diff options
Diffstat (limited to 'tests/lean/misc/paper/Base')
-rw-r--r-- | tests/lean/misc/paper/Base/Primitives.lean | 392 |
1 files changed, 0 insertions, 392 deletions
diff --git a/tests/lean/misc/paper/Base/Primitives.lean b/tests/lean/misc/paper/Base/Primitives.lean deleted file mode 100644 index 5b64e908..00000000 --- a/tests/lean/misc/paper/Base/Primitives.lean +++ /dev/null @@ -1,392 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ..., --- USize. They are generally defined in an idiomatic style, except that there is --- not a single type class to rule them all (more on that below). The absence of --- type class is intentional, and allows the Lean compiler to efficiently map --- them to machine integers during compilation. - --- USize is designed properly: you cannot reduce `getNumBits` using the --- simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really --- support, at least officially, 16-bit microcontrollers, so this seems like a --- fine design decision for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| - match USize.size, usize_size_eq with - | _, Or.inl rfl => decide - | _, Or.inr rfl => decide) - --- This is how the macro is expected to be used -#eval USize.ofNatCore 0 (by intlit) - --- Also works for other integer types (at the expense of a needless disjunction) -#eval UInt32.ofNatCore 0 (by intlit) - --- The machine integer operations (e.g. sub) are always total, which is not what --- we want. We therefore define "checked" variants, below. Note that we add a --- tiny bit of complexity for the USize variant: we first check whether the --- result is < 2^32; if it is, we can compute the definition, rather than --- returning a term that is computationally stuck (the comparison to USize.size --- cannot reduce at compile-time, per the remark about regarding `getNumBits`). --- This is useful for the various #asserts that we want to reduce at --- type-checking time. - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def USize.checked_sub (n: USize) (m: USize): Result USize := - -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed? - if n >= m then - let n' := USize.toNat n - let m' := USize.toNat n - let r := USize.ofNatCore (n' - m') (by - have h: n' - m' <= n' := by - apply Nat.sub_le_of_le_add - case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left - apply Nat.lt_of_le_of_lt h - apply n.val.isLt - ) - return r - else - fail integerOverflow - -@[simp] -theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size := - match USize.size, usize_size_eq with - | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide) - | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide) - -def USize.checked_add (n: USize) (m: USize): Result USize := - if h: n.val + m.val < USize.size then - .ret ⟨ n.val + m.val, h ⟩ - else - .fail integerOverflow - -def USize.checked_rem (n: USize) (m: USize): Result USize := - if h: m > 0 then - .ret ⟨ n.val % m.val, by - have h1: ↑m.val < USize.size := m.val.isLt - have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h - apply Nat.lt_trans h2 h1 - ⟩ - else - .fail integerOverflow - -def USize.checked_mul (n: USize) (m: USize): Result USize := - if h: n.val * m.val < USize.size then - .ret ⟨ n.val * m.val, h ⟩ - else - .fail integerOverflow - -def USize.checked_div (n: USize) (m: USize): Result USize := - if m > 0 then - .ret ⟨ n.val / m.val, by - have h1: ↑n.val < USize.size := n.val.isLt - have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val - apply Nat.lt_of_le_of_lt h2 h1 - ⟩ - else - .fail integerOverflow - --- Test behavior... -#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 - -#eval USize.checked_sub 20 10 --- NOTE: compare with concrete behavior here, which I do not think we want -#eval USize.sub 0 1 -#eval UInt8.add 255 255 - --- We now define a type class that subsumes the various machine integer types, so --- as to write a concise definition for scalar_cast, rather than exhaustively --- enumerating all of the possible pairs. We remark that Rust has sane semantics --- and fails if a cast operation would involve a truncation or modulo. - -class MachineInteger (t: Type) where - size: Nat - val: t -> Fin size - ofNatCore: (n:Nat) -> LT.lt n size -> t - -set_option hygiene false in -run_cmd - for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do - Lean.Elab.Command.elabCommand (← `( - namespace $typeName - instance: MachineInteger $typeName where - size := size - val := val - ofNatCore := ofNatCore - end $typeName - )) - --- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- Lean to infer `src`. - -def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := - if h: MachineInteger.val x < MachineInteger.size dst then - .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) - else - .fail integerOverflow - -------------- --- VECTORS -- -------------- - --- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size) --- rather than maximum values (usize_max). -def Vec (α : Type u) := { l : List α // List.length l < USize.size } - -def vec_new (α : Type u): Vec α := ⟨ [], by { - match USize.size, usize_size_eq with - | _, Or.inl rfl => simp - | _, Or.inr rfl => simp - } ⟩ - -#check vec_new - -def vec_len (α : Type u) (v : Vec α) : USize := - let ⟨ v, l ⟩ := v - USize.ofNatCore (List.length v) l - -#eval vec_len Nat (vec_new Nat) - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - --- NOTE: old version trying to use a subtype notation, but probably better to --- leave Result elimination to auxiliary lemmas with suitable preconditions --- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one --- make the proof work in that case? Probably need to import tactics from --- mathlib to deal with inequalities... would love to see an example. -def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) // - match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} - := - if h : List.length v.val + 1 < USize.size then - ⟨ return ⟨List.concat v.val x, - by - rw [List.length_concat] - assumption - ⟩, by simp ⟩ - else - ⟨ fail maximumSizeExceeded, by simp ⟩ - -#eval do - -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with - -- fields val and property. However, Lean's elaborator can automatically - -- select the `val` field if the context provides a type annotation. We - -- annotate `x`, which relieves us of having to write `.val` on the right-hand - -- side of the monadic let. - let v := vec_new Nat - let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here? - -- TODO: strengthen post-condition above and do a demo to show that we can - -- safely eliminate the `fail` case - return (vec_len Nat x) - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val + 1 <= 4294967295 then - return ⟨ List.concat v.val x, - by - rw [List.length_concat] - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: List.length v.val + 1 < USize.size then - return ⟨List.concat v.val x, - by - rw [List.length_concat] - assumption - ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val < USize.size := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α := - if h: i.val < List.length v.val then - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α := - if h: i.val < List.length v.val then - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val < USize.size := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------------- --- SANITY CHECKS -- -------------------- - --- TODO: add more once we have signed integers - -#assert (USize.checked_rem 1 2 == .ret 1) |