInt32 :=
- UInt32.checked_sub x y
-
- /- [no_nested_borrows::div_test] -/
- def div_test_fwd (x : UInt32) (y : UInt32) : Result UInt32 :=
- UInt32.checked_div x y
-
- /- [no_nested_borrows::div_test1] -/
- def div_test1_fwd (x : UInt32) : Result UInt32 :=
- UInt32.checked_div x (UInt32.ofNatCore 2 (by intlit))
-
- /- [no_nested_borrows::rem_test] -/
- def rem_test_fwd (x : UInt32) (y : UInt32) : Result UInt32 :=
- UInt32.checked_rem x y
-
- /- [no_nested_borrows::cast_test] -/
- def cast_test_fwd (x : UInt32) : Result Int32 :=
- scalar_cast Int32 x
-
- /- [no_nested_borrows::test2] -/
- def test2_fwd : Result Unit :=
- do
- let _ ← UInt32.checked_add (UInt32.ofNatCore 23 (by intlit))
- (UInt32.ofNatCore 44 (by intlit))
- Result.ret ()
-
- /- Unit test for [no_nested_borrows::test2] -/
- #assert (test2_fwd == .ret ())
-
- /- [no_nested_borrows::get_max] -/
- def get_max_fwd (x : UInt32) (y : UInt32) : Result UInt32 :=
- if h: x >= y
- then Result.ret x
- else Result.ret y
-
- /- [no_nested_borrows::test3] -/
- def test3_fwd : Result Unit :=
- do
- let x ←
- get_max_fwd (UInt32.ofNatCore 4 (by intlit))
- (UInt32.ofNatCore 3 (by intlit))
- let y ←
- get_max_fwd (UInt32.ofNatCore 10 (by intlit))
- (UInt32.ofNatCore 11 (by intlit))
- let z ← UInt32.checked_add x y
- if h: not (z = (UInt32.ofNatCore 15 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::test3] -/
- #assert (test3_fwd == .ret ())
-
- /- [no_nested_borrows::test_neg1] -/
- def test_neg1_fwd : Result Unit :=
- do
- let y ← Int32.checked_neg (Int32.ofNatCore 3 (by intlit))
- if h: not (y = (Int32.ofNatCore -3 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::test_neg1] -/
- #assert (test_neg1_fwd == .ret ())
-
- /- [no_nested_borrows::refs_test1] -/
- def refs_test1_fwd : Result Unit :=
- if h: not ((Int32.ofNatCore 1 (by intlit)) =
- (Int32.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::refs_test1] -/
- #assert (refs_test1_fwd == .ret ())
-
- /- [no_nested_borrows::refs_test2] -/
- def refs_test2_fwd : Result Unit :=
- if h: not ((Int32.ofNatCore 2 (by intlit)) =
- (Int32.ofNatCore 2 (by intlit)))
- then Result.fail Error.panic
- else
- if h: not ((Int32.ofNatCore 0 (by intlit)) =
- (Int32.ofNatCore 0 (by intlit)))
- then Result.fail Error.panic
- else
- if h: not ((Int32.ofNatCore 2 (by intlit)) =
- (Int32.ofNatCore 2 (by intlit)))
- then Result.fail Error.panic
- else
- if h: not ((Int32.ofNatCore 2 (by intlit)) =
- (Int32.ofNatCore 2 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::refs_test2] -/
- #assert (refs_test2_fwd == .ret ())
-
- /- [no_nested_borrows::test_list1] -/
- def test_list1_fwd : Result Unit :=
- Result.ret ()
-
- /- Unit test for [no_nested_borrows::test_list1] -/
- #assert (test_list1_fwd == .ret ())
-
- /- [no_nested_borrows::test_box1] -/
- def test_box1_fwd : Result Unit :=
- let b := (Int32.ofNatCore 1 (by intlit))
- let x := b
- if h: not (x = (Int32.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::test_box1] -/
- #assert (test_box1_fwd == .ret ())
-
- /- [no_nested_borrows::copy_int] -/
- def copy_int_fwd (x : Int32) : Result Int32 :=
- Result.ret x
-
- /- [no_nested_borrows::test_unreachable] -/
- def test_unreachable_fwd (b : Bool) : Result Unit :=
- if h: b
- then Result.fail Error.panic
- else Result.ret ()
-
- /- [no_nested_borrows::test_panic] -/
- def test_panic_fwd (b : Bool) : Result Unit :=
- if h: b
- then Result.fail Error.panic
- else Result.ret ()
