diff options
Diffstat (limited to '')
-rw-r--r-- | tests/lean/misc/constants/Base/Primitives.lean | 231 | ||||
-rw-r--r-- | tests/lean/misc/constants/Constants.lean | 76 |
2 files changed, 163 insertions, 144 deletions
diff --git a/tests/lean/misc/constants/Base/Primitives.lean b/tests/lean/misc/constants/Base/Primitives.lean index 79958d94..5b64e908 100644 --- a/tests/lean/misc/constants/Base/Primitives.lean +++ b/tests/lean/misc/constants/Base/Primitives.lean @@ -9,74 +9,79 @@ import Mathlib.Tactic.RunCmd -- Results & monadic combinators --- TODO: use syntactic conventions and capitalize error, result, etc. - -inductive error where - | assertionFailure: error - | integerOverflow: error - | arrayOutOfBounds: error - | maximumSizeExceeded: error - | panic: error +inductive Error where + | assertionFailure: Error + | integerOverflow: Error + | arrayOutOfBounds: Error + | maximumSizeExceeded: Error + | panic: Error deriving Repr, BEq -open error +open Error -inductive result (α : Type u) where - | ret (v: α): result α - | fail (e: error): result α +inductive Result (α : Type u) where + | ret (v: α): Result α + | fail (e: Error): Result α deriving Repr, BEq -open result +open Result /- HELPERS -/ --- TODO: is there automated syntax for these discriminators? -def is_ret {α: Type} (r: result α): Bool := +def ret? {α: Type} (r: Result α): Bool := match r with - | result.ret _ => true - | result.fail _ => false + | Result.ret _ => true + | Result.fail _ => false -def massert (b:Bool) : result Unit := +def massert (b:Bool) : Result Unit := if b then .ret () else fail assertionFailure -def eval_global {α: Type} (x: result α) (_: is_ret x): α := +def eval_global {α: Type} (x: Result α) (_: ret? x): α := match x with - | result.fail _ => by contradiction - | result.ret x => x + | Result.fail _ => by contradiction + | Result.ret x => x /- DO-DSL SUPPORT -/ -def bind (x: result α) (f: α -> result β) : result β := +def bind (x: Result α) (f: α -> Result β) : Result β := match x with | ret v => f v | fail v => fail v --- Allows using result in do-blocks -instance : Bind result where +-- Allows using Result in do-blocks +instance : Bind Result where bind := bind -- Allows using return x in do-blocks -instance : Pure result where +instance : Pure Result where pure := fun x => ret x /- CUSTOM-DSL SUPPORT -/ --- Let-binding the result of a monadic operation is oftentimes not sufficient, +-- Let-binding the Result of a monadic operation is oftentimes not sufficient, -- because we may need a hypothesis for equational reasoning in the scope. We -- rely on subtype, and a custom let-binding operator, in effect recreating our -- own variant of the do-dsl -def result.attach : (o : result α) → result { x : α // o = ret x } +def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := + match o with | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e + | .fail e => .fail e -macro "let" h:ident " : " e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, $h⟩ ← result.attach $f) +macro "let" e:term " ⟵ " f:term : doElem => + `(doElem| let ⟨$e, h⟩ ← Result.attach $f) --- Silly example of the kind of reasoning that this notation enables +-- TODO: any way to factorize both definitions? +macro "let" e:term " <-- " f:term : doElem => + `(doElem| let ⟨$e, h⟩ ← Result.attach $f) + +-- We call the hypothesis `h`, in effect making it unavailable to the user +-- (because too much shadowing). But in practice, once can use the French single +-- quote notation (input with f< and f>), where `‹ h ›` finds a suitable +-- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` #eval do - let h: y <-- .ret (0: Nat) - let _: y = 0 := by cases h; decide + let y <-- .ret (0: Nat) + let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ .ret r @@ -84,36 +89,27 @@ macro "let" h:ident " : " e:term " <-- " f:term : doElem => -- MACHINE INTEGERS -- ---------------------- --- NOTE: we reuse the USize type from prelude.lean, because at least we know --- it's defined in an idiomatic style that is going to make proofs easy (and --- indeed, several proofs here are much shortened compared to Aymeric's earlier --- attempt.) This is not stricto sensu the *correct* thing to do, because one --- can query at run-time the value of USize, which we do *not* want to do (we --- don't know what target we'll run on!), but when the day comes, we'll just --- define our own USize. --- ANOTHER NOTE: there is USize.sub but it has