diff options
Diffstat (limited to '')
| -rw-r--r-- | tests/lean/misc/external/Base/Primitives.lean | 231 | ||||
| -rw-r--r-- | tests/lean/misc/external/External/Funs.lean | 80 | ||||
| -rw-r--r-- | tests/lean/misc/external/External/Opaque.lean | 10 | ||||
| -rw-r--r-- | tests/lean/misc/external/External/Types.lean | 2 | 
4 files changed, 171 insertions, 152 deletions
| diff --git a/tests/lean/misc/external/Base/Primitives.lean b/tests/lean/misc/external/Base/Primitives.lean index 79958d94..5b64e908 100644 --- a/tests/lean/misc/external/Base/Primitives.lean +++ b/tests/lean/misc/external/Base/Primitives.lean @@ -9,74 +9,79 @@ import Mathlib.Tactic.RunCmd  -- Results & monadic combinators --- TODO: use syntactic conventions and capitalize error, result, etc. - -inductive error where -   | assertionFailure: error -   | integerOverflow: error -   | arrayOutOfBounds: error -   | maximumSizeExceeded: error -   | panic: error +inductive Error where +   | assertionFailure: Error +   | integerOverflow: Error +   | arrayOutOfBounds: Error +   | maximumSizeExceeded: Error +   | panic: Error  deriving Repr, BEq -open error +open Error -inductive result (α : Type u) where -  | ret (v: α): result α -  | fail (e: error): result α  +inductive Result (α : Type u) where +  | ret (v: α): Result α +  | fail (e: Error): Result α  deriving Repr, BEq -open result +open Result  /- HELPERS -/ --- TODO: is there automated syntax for these discriminators? -def is_ret {α: Type} (r: result α): Bool := +def ret? {α: Type} (r: Result α): Bool :=    match r with -  | result.ret _ => true -  | result.fail _ => false +  | Result.ret _ => true +  | Result.fail _ => false -def massert (b:Bool) : result Unit := +def massert (b:Bool) : Result Unit :=    if b then .ret () else fail assertionFailure -def eval_global {α: Type} (x: result α) (_: is_ret x): α := +def eval_global {α: Type} (x: Result α) (_: ret? x): α :=    match x with -  | result.fail _ => by contradiction -  | result.ret x => x +  | Result.fail _ => by contradiction +  | Result.ret x => x  /- DO-DSL SUPPORT -/ -def bind (x: result α) (f: α -> result β) : result β := +def bind (x: Result α) (f: α -> Result β) : Result β :=    match x with    | ret v  => f v     | fail v => fail v --- Allows using result in do-blocks -instance : Bind result where +-- Allows using Result in do-blocks +instance : Bind Result where    bind := bind  -- Allows using return x in do-blocks -instance : Pure result where +instance : Pure Result where    pure := fun x => ret x  /- CUSTOM-DSL SUPPORT -/ --- Let-binding the result of a monadic operation is oftentimes not sufficient, +-- Let-binding the Result of a monadic operation is oftentimes not sufficient,  -- because we may need a hypothesis for equational reasoning in the scope. We  -- rely on subtype, and a custom let-binding operator, in effect recreating our  -- own variant of the do-dsl -def result.attach : (o : result α) → result { x : α // o = ret x } +def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := +  match o with    | .ret x => .ret ⟨x, rfl⟩ -  | .fail e   => .fail e +  | .fail e => .fail e -macro "let" h:ident " : " e:term " <-- " f:term : doElem => -  `(doElem| let ⟨$e, $h⟩ ← result.attach $f) +macro "let" e:term " ⟵ " f:term : doElem => +  `(doElem| let ⟨$e, h⟩ ← Result.attach $f) --- Silly example of the kind of reasoning that this notation enables +-- TODO: any way to factorize both definitions? +macro "let" e:term " <-- " f:term : doElem => +  `(doElem| let ⟨$e, h⟩ ← Result.attach $f) + +-- We call the hypothesis `h`, in effect making it unavailable to the user +-- (because too much shadowing). But in practice, once can use the French single +-- quote notation (input with f< and f>), where `‹ h ›` finds a suitable +-- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`  #eval do -  let h: y <-- .ret (0: Nat) -  let _: y = 0 := by cases h; decide +  let y <-- .ret (0: Nat) +  