-
- /- [no_nested_borrows::test_copy_int] -/
- def test_copy_int_fwd : Result Unit :=
- do
- let y ← copy_int_fwd (Int32.ofNatCore 0 (by intlit))
- if h: not ((Int32.ofNatCore 0 (by intlit)) = y)
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::test_copy_int] -/
- #assert (test_copy_int_fwd == .ret ())
-
- /- [no_nested_borrows::is_cons] -/
- def is_cons_fwd (T : Type) (l : list_t T) : Result Bool :=
- match h: l with
- | list_t.ListCons t l0 => Result.ret true
- | list_t.ListNil => Result.ret false
-
- /- [no_nested_borrows::test_is_cons] -/
- def test_is_cons_fwd : Result Unit :=
- do
- let l := list_t.ListNil
- let b ←
- is_cons_fwd Int32 (list_t.ListCons (Int32.ofNatCore 0 (by intlit)) l)
- if h: not b
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::test_is_cons] -/
- #assert (test_is_cons_fwd == .ret ())
-
- /- [no_nested_borrows::split_list] -/
- def split_list_fwd (T : Type) (l : list_t T) : Result (T × (list_t T)) :=
- match h: l with
- | list_t.ListCons hd tl => Result.ret (hd, tl)
- | list_t.ListNil => Result.fail Error.panic
-
- /- [no_nested_borrows::test_split_list] -/
- def test_split_list_fwd : Result Unit :=
- do
- let l := list_t.ListNil
- let p ←
- split_list_fwd Int32 (list_t.ListCons (Int32.ofNatCore 0 (by intlit))
- l)
- let (hd, _) := p
- if h: not (hd = (Int32.ofNatCore 0 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::test_split_list] -/
- #assert (test_split_list_fwd == .ret ())
-
- /- [no_nested_borrows::choose] -/
- def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T :=
- if h: b
- then Result.ret x
- else Result.ret y
-
- /- [no_nested_borrows::choose] -/
- def choose_back
- (T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) :=
- if h: b
- then Result.ret (ret0, y)
- else Result.ret (x, ret0)
-
- /- [no_nested_borrows::choose_test] -/
- def choose_test_fwd : Result Unit :=
- do
- let z ←
- choose_fwd Int32 true (Int32.ofNatCore 0 (by intlit))
- (Int32.ofNatCore 0 (by intlit))
- let z0 ← Int32.checked_add z (Int32.ofNatCore 1 (by intlit))
- if h: not (z0 = (Int32.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let (x, y) ←
- choose_back Int32 true (Int32.ofNatCore 0 (by intlit))
- (Int32.ofNatCore 0 (by intlit)) z0
- if h: not (x = (Int32.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else
- if h: not (y = (Int32.ofNatCore 0 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::choose_test] -/
- #assert (choose_test_fwd == .ret ())
-
- /- [no_nested_borrows::test_char] -/
- def test_char_fwd : Result Char :=
- Result.ret 'a'
-
- /- [no_nested_borrows::NodeElem] -/
- mutual inductive node_elem_t (T : Type) :=
- | NodeElemCons : tree_t T -> node_elem_t T -> node_elem_t T
- | NodeElemNil : node_elem_t T
-
- /- [no_nested_borrows::Tree] -/
- inductive tree_t (T : Type) :=
- | TreeLeaf : T -> tree_t T
- | TreeNode : T -> node_elem_t T -> tree_t T -> tree_t T
-
- /- [no_nested_borrows::list_length] -/
- def list_length_fwd (T : Type) (l : list_t T) : Result UInt32 :=
- match h: l with
- | list_t.ListCons t l1 =>
- do
- let i ← list_length_fwd T l1
- UInt32.checked_add (UInt32.ofNatCore 1 (by intlit)) i
- | list_t.ListNil => Result.ret (UInt32.ofNatCore 0 (by intlit))
-
- /- [no_nested_borrows::list_nth_shared] -/
- def list_nth_shared_fwd (T : Type) (l : list_t T) (i : UInt32) : Result T :=
- match h: l with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret x
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_shared_fwd T tl i0
