summaryrefslogtreecommitdiff
path: root/tests/lean/misc/constants
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--tests/lean/misc/constants/Base/Primitives.lean231
-rw-r--r--tests/lean/misc/constants/Constants.lean76
2 files changed, 163 insertions, 144 deletions
diff --git a/tests/lean/misc/constants/Base/Primitives.lean b/tests/lean/misc/constants/Base/Primitives.lean
index 79958d94..5b64e908 100644
--- a/tests/lean/misc/constants/Base/Primitives.lean
+++ b/tests/lean/misc/constants/Base/Primitives.lean
@@ -9,74 +9,79 @@ import Mathlib.Tactic.RunCmd
-- Results & monadic combinators
--- TODO: use syntactic conventions and capitalize error, result, etc.
-
-inductive error where
- | assertionFailure: error
- | integerOverflow: error
- | arrayOutOfBounds: error
- | maximumSizeExceeded: error
- | panic: error
+inductive Error where
+ | assertionFailure: Error
+ | integerOverflow: Error
+ | arrayOutOfBounds: Error
+ | maximumSizeExceeded: Error
+ | panic: Error
deriving Repr, BEq
-open error
+open Error
-inductive result (α : Type u) where
- | ret (v: α): result α
- | fail (e: error): result α
+inductive Result (α : Type u) where
+ | ret (v: α): Result α
+ | fail (e: Error): Result α
deriving Repr, BEq
-open result
+open Result
/- HELPERS -/
--- TODO: is there automated syntax for these discriminators?
-def is_ret {α: Type} (r: result α): Bool :=
+def ret? {α: Type} (r: Result α): Bool :=
match r with
- | result.ret _ => true
- | result.fail _ => false
+ | Result.ret _ => true
+ | Result.fail _ => false
-def massert (b:Bool) : result Unit :=
+def massert (b:Bool) : Result Unit :=
if b then .ret () else fail assertionFailure
-def eval_global {α: Type} (x: result α) (_: is_ret x): α :=
+def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
match x with
- | result.fail _ => by contradiction
- | result.ret x => x
+ | Result.fail _ => by contradiction
+ | Result.ret x => x
/- DO-DSL SUPPORT -/
-def bind (x: result α) (f: α -> result β) : result β :=
+def bind (x: Result α) (f: α -> Result β) : Result β :=
match x with
| ret v => f v
| fail v => fail v
--- Allows using result in do-blocks
-instance : Bind result where
+-- Allows using Result in do-blocks
+instance : Bind Result where
bind := bind
-- Allows using return x in do-blocks
-instance : Pure result where
+instance : Pure Result where
pure := fun x => ret x
/- CUSTOM-DSL SUPPORT -/
--- Let-binding the result of a monadic operation is oftentimes not sufficient,
+-- Let-binding the Result of a monadic operation is oftentimes not sufficient,
-- because we may need a hypothesis for equational reasoning in the scope. We
-- rely on subtype, and a custom let-binding operator, in effect recreating our
-- own variant of the do-dsl
-def result.attach : (o : result α) → result { x : α // o = ret x }
+def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
+ match o with
| .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
+ | .fail e => .fail e
-macro "let" h:ident " : " e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, $h⟩ ← result.attach $f)
+macro "let" e:term " ⟵ " f:term : doElem =>
+ `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
--- Silly example of the kind of reasoning that this notation enables
+-- TODO: any way to factorize both definitions?
+macro "let" e:term " <-- " f:term : doElem =>
+ `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
+
+-- We call the hypothesis `h`, in effect making it unavailable to the user
+-- (because too much shadowing). But in practice, once can use the French single
+-- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
+-- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
#eval do
- let h: y <-- .ret (0: Nat)
- let _: y = 0 := by cases h; decide
+ let y <-- .ret (0: Nat)
+ let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
.ret r
@@ -84,36 +89,27 @@ macro "let" h:ident " : " e:term " <-- " f:term : doElem =>
-- MACHINE INTEGERS --
----------------------
--- NOTE: we reuse the USize type from prelude.lean, because at least we know
--- it's defined in an idiomatic style that is going to make proofs easy (and
--- indeed, several proofs here are much shortened compared to Aymeric's earlier
--- attempt.) This is not stricto sensu the *correct* thing to do, because one
--- can query at run-time the value of USize, which we do *not* want to do (we
--- don't know what target we'll run on!), but when the day comes, we'll just
--- define our own USize.