wraparound semantics, which is --- not something we want to define (I think), so we use our own monadic sub (but --- is it in line with the Rust behavior?) - --- TODO: I am somewhat under the impression that subtraction is defined as a --- total function over nats...? the hypothesis in the if condition is not used --- in the then-branch which confuses me quite a bit - --- TODO: add a refinement for the result (just like vec_push_back below) that --- explains that the toNat of the result (in the case of success) is the sub of --- the toNat of the arguments (i.e. intrinsic specification) --- ... do we want intrinsic specifications for the builtins? that might require --- some careful type annotations in the monadic notation for clients, but may --- give us more "for free" +-- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ..., +-- USize. They are generally defined in an idiomatic style, except that there is +-- not a single type class to rule them all (more on that below). The absence of +-- type class is intentional, and allows the Lean compiler to efficiently map +-- them to machine integers during compilation. + +-- USize is designed properly: you cannot reduce `getNumBits` using the +-- simplifier, meaning that proofs do not depend on the compile-time value of +-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really +-- support, at least officially, 16-bit microcontrollers, so this seems like a +-- fine design decision for now.) -- Note from Chris Bailey: "If there's more than one salient property of your -- definition then the subtyping strategy might get messy, and the property part -- of a subtype is less discoverable by the simplifier or tactics like --- library_search." Try to settle this with a Lean expert on what is the most --- productive way to go about this? +-- library_search." So, we will not add refinements on the return values of the +-- operations defined on Primitives, but will rather rely on custom lemmas to +-- invert on possible return values of the primitive operations. --- One needs to perform a little bit of reasoning in order to successfully --- inject constants into USize, so we provide a general-purpose macro +-- Machine integer constants, done via `ofNatCore`, which requires a proof that +-- the `Nat` fits within the desired integer type. We provide a custom tactic. syntax "intlit" : tactic @@ -129,12 +125,21 @@ macro_rules -- Also works for other integer types (at the expense of a needless disjunction) #eval UInt32.ofNatCore 0 (by intlit) +-- The machine integer operations (e.g. sub) are always total, which is not what +-- we want. We therefore define "checked" variants, below. Note that we add a +-- tiny bit of complexity for the USize variant: we first check whether the +-- result is < 2^32; if it is, we can compute the definition, rather than +-- returning a term that is computationally stuck (the comparison to USize.size +-- cannot reduce at compile-time, per the remark about regarding `getNumBits`). +-- This is useful for the various #asserts that we want to reduce at +-- type-checking time. + -- Further thoughts: look at what has been done here: -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean -- and -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean -- which both contain a fair amount of reasoning already! -def USize.checked_sub (n: USize) (m: USize): result USize := +def USize.checked_sub (n: USize) (m: USize): Result USize := -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed? if n >= m then let n' := USize.toNat n @@ -150,18 +155,19 @@ def USize.checked_sub (n: USize) (m: USize): result USize := else fail integerOverflow -def USize.checked_add (n: USize) (m: USize): result USize := - if h: n.val.val + m.val.val <= 4294967295 then - .ret ⟨ n.val.val + m.val.val, by - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: n.val + m.val < USize.size then +@[simp] +theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size := + match USize.size, usize_size_eq with + | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide) + | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide) + +def USize.checked_add (n: USize) (m: USize): Result USize := + if h: n.val + m.val < USize.size then .ret ⟨ n.val + m.val, h ⟩ else .fail integerOverflow -def USize.checked_rem (n: USize) (m: USize): result USize := +def USize.checked_rem (n: USize) (m: USize): Result USize := if h: m > 0 then .ret ⟨ n.val % m.val, by have h1: ↑m.val < USize.size := m.val.isLt @@ -171,18 +177,13 @@ def USize.checked_rem (n: USize) (m: USize): result USize := else .fail integerOverflow -def USize.checked_mul (n: USize) (m: USize): result USize := - if h: n.val.val * m.val.val <= 4294967295 then - .ret ⟨ n.val.val * m.val.val, by - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: n.val * m.val < USize.size then +def USize.checked_mul (n: USize) (m: USize): Result USize := + if h: n.val * m.val < USize.size then .ret ⟨ n.val * m.val, h ⟩ else .fail integerOverflow -def USize.checked_div (n: USize) (m: USize): result USize := +def USize.checked_div (n: USize) (m: USize): Result USize := if m > 0 then .ret ⟨ n.val / m.val, by have h1: ↑n.val < USize.size := n.val.isLt @@ -192,6 +193,19 @@ def USize.checked_div (n: USize) (m: USize): result USize := else .fail integerOverflow +-- Test behavior... +#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 + +#eval USize.checked_sub 20 10 +-- NOTE: compare with concrete behavior here, which I do not think we want +#eval USize.sub 0 1 +#eval UInt8.add 255 255 + +-- We now define a type class that subsumes the various machine integer types, so +-- as to write a concise definition for scalar_cast, rather than exhaustively +-- enumerating all of the possible pairs. We remark that Rust has sane semantics +-- and fails if a cast operation would involve a truncation or modulo. + class MachineInteger (t: Type) where size: Nat val: t -> Fin size @@ -209,30 +223,24 @@ run_cmd end $typeName )) -def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): result dst := +-- Aeneas only instantiates the destination type (`src` is implicit). We rely on +-- Lean to infer `src`. + +def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := if h: MachineInteger.val x < MachineInteger.size dst then .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) else .fail integerOverflow - --- Test behavior... -#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 - -#eval USize.checked_sub 20 10 --- NOTE: compare with concrete behavior here, which I do not think we want -#eval USize.sub 0 1 -#eval UInt8.add 255 255 - ------------- -- VECTORS -- ------------- -- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size) -- rather than maximum values (usize_max). -def vec (α : Type u) := { l : List α // List.length l < USize.size } +def Vec (α : Type u) := { l : List α // List.length l < USize.size } -def vec_new (α : Type u): vec α := ⟨ [], by { +def vec_new (α : Type u): Vec α := ⟨ [], by { match USize.size, usize_size_eq with | _, Or.inl rfl => simp | _, Or.inr rfl => simp @@ -240,20 +248,20 @@ def vec_new (α : Type u): vec α := ⟨ [], by { #check vec_new -def vec_len (α : Type u) (v : vec α) : USize := +def vec_len (α : Type u) (v : Vec α) : USize := let ⟨ v, l ⟩ := v USize.ofNatCore (List.length v) l #eval vec_len Nat (vec_new Nat) -def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := () +def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () -- NOTE: old version trying to use a subtype notation, but probably better to --- leave result elimination to auxiliary lemmas with suitable preconditions +-- leave Result elimination to auxiliary lemmas with suitable preconditions -- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one -- make the proof work in that case? Probably need to import tactics from -- mathlib to deal with inequalities... would love to see an example. -def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec α) // +def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) // match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} := if h : List.length v.val + 1 < USize.size then @@ -272,12 +280,12 @@ def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec -- annotate `x`, which relieves us of having to write `.val` on the right-hand -- side of the monadic let. let v := vec_new Nat - let x: vec Nat ← (vec_push_back_old Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here? + let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here? -- TODO: strengthen post-condition above and do a demo to show that we can -- safely eliminate the `fail` case return (vec_len Nat x) -def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α) +def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) := if h : List.length v.val + 1 <= 4294967295 then return ⟨ List.concat v.val x, @@ -295,13 +303,13 @@ def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α) else