let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide    let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩    .ret r @@ -84,36 +89,27 @@ macro "let" h:ident " : " e:term " <-- " f:term : doElem =>  -- MACHINE INTEGERS --  ---------------------- --- NOTE: we reuse the USize type from prelude.lean, because at least we know --- it's defined in an idiomatic style that is going to make proofs easy (and --- indeed, several proofs here are much shortened compared to Aymeric's earlier --- attempt.) This is not stricto sensu the *correct* thing to do, because one --- can query at run-time the value of USize, which we do *not* want to do (we --- don't know what target we'll run on!), but when the day comes, we'll just --- define our own USize. --- ANOTHER NOTE: there is USize.sub but it has wraparound semantics, which is --- not something we want to define (I think), so we use our own monadic sub (but --- is it in line with the Rust behavior?) - --- TODO: I am somewhat under the impression that subtraction is defined as a --- total function over nats...? the hypothesis in the if condition is not used --- in the then-branch which confuses me quite a bit - --- TODO: add a refinement for the result (just like vec_push_back below) that --- explains that the toNat of the result (in the case of success) is the sub of --- the toNat of the arguments (i.e. intrinsic specification) --- ... do we want intrinsic specifications for the builtins? that might require --- some careful type annotations in the monadic notation for clients, but may --- give us more "for free" +-- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ..., +-- USize. They are generally defined in an idiomatic style, except that there is +-- not a single type class to rule them all (more on that below). The absence of +-- type class is intentional, and allows the Lean compiler to efficiently map +-- them to machine integers during compilation. + +-- USize is designed properly: you cannot reduce `getNumBits` using the +-- simplifier, meaning that proofs do not depend on the compile-time value of +-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really +-- support, at least officially, 16-bit microcontrollers, so this seems like a +-- fine design decision for now.)  -- Note from Chris Bailey: "If there's more than one salient property of your  -- definition then the subtyping strategy might get messy, and the property part  -- of a subtype is less discoverable by the simplifier or tactics like --- library_search." Try to settle this with a Lean expert on what is the most --- productive way to go about this? +-- library_search." So, we will not add refinements on the return values of the +-- operations defined on Primitives, but will rather rely on custom lemmas to +-- invert on possible return values of the primitive operations. --- One needs to perform a little bit of reasoning in order to successfully --- inject constants into USize, so we provide a general-purpose macro +-- Machine integer constants, done via `ofNatCore`, which requires a proof that +-- the `Nat` fits within the desired integer type. We provide a custom tactic.  syntax "intlit" : tactic @@ -129,12 +125,21 @@ macro_rules  -- Also works for other integer types (at the expense of a needless disjunction)  #eval UInt32.ofNatCore 0 (by intlit) +-- The machine integer operations (e.g. sub) are always total, which is not what +-- we want. We therefore define "checked" variants, below. Note that we add a +-- tiny bit of complexity for the USize variant: we first check whether the +-- result is < 2^32; if it is, we can compute the definition, rather than +-- returning a term that is computationally stuck (the comparison to USize.size +-- cannot reduce at compile-time, per the remark about regarding `getNumBits`). +-- This is useful for the various #asserts that we want to reduce at +-- type-checking time. +  -- Further thoughts: look at what has been done here:  -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean  -- and  -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean  -- which both contain a fair amount of reasoning already! -def USize.checked_sub (n: USize) (m: USize): result USize := +def USize.checked_sub (n: USize) (m: USize): Result USize :=    -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?    