- | list_t.ListNil => Result.fail Error.panic
-
- /- [no_nested_borrows::list_nth_mut] -/
- def list_nth_mut_fwd (T : Type) (l : list_t T) (i : UInt32) : Result T :=
- match h: l with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret x
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_mut_fwd T tl i0
- | list_t.ListNil => Result.fail Error.panic
-
- /- [no_nested_borrows::list_nth_mut] -/
- def list_nth_mut_back
- (T : Type) (l : list_t T) (i : UInt32) (ret0 : T) : Result (list_t T) :=
- match h: l with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (list_t.ListCons ret0 tl)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let tl0 ← list_nth_mut_back T tl i0 ret0
- Result.ret (list_t.ListCons x tl0)
- | list_t.ListNil => Result.fail Error.panic
-
- /- [no_nested_borrows::list_rev_aux] -/
- def list_rev_aux_fwd
- (T : Type) (li : list_t T) (lo : list_t T) : Result (list_t T) :=
- match h: li with
- | list_t.ListCons hd tl => list_rev_aux_fwd T tl (list_t.ListCons hd lo)
- | list_t.ListNil => Result.ret lo
-
- /- [no_nested_borrows::list_rev] -/
- def list_rev_fwd_back (T : Type) (l : list_t T) : Result (list_t T) :=
- let li := mem_replace_fwd (list_t T) l list_t.ListNil
- list_rev_aux_fwd T li list_t.ListNil
-
- /- [no_nested_borrows::test_list_functions] -/
- def test_list_functions_fwd : Result Unit :=
- do
- let l := list_t.ListNil
- let l0 := list_t.ListCons (Int32.ofNatCore 2 (by intlit)) l
- let l1 := list_t.ListCons (Int32.ofNatCore 1 (by intlit)) l0
- let i ←
- list_length_fwd Int32 (list_t.ListCons (Int32.ofNatCore 0 (by intlit))
- l1)
- if h: not (i = (UInt32.ofNatCore 3 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let i0 ←
- list_nth_shared_fwd Int32 (list_t.ListCons
- (Int32.ofNatCore 0 (by intlit)) l1)
- (UInt32.ofNatCore 0 (by intlit))
- if h: not (i0 = (Int32.ofNatCore 0 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let i1 ←
- list_nth_shared_fwd Int32 (list_t.ListCons
- (Int32.ofNatCore 0 (by intlit)) l1)
- (UInt32.ofNatCore 1 (by intlit))
- if h: not (i1 = (Int32.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let i2 ←
- list_nth_shared_fwd Int32 (list_t.ListCons
- (Int32.ofNatCore 0 (by intlit)) l1)
- (UInt32.ofNatCore 2 (by intlit))
- if h: not (i2 = (Int32.ofNatCore 2 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let ls ←
- list_nth_mut_back Int32 (list_t.ListCons
- (Int32.ofNatCore 0 (by intlit)) l1)
- (UInt32.ofNatCore 1 (by intlit))
- (Int32.ofNatCore 3 (by intlit))
- let i3 ←
- list_nth_shared_fwd Int32 ls
- (UInt32.ofNatCore 0 (by intlit))
- if h: not (i3 = (Int32.ofNatCore 0 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let i4 ←
- list_nth_shared_fwd Int32 ls
- (UInt32.ofNatCore 1 (by intlit))
- if h: not (i4 = (Int32.ofNatCore 3 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let i5 ←
- list_nth_shared_fwd Int32 ls
- (UInt32.ofNatCore 2 (by intlit))
- if h: not (i5 = (Int32.ofNatCore 2 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::test_list_functions] -/
- #assert (test_list_functions_fwd == .ret ())
-
- /- [no_nested_borrows::id_mut_pair1] -/
- def id_mut_pair1_fwd (T1 T2 : Type) (x : T1) (y : T2) : Result (T1 × T2) :=
- Result.ret (x, y)
-
- /- [no_nested_borrows::id_mut_pair1] -/
- def id_mut_pair1_back
- (T1 T2 : Type) (x : T1) (y : T2) (ret0 : (T1 × T2)) : Result (T1 × T2) :=
- let (t, t0) := ret0
- Result.ret (t, t0)
-
- /- [no_nested_borrows::id_mut_pair2] -/