fail maximumSizeExceeded -def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := +def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds -def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := +def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := if i.val < List.length v.val then .ret ⟨ List.set v.val i.val x, by have h: List.length v.val < USize.size := v.property @@ -311,25 +319,25 @@ def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α else .fail arrayOutOfBounds -def vec_index_fwd (α : Type u) (v: vec α) (i: USize): result α := +def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α := if h: i.val < List.length v.val then .ret (List.get v.val ⟨i.val, h⟩) else .fail arrayOutOfBounds -def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := +def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds -def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): result α := +def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α := if h: i.val < List.length v.val then .ret (List.get v.val ⟨i.val, h⟩) else .fail arrayOutOfBounds -def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := +def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := if i.val < List.length v.val then .ret ⟨ List.set v.val i.val x, by have h: List.length v.val < USize.size := v.property @@ -349,6 +357,10 @@ def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := def mem_replace_back (a : Type) (_ : a) (y : a) : a := y +/-- Aeneas-translated function -- useful to reduce non-recursive definitions. + Use with `simp [ aeneas ]` -/ +register_simp_attr aeneas + -------------------- -- ASSERT COMMAND -- -------------------- @@ -358,16 +370,23 @@ open Lean Elab Command Term Meta syntax (name := assert) "#assert" term: command @[command_elab assert] +unsafe def assertImpl : CommandElab := fun (_stx: Syntax) => do - logInfo "Reducing and asserting: " - logInfo _stx[1] runTermElabM (fun _ => do - let e ← Term.elabTerm _stx[1] none - logInfo (Expr.dbgToString e) - -- How to evaluate the term and compare the result to true? + let r ← evalTerm Bool (mkConst ``Bool) _stx[1] + if not r then + logInfo "Assertion failed for: " + logInfo _stx[1] + logError "Expression reduced to false" pure ()) - -- logInfo (Expr.dbgToString (``true)) - -- throwError "TODO: assert" #eval 2 == 2 #assert (2 == 2) + +------------------- +-- SANITY CHECKS -- +------------------- + +-- TODO: add more once we have signed integers + +#assert (USize.checked_rem 1 2 == .ret 1) diff --git a/tests/lean/misc/constants/Constants.lean b/tests/lean/misc/constants/Constants.lean index 9ef9ca44..57f6e403 100644 --- a/tests/lean/misc/constants/Constants.lean +++ b/tests/lean/misc/constants/Constants.lean @@ -5,64 +5,64 @@ import Base.Primitives structure OpaqueDefs where /- [constants::X0] -/ - def x0_body : result UInt32 := result.ret (UInt32.ofNatCore 0 (by intlit)) + def x0_body : Result UInt32 := Result.ret (UInt32.ofNatCore 0 (by intlit)) def x0_c : UInt32 := eval_global x0_body (by simp) /- [core::num::u32::{9}::MAX] -/ - def core_num_u32_max_body : result UInt32 := - result.ret (UInt32.ofNatCore 4294967295 (by intlit)) + def core_num_u32_max_body : Result UInt32 := + Result.ret (UInt32.ofNatCore 4294967295 (by intlit)) def core_num_u32_max_c : UInt32 := eval_global core_num_u32_max_body (by simp) /- [constants::X1] -/ - def x1_body : result UInt32 := result.ret core_num_u32_max_c + def x1_body : Result UInt32 := Result.ret core_num_u32_max_c def x1_c : UInt32 := eval_global x1_body (by simp) /- [constants::X2] -/ - def x2_body : result UInt32 := result.ret (UInt32.ofNatCore 3 (by intlit)) + def x2_body : Result UInt32 := Result.ret (UInt32.ofNatCore 3 (by intlit)) def x2_c : UInt32 := eval_global x2_body (by simp) /- [constants::incr] -/ - def incr_fwd (n : UInt32) : result UInt32 := + def incr_fwd (n : UInt32) : Result UInt32 := UInt32.checked_add n (UInt32.ofNatCore 1 (by intlit)) /- [constants::X3] -/ - def x3_body : result UInt32 := incr_fwd (UInt32.ofNatCore 32 (by intlit)) + def x3_body : Result UInt32 := incr_fwd (UInt32.ofNatCore 32 (by intlit)) def x3_c : UInt32 := eval_global x3_body (by simp) /- [constants::mk_pair0] -/ - def mk_pair0_fwd (x : UInt32) (y : UInt32) : result (UInt32 × UInt32) := - result.ret (x, y) + def mk_pair0_fwd (x : UInt32) (y : UInt32) : Result (UInt32 × UInt32) := + Result.ret (x, y) /- [constants::Pair] -/ structure pair_t (T1 T2 : Type) where