--- ANOTHER NOTE: there is USize.sub but it has wraparound semantics, which is
--- not something we want to define (I think), so we use our own monadic sub (but
--- is it in line with the Rust behavior?)
-
--- TODO: I am somewhat under the impression that subtraction is defined as a
--- total function over nats...? the hypothesis in the if condition is not used
--- in the then-branch which confuses me quite a bit
-
--- TODO: add a refinement for the result (just like vec_push_back below) that
--- explains that the toNat of the result (in the case of success) is the sub of
--- the toNat of the arguments (i.e. intrinsic specification)
--- ... do we want intrinsic specifications for the builtins? that might require
--- some careful type annotations in the monadic notation for clients, but may
--- give us more "for free"
+-- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ...,
+-- USize. They are generally defined in an idiomatic style, except that there is
+-- not a single type class to rule them all (more on that below). The absence of
+-- type class is intentional, and allows the Lean compiler to efficiently map
+-- them to machine integers during compilation.
+
+-- USize is designed properly: you cannot reduce `getNumBits` using the
+-- simplifier, meaning that proofs do not depend on the compile-time value of
+-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really
+-- support, at least officially, 16-bit microcontrollers, so this seems like a
+-- fine design decision for now.)
-- Note from Chris Bailey: "If there's more than one salient property of your
-- definition then the subtyping strategy might get messy, and the property part
-- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." Try to settle this with a Lean expert on what is the most
--- productive way to go about this?
+-- library_search." So, we will not add refinements on the return values of the
+-- operations defined on Primitives, but will rather rely on custom lemmas to
+-- invert on possible return values of the primitive operations.
--- One needs to perform a little bit of reasoning in order to successfully
--- inject constants into USize, so we provide a general-purpose macro
+-- Machine integer constants, done via `ofNatCore`, which requires a proof that
+-- the `Nat` fits within the desired integer type. We provide a custom tactic.
syntax "intlit" : tactic
@@ -129,12 +125,21 @@ macro_rules
-- Also works for other integer types (at the expense of a needless disjunction)
#eval UInt32.ofNatCore 0 (by intlit)
+-- The machine integer operations (e.g. sub) are always total, which is not what
+-- we want. We therefore define "checked" variants, below. Note that we add a
+-- tiny bit of complexity for the USize variant: we first check whether the
+-- result is < 2^32; if it is, we can compute the definition, rather than
+-- returning a term that is computationally stuck (the comparison to USize.size
+-- cannot reduce at compile-time, per the remark about regarding `getNumBits`).
+-- This is useful for the various #asserts that we want to reduce at
+-- type-checking time.
+
-- Further thoughts: look at what has been done here:
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
-- and
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
-- which both contain a fair amount of reasoning already!
-def USize.checked_sub (n: USize) (m: USize): result USize :=
+def USize.checked_sub (n: USize) (m: USize): Result USize :=
-- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?
if n >= m then
let n' := USize.toNat n
@@ -150,18 +155,19 @@ def USize.checked_sub (n: USize) (m: USize): result USize :=
else
fail integerOverflow
-def USize.checked_add (n: USize) (m: USize): result USize :=
- if h: n.val.val + m.val.val <= 4294967295 then
- .ret ⟨ n.val.val + m.val.val, by
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: n.val + m.val < USize.size then
+@[simp]
+theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size :=
+ match USize.size, usize_size_eq with
+ | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide)
+ | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide)
+
+def USize.checked_add (n: USize) (m: USize): Result USize :=
+ if h: n.val + m.val < USize.size then
.ret ⟨ n.val + m.val, h ⟩
else
.fail integerOverflow
-def USize.checked_rem (n: USize) (m: USize): result USize :=
+def USize.checked_rem (n: USize) (m: USize): Result USize :=
if h: m > 0 then
.ret ⟨ n.val % m.val, by
have h1: ↑m.val < USize.size := m.val.isLt
@@ -171,18 +177,13 @@ def USize.checked_rem (n: USize) (m: USize): result USize :=
else
.fail integerOverflow
-def USize.checked_mul (n: USize) (m: USize): result USize :=
- if h: n.val.val * m.val.val <= 4294967295 then
- .ret ⟨ n.val.val * m.val.val, by
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: n.val * m.val < USize.size then
+def USize.checked_mul (n: USize) (m: USize): Result USize :=
+ if h: n.val * m.val < USize.size then
.ret ⟨ n.val * m.val, h ⟩
else
.fail integerOverflow
-def USize.checked_div (n: USize) (m: USize): result USize :=
+def USize.checked_div (n: USize) (m: USize): Result USize :=
if m > 0 then
.ret ⟨ n.val / m.val, by
have h1: ↑n.val < USize.size := n.val.isLt
@@ -192,6 +193,19 @@ def USize.checked_div (n: USize) (m: USize): result USize :=
else
.fail integerOverflow
+-- Test behavior...