- def id_mut_pair2_fwd (T1 T2 : Type) (p : (T1 × T2)) : Result (T1 × T2) :=
- let (t, t0) := p
- Result.ret (t, t0)
-
- /- [no_nested_borrows::id_mut_pair2] -/
- def id_mut_pair2_back
- (T1 T2 : Type) (p : (T1 × T2)) (ret0 : (T1 × T2)) : Result (T1 × T2) :=
- let (t, t0) := ret0
- Result.ret (t, t0)
-
- /- [no_nested_borrows::id_mut_pair3] -/
- def id_mut_pair3_fwd (T1 T2 : Type) (x : T1) (y : T2) : Result (T1 × T2) :=
- Result.ret (x, y)
-
- /- [no_nested_borrows::id_mut_pair3] -/
- def id_mut_pair3_back'a
- (T1 T2 : Type) (x : T1) (y : T2) (ret0 : T1) : Result T1 :=
- Result.ret ret0
-
- /- [no_nested_borrows::id_mut_pair3] -/
- def id_mut_pair3_back'b
- (T1 T2 : Type) (x : T1) (y : T2) (ret0 : T2) : Result T2 :=
- Result.ret ret0
-
- /- [no_nested_borrows::id_mut_pair4] -/
- def id_mut_pair4_fwd (T1 T2 : Type) (p : (T1 × T2)) : Result (T1 × T2) :=
- let (t, t0) := p
- Result.ret (t, t0)
-
- /- [no_nested_borrows::id_mut_pair4] -/
- def id_mut_pair4_back'a
- (T1 T2 : Type) (p : (T1 × T2)) (ret0 : T1) : Result T1 :=
- Result.ret ret0
-
- /- [no_nested_borrows::id_mut_pair4] -/
- def id_mut_pair4_back'b
- (T1 T2 : Type) (p : (T1 × T2)) (ret0 : T2) : Result T2 :=
- Result.ret ret0
-
- /- [no_nested_borrows::StructWithTuple] -/
- structure struct_with_tuple_t (T1 T2 : Type) where
-
- struct_with_tuple_p : (T1 × T2)
-
-
- /- [no_nested_borrows::new_tuple1] -/
- def new_tuple1_fwd : Result (struct_with_tuple_t UInt32 UInt32) :=
- Result.ret
- {
- struct_with_tuple_p := ((UInt32.ofNatCore 1 (by intlit)),
- (UInt32.ofNatCore 2 (by intlit)))
- }
-
- /- [no_nested_borrows::new_tuple2] -/
- def new_tuple2_fwd : Result (struct_with_tuple_t Int16 Int16) :=
- Result.ret
- {
- struct_with_tuple_p := ((Int16.ofNatCore 1 (by intlit)),
- (Int16.ofNatCore 2 (by intlit)))
- }
-
- /- [no_nested_borrows::new_tuple3] -/
- def new_tuple3_fwd : Result (struct_with_tuple_t UInt64 Int64) :=
- Result.ret
- {
- struct_with_tuple_p := ((UInt64.ofNatCore 1 (by intlit)),
- (Int64.ofNatCore 2 (by intlit)))
- }
-
- /- [no_nested_borrows::StructWithPair] -/
- structure struct_with_pair_t (T1 T2 : Type) where
-
- struct_with_pair_p : pair_t T1 T2
-
-
- /- [no_nested_borrows::new_pair1] -/
- def new_pair1_fwd : Result (struct_with_pair_t UInt32 UInt32) :=
- Result.ret
- {
- struct_with_pair_p := {
- pair_x := (UInt32.ofNatCore 1 (by intlit)),
- pair_y := (UInt32.ofNatCore 2 (by intlit))
- }
- }
-
- /- [no_nested_borrows::test_constants] -/
- def test_constants_fwd : Result Unit :=
- do
- let swt ← new_tuple1_fwd
- let (i, _) := swt.struct_with_tuple_p
- if h: not (i = (UInt32.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let swt0 ← new_tuple2_fwd
- let (i0, _) := swt0.struct_with_tuple_p
- if h: not (i0 = (Int16.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let swt1 ← new_tuple3_fwd
- let (i1, _) := swt1.struct_with_tuple_p
- if h: not (i1 = (UInt64.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let swp ← new_pair1_fwd
- if h: not (swp.struct_with_pair_p.pair_x =
- (UInt32.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [no_nested_borrows::test_constants] -/
- #assert (test_constants_fwd == .ret ())
-
- /- [no_nested_borrows::test_weird_borrows1] -/
- def test_weird_borrows1_fwd : Result Unit :=
- Result.ret ()
-
- /- Unit test for [no_nested_borrows::test_weird_borrows1] -/
- #assert (test_weird_borrows1_fwd == .ret ())
-
- /- [no_nested_borrows::test_mem_replace] -/