pair_x : T1 pair_y : T2 /- [constants::mk_pair1] -/ - def mk_pair1_fwd (x : UInt32) (y : UInt32) : result (pair_t UInt32 UInt32) := - result.ret { pair_x := x, pair_y := y } + def mk_pair1_fwd (x : UInt32) (y : UInt32) : Result (pair_t UInt32 UInt32) := + Result.ret { pair_x := x, pair_y := y } /- [constants::P0] -/ - def p0_body : result (UInt32 × UInt32) := + def p0_body : Result (UInt32 × UInt32) := mk_pair0_fwd (UInt32.ofNatCore 0 (by intlit)) (UInt32.ofNatCore 1 (by intlit)) def p0_c : (UInt32 × UInt32) := eval_global p0_body (by simp) /- [constants::P1] -/ - def p1_body : result (pair_t UInt32 UInt32) := + def p1_body : Result (pair_t UInt32 UInt32) := mk_pair1_fwd (UInt32.ofNatCore 0 (by intlit)) (UInt32.ofNatCore 1 (by intlit)) def p1_c : pair_t UInt32 UInt32 := eval_global p1_body (by simp) /- [constants::P2] -/ - def p2_body : result (UInt32 × UInt32) := - result.ret + def p2_body : Result (UInt32 × UInt32) := + Result.ret ((UInt32.ofNatCore 0 (by intlit)), (UInt32.ofNatCore 1 (by intlit))) def p2_c : (UInt32 × UInt32) := eval_global p2_body (by simp) /- [constants::P3] -/ - def p3_body : result (pair_t UInt32 UInt32) := - result.ret + def p3_body : Result (pair_t UInt32 UInt32) := + Result.ret { pair_x := (UInt32.ofNatCore 0 (by intlit)), pair_y := (UInt32.ofNatCore 1 (by intlit)) @@ -73,68 +73,68 @@ structure OpaqueDefs where structure wrap_t (T : Type) where wrap_val : T /- [constants::Wrap::{0}::new] -/ - def wrap_new_fwd (T : Type) (val : T) : result (wrap_t T) := - result.ret { wrap_val := val } + def wrap_new_fwd (T : Type) (val : T) : Result (wrap_t T) := + Result.ret { wrap_val := val } /- [constants::Y] -/ - def y_body : result (wrap_t Int32) := + def y_body : Result (wrap_t Int32) := wrap_new_fwd Int32 (Int32.ofNatCore 2 (by intlit)) def y_c : wrap_t Int32 := eval_global y_body (by simp) /- [constants::unwrap_y] -/ - def unwrap_y_fwd : result Int32 := - result.ret y_c.wrap_val + def unwrap_y_fwd : Result Int32 := + Result.ret y_c.wrap_val /- [constants::YVAL] -/ - def yval_body : result Int32 := unwrap_y_fwd + def yval_body : Result Int32 := unwrap_y_fwd def yval_c : Int32 := eval_global yval_body (by simp) /- [constants::get_z1::Z1] -/ - def get_z1_z1_body : result Int32 := - result.ret (Int32.ofNatCore 3 (by intlit)) + def get_z1_z1_body : Result Int32 := + Result.ret (Int32.ofNatCore 3 (by intlit)) def get_z1_z1_c : Int32 := eval_global get_z1_z1_body (by simp) /- [constants::get_z1] -/ - def get_z1_fwd : result Int32 := - result.ret get_z1_z1_c + def get_z1_fwd : Result Int32 := + Result.ret get_z1_z1_c /- [constants::add] -/ - def add_fwd (a : Int32) (b : Int32) : result Int32 := + def add_fwd (a : Int32) (b : Int32) : Result Int32 := Int32.checked_add a b /- [constants::Q1] -/ - def q1_body : result Int32 := result.ret (Int32.ofNatCore 5 (by intlit)) + def q1_body : Result Int32 := Result.ret (Int32.ofNatCore 5 (by intlit)) def q1_c : Int32 := eval_global q1_body (by simp) /- [constants::Q2] -/ - def q2_body : result Int32 := result.ret q1_c + def q2_body : Result Int32 := Result.ret q1_c def q2_c : Int32 := eval_global q2_body (by simp) /- [constants::Q3] -/ - def q3_body : result Int32 := add_fwd q2_c (Int32.ofNatCore 3 (by intlit)) + def q3_body : Result Int32 := add_fwd q2_c (Int32.ofNatCore 3 (by intlit)) def q3_c : Int32 := eval_global q3_body (by simp) /- [constants::get_z2] -/ - def get_z2_fwd : result Int32 := + def get_z2_fwd : Result Int32 := do - let i <- get_z1_fwd - let i0 <- add_fwd i q3_c + let i ← get_z1_fwd + let i0 ← add_fwd i q3_c add_fwd q1_c i0 /- [constants::S1] -/ - def s1_body : result UInt32 := result.ret (UInt32.ofNatCore 6 (by intlit)) + def s1_body : Result UInt32 := Result.ret (UInt32.ofNatCore 6 (by intlit)) def s1_c : UInt32 := eval_global s1_body (by simp) /- [constants::S2] -/ - def s2_body : result UInt32 := incr_fwd s1_c + def s2_body : Result UInt32 := incr_fwd s1_c def s2_c : UInt32 := eval_global s2_body (by simp) /- [constants::S3] -/ - def s3_body : result (pair_t UInt32 UInt32) := result.ret p3_c + def s3_body : Result (pair_t UInt32 UInt32) := Result.ret p3_c def s3_c : pair_t UInt32 UInt32 := eval_global s3_body (by simp) /- [constants::S4] -/ - def s4_body : result (pair_t UInt32 UInt32) := + def s4_body : Result (pair_t UInt32 UInt32) := mk_pair1_fwd (UInt32.ofNatCore 7 (by intlit)) (UInt32.ofNatCore 8 (by intlit)) def s4_c : pair_t UInt32 UInt32 := eval_global s4_body (by simp) |