if n >= m then      let n' := USize.toNat n @@ -150,18 +155,19 @@ def USize.checked_sub (n: USize) (m: USize): result USize :=    else      fail integerOverflow -def USize.checked_add (n: USize) (m: USize): result USize := -  if h: n.val.val + m.val.val <= 4294967295 then -    .ret ⟨ n.val.val + m.val.val, by -      have h': 4294967295 < USize.size := by intlit -      apply Nat.lt_of_le_of_lt h h' -    ⟩ -  else if h: n.val + m.val < USize.size then +@[simp] +theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size := +  match USize.size, usize_size_eq with +  | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide) +  | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide) + +def USize.checked_add (n: USize) (m: USize): Result USize := +  if h: n.val + m.val < USize.size then      .ret ⟨ n.val + m.val, h ⟩    else      .fail integerOverflow -def USize.checked_rem (n: USize) (m: USize): result USize := +def USize.checked_rem (n: USize) (m: USize): Result USize :=    if h: m > 0 then      .ret ⟨ n.val % m.val, by        have h1: ↑m.val < USize.size := m.val.isLt @@ -171,18 +177,13 @@ def USize.checked_rem (n: USize) (m: USize): result USize :=    else      .fail integerOverflow -def USize.checked_mul (n: USize) (m: USize): result USize := -    if h: n.val.val * m.val.val <= 4294967295 then -    .ret ⟨ n.val.val * m.val.val, by -      have h': 4294967295 < USize.size := by intlit -      apply Nat.lt_of_le_of_lt h h' -    ⟩ -  else if h: n.val * m.val < USize.size then +def USize.checked_mul (n: USize) (m: USize): Result USize := +  if h: n.val * m.val < USize.size then      .ret ⟨ n.val * m.val, h ⟩    else      .fail integerOverflow -def USize.checked_div (n: USize) (m: USize): result USize := +def USize.checked_div (n: USize) (m: USize): Result USize :=    if m > 0 then      .ret ⟨ n.val / m.val, by        have h1: ↑n.val < USize.size := n.val.isLt @@ -192,6 +193,19 @@ def USize.checked_div (n: USize) (m: USize): result USize :=    else      .fail integerOverflow +-- Test behavior... +#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 + +#eval USize.checked_sub 20 10 +-- NOTE: compare with concrete behavior here, which I do not think we want +#eval USize.sub 0 1 +#eval UInt8.add 255 255 + +-- We now define a type class that subsumes the various machine integer types, so +-- as to write a concise definition for scalar_cast, rather than exhaustively +-- enumerating all of the possible pairs. We remark that Rust has sane semantics +-- and fails if a cast operation would involve a truncation or modulo. +  class MachineInteger (t: Type) where    size: Nat    val: t -> Fin size @@ -209,30 +223,24 @@ run_cmd      end $typeName    )) -def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): result dst := +-- Aeneas only instantiates the destination type (`src` is implicit). We rely on +-- Lean to infer `src`. + +def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=    if h: MachineInteger.val x < MachineInteger.size dst then      .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)    else      .fail integerOverflow - --- Test behavior... -#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 - -#eval USize.checked_sub 20 10 --- NOTE: compare with concrete behavior here, which I do not think we want -#eval USize.sub 0 1 -#eval UInt8.add 255 255 -  -------------  -- VECTORS --  -------------  -- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size)  -- rather than maximum values (usize_max). -def vec (α : Type u) := { l : List α // List.length l < USize.size } +def Vec (α : Type u) := { l : List α // List.length l < USize.size } -def vec_new (α : Type u): vec α := ⟨ [], by { +def vec_new (α : Type u): Vec α := ⟨ [], by {    match USize.size, usize_size_eq with    | _, Or.inl rfl => simp    | _, Or.inr rfl => simp @@ -240,20 +248,20 @@ def vec_new (α : Type u): vec α := ⟨ [], by {  #check vec_new -def vec_len (α : Type u) (v : vec α) : USize := +def vec_len (α : Type u) (v : Vec α) : USize :=    let ⟨ v, l ⟩ := v    USize.ofNatCore (List.length v) l  #eval vec_len Nat (vec_new Nat) -def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := () +def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()  -- NOTE: old version trying to use a subtype notation, but probably better to --- leave result elimination to auxiliary lemmas with suitable preconditions +-- leave Result elimination to auxiliary lemmas with suitable preconditions  -- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one  -- make the proof work in that case? Probably need to import tactics from  -- mathlib to deal with inequalities... would love to see an example. -def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec α) // +def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) //    match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}    :=    if h : List.length v.val + 1 < USize.size then @@ -272,12 +280,12 @@ def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec     -- annotate `x`, which relieves us of having to write `.val` on the right-hand    -- side of the monadic let.    let v := vec_new Nat -  let x: vec Nat ← (vec_push_back_old Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here? +  let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here?    -- TODO: strengthen post-condition above and do a demo to show that we can    -- safely eliminate the `fail` case    return (vec_len Nat x) -def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α) +def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)    :=    if h : List.length v.val + 1 <= 4294967295 then      return ⟨ List.concat v.val x, @@ -295,13 +303,13 @@ def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α)    else      fail maximumSizeExceeded -def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := +def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=    if i.val < List.length v.val then      .ret ()    else      .fail arrayOutOfBounds -def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := +def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=    if i.val < List.length v.val then      .ret ⟨ List.set v.val i.val x, by        have h: List.length v.val < USize.size := v.property @@ -311,25 +319,25 @@ def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α    else      .fail arrayOutOfBounds -def vec_index_fwd (α : Type u) (v: vec α) (i: USize): result α := +def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=    if h: i.val < List.length v.val then      .ret (List.get v.val ⟨i.val, h⟩)    else      .fail arrayOutOfBounds -def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := +def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=    if i.val < List.length v.val then      .ret ()    else      .fail arrayOutOfBounds -def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): result α := +def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=    if h: i.val < List.length v.val then      .ret (List.get v.val ⟨i.val, h⟩)    else      .fail arrayOutOfBounds -def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := +def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=    if i.val < List.length v.val then      .ret ⟨ List.set v.val i.val x, by        have h: List.length v.val < USize.size := v.property @@ -349,6 +357,10 @@ def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=  def mem_replace_back (a : Type) (_ : a) (y : a) : a :=    y +/-- Aeneas-translated function -- useful to reduce non-recursive definitions. + Use with `simp [ aeneas ]` -/ +register_simp_attr aeneas +  --------------------  -- ASSERT