- def test_mem_replace_fwd_back (px : UInt32) : Result UInt32 :=
- let y := mem_replace_fwd UInt32 px (UInt32.ofNatCore 1 (by intlit))
- if h: not (y = (UInt32.ofNatCore 0 (by intlit)))
- then Result.fail Error.panic
- else Result.ret (UInt32.ofNatCore 2 (by intlit))
-
- /- [no_nested_borrows::test_shared_borrow_bool1] -/
- def test_shared_borrow_bool1_fwd (b : Bool) : Result UInt32 :=
- if h: b
- then Result.ret (UInt32.ofNatCore 0 (by intlit))
- else Result.ret (UInt32.ofNatCore 1 (by intlit))
-
- /- [no_nested_borrows::test_shared_borrow_bool2] -/
- def test_shared_borrow_bool2_fwd : Result UInt32 :=
- Result.ret (UInt32.ofNatCore 0 (by intlit))
-
- /- [no_nested_borrows::test_shared_borrow_enum1] -/
- def test_shared_borrow_enum1_fwd (l : list_t UInt32) : Result UInt32 :=
- match h: l with
- | list_t.ListCons i l0 => Result.ret (UInt32.ofNatCore 1 (by intlit))
- | list_t.ListNil => Result.ret (UInt32.ofNatCore 0 (by intlit))
-
- /- [no_nested_borrows::test_shared_borrow_enum2] -/
- def test_shared_borrow_enum2_fwd : Result UInt32 :=
- Result.ret (UInt32.ofNatCore 0 (by intlit))
-
diff --git a/tests/lean/misc/no_nested_borrows/lakefile.lean b/tests/lean/misc/no_nested_borrows/lakefile.lean
deleted file mode 100644
index e4460813..00000000
--- a/tests/lean/misc/no_nested_borrows/lakefile.lean
+++ /dev/null
@@ -1,18 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «no_nested_borrows» {
- -- add package configuration options here
-}
-
-lean_lib «Base» {
- -- add library configuration options here
-}
-
-lean_lib «NoNestedBorrows» {
- -- add library configuration options here
-}
-
diff --git a/tests/lean/misc/paper/Base/Primitives.lean b/tests/lean/misc/paper/Base/Primitives.lean
deleted file mode 100644
index 5b64e908..00000000
--- a/tests/lean/misc/paper/Base/Primitives.lean
+++ /dev/null
@@ -1,392 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ...,
--- USize. They are generally defined in an idiomatic style, except that there is
--- not a single type class to rule them all (more on that below). The absence of
--- type class is intentional, and allows the Lean compiler to efficiently map
--- them to machine integers during compilation.
-
--- USize is designed properly: you cannot reduce `getNumBits` using the
--- simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really
--- support, at least officially, 16-bit microcontrollers, so this seems like a
--- fine design decision for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic|
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => decide
- | _, Or.inr rfl => decide)
-
--- This is how the macro is expected to be used
-#eval USize.ofNatCore 0 (by intlit)
-
--- Also works for other integer types (at the expense of a needless disjunction)
-#eval UInt32.ofNatCore 0 (by intlit)
-
--- The machine integer operations (e.g. sub) are always total, which is not what
--- we want. We therefore define "checked" variants, below. Note that we add a
--- tiny bit of complexity for the USize variant: we first check whether the
--- result is < 2^32; if it is, we can compute the definition, rather than
--- returning a term that is computationally stuck (the comparison to USize.size
--- cannot reduce at compile-time, per the remark about regarding `getNumBits`).
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def USize.checked_sub (n: USize) (m: USize): Result USize :=
- -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?