+#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
+
+#eval USize.checked_sub 20 10
+-- NOTE: compare with concrete behavior here, which I do not think we want
+#eval USize.sub 0 1
+#eval UInt8.add 255 255
+
+-- We now define a type class that subsumes the various machine integer types, so
+-- as to write a concise definition for scalar_cast, rather than exhaustively
+-- enumerating all of the possible pairs. We remark that Rust has sane semantics
+-- and fails if a cast operation would involve a truncation or modulo.
+
class MachineInteger (t: Type) where
size: Nat
val: t -> Fin size
@@ -209,30 +223,24 @@ run_cmd
end $typeName
))
-def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): result dst :=
+-- Aeneas only instantiates the destination type (`src` is implicit). We rely on
+-- Lean to infer `src`.
+
+def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
if h: MachineInteger.val x < MachineInteger.size dst then
.ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
else
.fail integerOverflow
-
--- Test behavior...
-#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
-
-#eval USize.checked_sub 20 10
--- NOTE: compare with concrete behavior here, which I do not think we want
-#eval USize.sub 0 1
-#eval UInt8.add 255 255
-
-------------
-- VECTORS --
-------------
-- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size)
-- rather than maximum values (usize_max).
-def vec (α : Type u) := { l : List α // List.length l < USize.size }
+def Vec (α : Type u) := { l : List α // List.length l < USize.size }
-def vec_new (α : Type u): vec α := ⟨ [], by {
+def vec_new (α : Type u): Vec α := ⟨ [], by {
match USize.size, usize_size_eq with
| _, Or.inl rfl => simp
| _, Or.inr rfl => simp
@@ -240,20 +248,20 @@ def vec_new (α : Type u): vec α := ⟨ [], by {
#check vec_new
-def vec_len (α : Type u) (v : vec α) : USize :=
+def vec_len (α : Type u) (v : Vec α) : USize :=
let ⟨ v, l ⟩ := v
USize.ofNatCore (List.length v) l
#eval vec_len Nat (vec_new Nat)
-def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := ()
+def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-- NOTE: old version trying to use a subtype notation, but probably better to
--- leave result elimination to auxiliary lemmas with suitable preconditions
+-- leave Result elimination to auxiliary lemmas with suitable preconditions
-- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one
-- make the proof work in that case? Probably need to import tactics from
-- mathlib to deal with inequalities... would love to see an example.
-def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec α) //
+def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) //
match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}
:=
if h : List.length v.val + 1 < USize.size then
@@ -272,12 +280,12 @@ def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec
-- annotate `x`, which relieves us of having to write `.val` on the right-hand
-- side of the monadic let.
let v := vec_new Nat
- let x: vec Nat ← (vec_push_back_old Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here?
+ let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here?
-- TODO: strengthen post-condition above and do a demo to show that we can
-- safely eliminate the `fail` case
return (vec_len Nat x)
-def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α)
+def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
:=
if h : List.length v.val + 1 <= 4294967295 then
return ⟨ List.concat v.val x,
@@ -295,13 +303,13 @@ def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α)
else
fail maximumSizeExceeded
-def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): result Unit :=
+def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
-def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) :=
+def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
if i.val < List.length v.val then
.ret ⟨ List.set v.val i.val x, by
have h: List.length v.val < USize.size := v.property
@@ -311,25 +319,25 @@ def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α
else
.fail arrayOutOfBounds
-def vec_index_fwd (α : Type u) (v: vec α) (i: USize): result α :=
+def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
if h: i.val < List.length v.val then
.ret (List.get v.val ⟨i.val, h⟩)
else
.fail arrayOutOfBounds
-def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): result Unit :=
+def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
-def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): result α :=
+def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
if h: i.val < List.length v.val then
.ret (List.get v.val ⟨i.val, h⟩)
else
.fail arrayOutOfBounds
-def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) :=
+def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
if i.val < List.length v.val then
.ret ⟨ List.set v.val i.val x, by
have h: List.length v.val < USize.size := v.property
@@ -349,6 +357,10 @@ def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
y
+/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
+ Use with `simp [ aeneas ]` -/
+register_simp_attr aeneas
+
--------------------
-- ASSERT COMMAND --
--------------------
@@ -358,16 +370,23 @@ open Lean Elab Command Term Meta
syntax (name := assert) "#assert" term: command
@[command_elab assert]
+unsafe
def assertImpl : CommandElab := fun (_stx: Syntax) => do
- logInfo "Reducing and asserting: "
- logInfo _stx[1]
runTermElabM (fun _ => do
- let e ← Term.elabTerm _stx[1] none
- logInfo (Expr.dbgToString e)
- -- How to evaluate the term and compare the result to true?