COMMAND --  -------------------- @@ -358,16 +370,23 @@ open Lean Elab Command Term Meta  syntax (name := assert) "#assert" term: command  @[command_elab assert] +unsafe  def assertImpl : CommandElab := fun (_stx: Syntax) => do -  logInfo "Reducing and asserting: " -  logInfo _stx[1]    runTermElabM (fun _ => do -    let e ← Term.elabTerm _stx[1] none -    logInfo (Expr.dbgToString e) -    -- How to evaluate the term and compare the result to true? +    let r ← evalTerm Bool (mkConst ``Bool) _stx[1] +    if not r then +      logInfo "Assertion failed for: " +      logInfo _stx[1] +      logError "Expression reduced to false"      pure ()) -  -- logInfo (Expr.dbgToString (``true)) -  -- throwError "TODO: assert"  #eval 2 == 2  #assert (2 == 2) + +------------------- +-- SANITY CHECKS -- +------------------- + +-- TODO: add more once we have signed integers + +#assert (USize.checked_rem 1 2 == .ret 1) diff --git a/tests/lean/misc/external/External/Funs.lean b/tests/lean/misc/external/External/Funs.lean index bb1e296d..4e1f36a1 100644 --- a/tests/lean/misc/external/External/Funs.lean +++ b/tests/lean/misc/external/External/Funs.lean @@ -8,86 +8,86 @@ section variable (opaque_defs: OpaqueDefs)  /- [external::swap] -/  def swap_fwd -  (T : Type) (x : T) (y : T) (st : state) : result (state × Unit) := +  (T : Type) (x : T) (y : T) (st : State) : Result (State × Unit) :=    do -    let (st0, _) <- opaque_defs.core_mem_swap_fwd T x y st -    let (st1, _) <- opaque_defs.core_mem_swap_back0 T x y st st0 -    let (st2, _) <- opaque_defs.core_mem_swap_back1 T x y st st1 -    result.ret (st2, ()) +    let (st0, _) ← opaque_defs.core_mem_swap_fwd T x y st +    let (st1, _) ← opaque_defs.core_mem_swap_back0 T x y st st0 +    let (st2, _) ← opaque_defs.core_mem_swap_back1 T x y st st1 +    Result.ret (st2, ())  /- [external::swap] -/  def swap_back -  (T : Type) (x : T) (y : T) (st : state) (st0 : state) : -  result (state × (T × T)) +  (T : Type) (x : T) (y : T) (st : State) (st0 : State) : +  Result (State × (T × T))    :=    do -    let (st1, _) <- opaque_defs.core_mem_swap_fwd T x y st -    let (st2, x0) <- opaque_defs.core_mem_swap_back0 T x y st st1 -    let (_, y0) <- opaque_defs.core_mem_swap_back1 T x y st st2 -    result.ret (st0, (x0, y0)) +    let (st1, _) ← opaque_defs.core_mem_swap_fwd T x y st +    let (st2, x0) ← opaque_defs.core_mem_swap_back0 T x y st st1 +    let (_, y0) ← opaque_defs.core_mem_swap_back1 T x y st st2 +    Result.ret (st0, (x0, y0))  /- [external::test_new_non_zero_u32] -/  def test_new_non_zero_u32_fwd -  (x : UInt32) (st : state) : -  result (state × core_num_nonzero_non_zero_u32_t) +  (x : UInt32) (st : State) : +  Result (State × core_num_nonzero_non_zero_u32_t)    :=    do -    let (st0, opt) <- opaque_defs.core_num_nonzero_non_zero_u32_new_fwd x st +    let (st0, opt) ← opaque_defs.core_num_nonzero_non_zero_u32_new_fwd x st      opaque_defs.core_option_option_unwrap_fwd core_num_nonzero_non_zero_u32_t        opt st0  /- [external::test_vec] -/ -def test_vec_fwd : result Unit := +def test_vec_fwd : Result Unit :=    do      let v := vec_new UInt32 -    let _ <- vec_push_back UInt32 v (UInt32.ofNatCore 0 (by intlit)) -    result.ret () +    let _ ← vec_push_back UInt32 v (UInt32.ofNatCore 0 (by intlit)) +    Result.ret ()  /- Unit test for [external::test_vec] -/ -#assert (test_vec_fwd = .ret ()) +#assert (test_vec_fwd == .ret ())  /- [external::custom_swap] -/  def custom_swap_fwd -  (T : Type) (x : T) (y : T) (st : state) : result (state × T) := +  (T : Type) (x : T) (y : T) (st : State) : Result (State × T) :=    do -    let (st0, _) <- opaque_defs.core_mem_swap_fwd T x y st -    let (st1, x0) <- opaque_defs.core_mem_swap_back0 T x y st st0 -    let (st2, _) <- opaque_defs.core_mem_swap_back1 T x y st st1 -    result.ret (st2, x0) +    let (st0, _) ← opaque_defs.core_mem_swap_fwd T x y st +    let (st1, x0) ← opaque_defs.core_mem_swap_back0 T x y st st0 +    