- if n >= m then
- let n' := USize.toNat n
- let m' := USize.toNat n
- let r := USize.ofNatCore (n' - m') (by
- have h: n' - m' <= n' := by
- apply Nat.sub_le_of_le_add
- case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left
- apply Nat.lt_of_le_of_lt h
- apply n.val.isLt
- )
- return r
- else
- fail integerOverflow
-
-@[simp]
-theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size :=
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide)
- | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide)
-
-def USize.checked_add (n: USize) (m: USize): Result USize :=
- if h: n.val + m.val < USize.size then
- .ret ⟨ n.val + m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_rem (n: USize) (m: USize): Result USize :=
- if h: m > 0 then
- .ret ⟨ n.val % m.val, by
- have h1: ↑m.val < USize.size := m.val.isLt
- have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h
- apply Nat.lt_trans h2 h1
- ⟩
- else
- .fail integerOverflow
-
-def USize.checked_mul (n: USize) (m: USize): Result USize :=
- if h: n.val * m.val < USize.size then
- .ret ⟨ n.val * m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_div (n: USize) (m: USize): Result USize :=
- if m > 0 then
- .ret ⟨ n.val / m.val, by
- have h1: ↑n.val < USize.size := n.val.isLt
- have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val
- apply Nat.lt_of_le_of_lt h2 h1
- ⟩
- else
- .fail integerOverflow
-
--- Test behavior...
-#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
-
-#eval USize.checked_sub 20 10
--- NOTE: compare with concrete behavior here, which I do not think we want
-#eval USize.sub 0 1
-#eval UInt8.add 255 255
-
--- We now define a type class that subsumes the various machine integer types, so
--- as to write a concise definition for scalar_cast, rather than exhaustively
--- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- and fails if a cast operation would involve a truncation or modulo.
-
-class MachineInteger (t: Type) where
- size: Nat
- val: t -> Fin size
- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
-set_option hygiene false in
-run_cmd
- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
- Lean.Elab.Command.elabCommand (← `(
- namespace $typeName
- instance: MachineInteger $typeName where
- size := size
- val := val
- ofNatCore := ofNatCore
- end $typeName
- ))
-
--- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- Lean to infer `src`.
-
-def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
- if h: MachineInteger.val x < MachineInteger.size dst then
- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
- else
- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
--- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size)
--- rather than maximum values (usize_max).
-def Vec (α : Type u) := { l : List α // List.length l < USize.size }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by {
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => simp
- | _, Or.inr rfl => simp
- } ⟩
-
-#check vec_new
-
-def vec_len (α : Type u) (v : Vec α) : USize :=
- let ⟨ v, l ⟩ := v
- USize.ofNatCore (List.length v) l
-
-#eval vec_len Nat (vec_new Nat)
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
--- NOTE: old version trying to use a subtype notation, but probably better to
--- leave Result elimination to auxiliary lemmas with suitable preconditions
--- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one
--- make the proof work in that case? Probably need to import tactics from
--- mathlib to deal with inequalities... would love to see an example.
-def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) //
- match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}
- :=
- if h : List.length v.val + 1 < USize.size then
- ⟨ return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩, by simp ⟩
- else
- ⟨ fail maximumSizeExceeded, by simp ⟩
-
-#eval do
- -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with
- -- fields val and property. However, Lean's elaborator can automatically
- -- select the `val` field if the context provides a type annotation. We
- -- annotate `x`, which relieves us of having to write `.val` on the right-hand
- -- side of the monadic let.
- let v := vec_new Nat
- let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here?
- -- TODO: strengthen post-condition above and do a demo to show that we can
- -- safely eliminate the `fail` case
- return (vec_len Nat x)
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val + 1 <= 4294967295 then
- return ⟨ List.concat v.val x,
- by
- rw [List.length_concat]