+ let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
+ if not r then
+ logInfo "Assertion failed for: "
+ logInfo _stx[1]
+ logError "Expression reduced to false"
pure ())
- -- logInfo (Expr.dbgToString (``true))
- -- throwError "TODO: assert"
#eval 2 == 2
#assert (2 == 2)
+
+-------------------
+-- SANITY CHECKS --
+-------------------
+
+-- TODO: add more once we have signed integers
+
+#assert (USize.checked_rem 1 2 == .ret 1)
diff --git a/tests/lean/misc/constants/Constants.lean b/tests/lean/misc/constants/Constants.lean
index 9ef9ca44..57f6e403 100644
--- a/tests/lean/misc/constants/Constants.lean
+++ b/tests/lean/misc/constants/Constants.lean
@@ -5,64 +5,64 @@ import Base.Primitives
structure OpaqueDefs where
/- [constants::X0] -/
- def x0_body : result UInt32 := result.ret (UInt32.ofNatCore 0 (by intlit))
+ def x0_body : Result UInt32 := Result.ret (UInt32.ofNatCore 0 (by intlit))
def x0_c : UInt32 := eval_global x0_body (by simp)
/- [core::num::u32::{9}::MAX] -/
- def core_num_u32_max_body : result UInt32 :=
- result.ret (UInt32.ofNatCore 4294967295 (by intlit))
+ def core_num_u32_max_body : Result UInt32 :=
+ Result.ret (UInt32.ofNatCore 4294967295 (by intlit))
def core_num_u32_max_c : UInt32 :=
eval_global core_num_u32_max_body (by simp)
/- [constants::X1] -/
- def x1_body : result UInt32 := result.ret core_num_u32_max_c
+ def x1_body : Result UInt32 := Result.ret core_num_u32_max_c
def x1_c : UInt32 := eval_global x1_body (by simp)
/- [constants::X2] -/
- def x2_body : result UInt32 := result.ret (UInt32.ofNatCore 3 (by intlit))
+ def x2_body : Result UInt32 := Result.ret (UInt32.ofNatCore 3 (by intlit))
def x2_c : UInt32 := eval_global x2_body (by simp)
/- [constants::incr] -/
- def incr_fwd (n : UInt32) : result UInt32 :=
+ def incr_fwd (n : UInt32) : Result UInt32 :=
UInt32.checked_add n (UInt32.ofNatCore 1 (by intlit))
/- [constants::X3] -/
- def x3_body : result UInt32 := incr_fwd (UInt32.ofNatCore 32 (by intlit))
+ def x3_body : Result UInt32 := incr_fwd (UInt32.ofNatCore 32 (by intlit))
def x3_c : UInt32 := eval_global x3_body (by simp)
/- [constants::mk_pair0] -/
- def mk_pair0_fwd (x : UInt32) (y : UInt32) : result (UInt32 × UInt32) :=
- result.ret (x, y)
+ def mk_pair0_fwd (x : UInt32) (y : UInt32) : Result (UInt32 × UInt32) :=
+ Result.ret (x, y)
/- [constants::Pair] -/
structure pair_t (T1 T2 : Type) where pair_x : T1 pair_y : T2
/- [constants::mk_pair1] -/
- def mk_pair1_fwd (x : UInt32) (y : UInt32) : result (pair_t UInt32 UInt32) :=
- result.ret { pair_x := x, pair_y := y }
+ def mk_pair1_fwd (x : UInt32) (y : UInt32) : Result (pair_t UInt32 UInt32) :=
+ Result.ret { pair_x := x, pair_y := y }
/- [constants::P0] -/
- def p0_body : result (UInt32 × UInt32) :=
+ def p0_body : Result (UInt32 × UInt32) :=
mk_pair0_fwd (UInt32.ofNatCore 0 (by intlit))
(UInt32.ofNatCore 1 (by intlit))
def p0_c : (UInt32 × UInt32) := eval_global p0_body (by simp)
/- [constants::P1] -/
- def p1_body : result (pair_t UInt32 UInt32) :=
+ def p1_body : Result (pair_t UInt32 UInt32) :=
mk_pair1_fwd (UInt32.ofNatCore 0 (by intlit))