let (st2, _) ← opaque_defs.core_mem_swap_back1 T x y st st1 +    Result.ret (st2, x0)  /- [external::custom_swap] -/  def custom_swap_back -  (T : Type) (x : T) (y : T) (st : state) (ret0 : T) (st0 : state) : -  result (state × (T × T)) +  (T : Type) (x : T) (y : T) (st : State) (ret0 : T) (st0 : State) : +  Result (State × (T × T))    :=    do -    let (st1, _) <- opaque_defs.core_mem_swap_fwd T x y st -    let (st2, _) <- opaque_defs.core_mem_swap_back0 T x y st st1 -    let (_, y0) <- opaque_defs.core_mem_swap_back1 T x y st st2 -    result.ret (st0, (ret0, y0)) +    let (st1, _) ← opaque_defs.core_mem_swap_fwd T x y st +    let (st2, _) ← opaque_defs.core_mem_swap_back0 T x y st st1 +    let (_, y0) ← opaque_defs.core_mem_swap_back1 T x y st st2 +    Result.ret (st0, (ret0, y0))  /- [external::test_custom_swap] -/  def test_custom_swap_fwd -  (x : UInt32) (y : UInt32) (st : state) : result (state × Unit) := +  (x : UInt32) (y : UInt32) (st : State) : Result (State × Unit) :=    do -    let (st0, _) <- custom_swap_fwd UInt32 x y st -    result.ret (st0, ()) +    let (st0, _) ← custom_swap_fwd UInt32 x y st +    Result.ret (st0, ())  /- [external::test_custom_swap] -/  def test_custom_swap_back -  (x : UInt32) (y : UInt32) (st : state) (st0 : state) : -  result (state × (UInt32 × UInt32)) +  (x : UInt32) (y : UInt32) (st : State) (st0 : State) : +  Result (State × (UInt32 × UInt32))    :=    custom_swap_back UInt32 x y st (UInt32.ofNatCore 1 (by intlit)) st0  /- [external::test_swap_non_zero] -/  def test_swap_non_zero_fwd -  (x : UInt32) (st : state) : result (state × UInt32) := +  (x : UInt32) (st : State) : Result (State × UInt32) :=    do -    let (st0, _) <- swap_fwd UInt32 x (UInt32.ofNatCore 0 (by intlit)) st -    let (st1, (x0, _)) <- +    let (st0, _) ← swap_fwd UInt32 x (UInt32.ofNatCore 0 (by intlit)) st +    let (st1, (x0, _)) ←        swap_back UInt32 x (UInt32.ofNatCore 0 (by intlit)) st st0 -    if x0 = (UInt32.ofNatCore 0 (by intlit)) -    then result.fail error.panic -    else result.ret (st1, x0) +    if h: x0 = (UInt32.ofNatCore 0 (by intlit)) +    then Result.fail Error.panic +    else Result.ret (st1, x0) diff --git a/tests/lean/misc/external/External/Opaque.lean b/tests/lean/misc/external/External/Opaque.lean index 40ccc313..d3582de3 100644 --- a/tests/lean/misc/external/External/Opaque.lean +++ b/tests/lean/misc/external/External/Opaque.lean @@ -6,23 +6,23 @@ import External.Types  structure OpaqueDefs where    /- [core::mem::swap] -/ -  core_mem_swap_fwd (T : Type) : T -> T -> state -> result (state × Unit) +  core_mem_swap_fwd (T : Type) : T -> T -> State -> Result (State × Unit)    /- [core::mem::swap] -/    core_mem_swap_back0 -    (T : Type) : T -> T -> state -> state -> result (state × T) +    (T : Type) : T -> T -> State -> State -> Result (State × T)    /- [core::mem::swap] -/    core_mem_swap_back1 -    (T : Type) : T -> T -> state -> state -> result (state × T) +    (T : Type) : T -> T -> State -> State -> Result (State × T)    /- [core::num::nonzero::NonZeroU32::{14}::new] -/    core_num_nonzero_non_zero_u32_new_fwd      : -    UInt32 -> state -> result (state × (Option +    UInt32 -> State -> Result (State × (Option        core_num_nonzero_non_zero_u32_t))    /- [core::option::Option::{0}::unwrap] -/    core_option_option_unwrap_fwd -    (T : Type) : Option T -> state -> result (state × T) +    (T : Type) : Option T -> State -> Result (State × T) diff --git a/tests/lean/misc/external/External/Types.lean b/tests/lean/misc/external/External/Types.lean index b6fa292b..386832f4 100644 --- a/tests/lean/misc/external/External/Types.lean +++ b/tests/lean/misc/external/External/Types.lean @@ -4,5 +4,5 @@ import Base.Primitives  /- [core::num::nonzero::NonZeroU32] -/  axiom core_num_nonzero_non_zero_u32_t : Type -/- The state type used in the state-error monad -/ axiom state : Type +/- The state type used in the state-error monad -/ axiom State : Type | 