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: List.length v.val + 1 < USize.size then
- return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------------
--- SANITY CHECKS --
--------------------
-
--- TODO: add more once we have signed integers
-
-#assert (USize.checked_rem 1 2 == .ret 1)
diff --git a/tests/lean/misc/paper/Paper.lean b/tests/lean/misc/paper/Paper.lean
deleted file mode 100644
index 4faf36ee..00000000
--- a/tests/lean/misc/paper/Paper.lean
+++ /dev/null
@@ -1,128 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [paper]
-import Base.Primitives
-
-structure OpaqueDefs where
-
- /- [paper::ref_incr] -/
- def ref_incr_fwd_back (x : Int32) : Result Int32 :=
- Int32.checked_add x (Int32.ofNatCore 1 (by intlit))
-
- /- [paper::test_incr] -/
- def test_incr_fwd : Result Unit :=
- do
- let x ← ref_incr_fwd_back (Int32.ofNatCore 0 (by intlit))
- if h: not (x = (Int32.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [paper::test_incr] -/
- #assert (test_incr_fwd == .ret ())
-
- /- [paper::choose] -/
- def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T :=
- if h: b
- then Result.ret x
- else Result.ret y
-
- /- [paper::choose] -/
- def choose_back
- (T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) :=
- if h: b
- then Result.ret (ret0, y)
- else Result.ret (x, ret0)
-
- /- [paper::test_choose] -/
- def test_choose_fwd : Result Unit :=
- do
- let z ←
- choose_fwd Int32 true (Int32.ofNatCore 0 (by intlit))
- (Int32.ofNatCore 0 (by intlit))
- let z0 ← Int32.checked_add z (Int32.ofNatCore 1 (by intlit))
- if h: not (z0 = (Int32.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else
- do
- let (x, y) ←
- choose_back Int32 true (Int32.ofNatCore 0 (by intlit))
- (Int32.ofNatCore 0 (by intlit)) z0
- if h: not (x = (Int32.ofNatCore 1 (by intlit)))
- then Result.fail Error.panic
- else
- if h: not (y = (Int32.ofNatCore 0 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [paper::test_choose] -/
- #assert (test_choose_fwd == .ret ())
-
- /- [paper::List] -/
- inductive list_t (T : Type) :=
- | ListCons : T -> list_t T -> list_t T
- | ListNil : list_t T
-
- /- [paper::list_nth_mut] -/
- def list_nth_mut_fwd (T : Type) (l : list_t T) (i : UInt32) : Result T :=
- match h: l with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret x
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- list_nth_mut_fwd T tl i0
- | list_t.ListNil => Result.fail Error.panic
-
- /- [paper::list_nth_mut] -/
- def list_nth_mut_back
- (T : Type) (l : list_t T) (i : UInt32) (ret0 : T) : Result (list_t T) :=
- match h: l with
- | list_t.ListCons x tl =>
- if h: i = (UInt32.ofNatCore 0 (by intlit))
- then Result.ret (list_t.ListCons ret0 tl)
- else
- do
- let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit))
- let tl0 ← list_nth_mut_back T tl i0 ret0
- Result.ret (list_t.ListCons x tl0)
- | list_t.ListNil => Result.fail Error.panic
-
- /- [paper::sum] -/
- def sum_fwd (l : list_t Int32) : Result Int32 :=
- match h: l with
- | list_t.ListCons x tl => do
- let i ← sum_fwd tl
- Int32.checked_add x i
- | list_t.ListNil => Result.ret (Int32.ofNatCore 0 (by intlit))
-
- /- [paper::test_nth] -/
- def test_nth_fwd : Result Unit :=
- do
- let l := list_t.ListNil
- let l0 := list_t.ListCons (Int32.ofNatCore 3 (by intlit)) l
- let l1 := list_t.ListCons (Int32.ofNatCore 2 (by intlit)) l0
- let x ←
- list_nth_mut_fwd Int32 (list_t.ListCons (Int32.ofNatCore 1 (by intlit))
- l1) (UInt32.ofNatCore 2 (by intlit))
- let x0 ← Int32.checked_add x (Int32.ofNatCore 1 (by intlit))
- let l2 ←
- list_nth_mut_back Int32 (list_t.ListCons
- (Int32.ofNatCore 1 (by intlit)) l1) (UInt32.ofNatCore 2 (by intlit))
- x0
- let i ← sum_fwd l2
- if h: not (i = (Int32.ofNatCore 7 (by intlit)))
- then Result.fail Error.panic
- else Result.ret ()
-
- /- Unit test for [paper::test_nth] -/
- #assert (test_nth_fwd == .ret ())
-
- /- [paper::call_choose] -/
- def call_choose_fwd (p : (UInt32 × UInt32)) : Result UInt32 :=
- do
- let (px, py) := p
- let pz ← choose_fwd UInt32 true px py
- let pz0 ← UInt32.checked_add pz (UInt32.ofNatCore 1 (by intlit))
- let (px0, _) ← choose_back UInt32 true px py pz0
- Result.ret px0
-
diff --git a/tests/lean/misc/paper/lakefile.lean b/tests/lean/misc/paper/lakefile.lean
deleted file mode 100644
index d8affff8..00000000
--- a/tests/lean/misc/paper/lakefile.lean
+++ /dev/null
@@ -1,18 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «paper» {
- -- add package configuration options here
-}
-
-lean_lib «Base» {
- -- add library configuration options here
-}
-
-lean_lib «Paper» {
- -- add library configuration options here
-}
-