(UInt32.ofNatCore 1 (by intlit))
def p1_c : pair_t UInt32 UInt32 := eval_global p1_body (by simp)
/- [constants::P2] -/
- def p2_body : result (UInt32 × UInt32) :=
- result.ret
+ def p2_body : Result (UInt32 × UInt32) :=
+ Result.ret
((UInt32.ofNatCore 0 (by intlit)),
(UInt32.ofNatCore 1 (by intlit)))
def p2_c : (UInt32 × UInt32) := eval_global p2_body (by simp)
/- [constants::P3] -/
- def p3_body : result (pair_t UInt32 UInt32) :=
- result.ret
+ def p3_body : Result (pair_t UInt32 UInt32) :=
+ Result.ret
{
pair_x := (UInt32.ofNatCore 0 (by intlit)),
pair_y := (UInt32.ofNatCore 1 (by intlit))
@@ -73,68 +73,68 @@ structure OpaqueDefs where
structure wrap_t (T : Type) where wrap_val : T
/- [constants::Wrap::{0}::new] -/
- def wrap_new_fwd (T : Type) (val : T) : result (wrap_t T) :=
- result.ret { wrap_val := val }
+ def wrap_new_fwd (T : Type) (val : T) : Result (wrap_t T) :=
+ Result.ret { wrap_val := val }
/- [constants::Y] -/
- def y_body : result (wrap_t Int32) :=
+ def y_body : Result (wrap_t Int32) :=
wrap_new_fwd Int32 (Int32.ofNatCore 2 (by intlit))
def y_c : wrap_t Int32 := eval_global y_body (by simp)
/- [constants::unwrap_y] -/
- def unwrap_y_fwd : result Int32 :=
- result.ret y_c.wrap_val
+ def unwrap_y_fwd : Result Int32 :=
+ Result.ret y_c.wrap_val
/- [constants::YVAL] -/
- def yval_body : result Int32 := unwrap_y_fwd
+ def yval_body : Result Int32 := unwrap_y_fwd
def yval_c : Int32 := eval_global yval_body (by simp)
/- [constants::get_z1::Z1] -/
- def get_z1_z1_body : result Int32 :=
- result.ret (Int32.ofNatCore 3 (by intlit))
+ def get_z1_z1_body : Result Int32 :=
+ Result.ret (Int32.ofNatCore 3 (by intlit))
def get_z1_z1_c : Int32 := eval_global get_z1_z1_body (by simp)
/- [constants::get_z1] -/
- def get_z1_fwd : result Int32 :=
- result.ret get_z1_z1_c
+ def get_z1_fwd : Result Int32 :=
+ Result.ret get_z1_z1_c
/- [constants::add] -/
- def add_fwd (a : Int32) (b : Int32) : result Int32 :=
+ def add_fwd (a : Int32) (b : Int32) : Result Int32 :=
Int32.checked_add a b
/- [constants::Q1] -/
- def q1_body : result Int32 := result.ret (Int32.ofNatCore 5 (by intlit))
+ def q1_body : Result Int32 := Result.ret (Int32.ofNatCore 5 (by intlit))
def q1_c : Int32 := eval_global q1_body (by simp)
/- [constants::Q2] -/
- def q2_body : result Int32 := result.ret q1_c
+ def q2_body : Result Int32 := Result.ret q1_c
def q2_c : Int32 := eval_global q2_body (by simp)
/- [constants::Q3] -/
- def q3_body : result Int32 := add_fwd q2_c (Int32.ofNatCore 3 (by intlit))
+ def q3_body : Result Int32 := add_fwd q2_c (Int32.ofNatCore 3 (by intlit))
def q3_c : Int32 := eval_global q3_body (by simp)
/- [constants::get_z2] -/
- def get_z2_fwd : result Int32 :=
+ def get_z2_fwd : Result Int32 :=
do
- let i <- get_z1_fwd
- let i0 <- add_fwd i q3_c
+ let i ← get_z1_fwd
+ let i0 ← add_fwd i q3_c
add_fwd q1_c i0
/- [constants::S1] -/
- def s1_body : result UInt32 := result.ret (UInt32.ofNatCore 6 (by intlit))
+ def s1_body : Result UInt32 := Result.ret (UInt32.ofNatCore 6 (by intlit))
def s1_c : UInt32 := eval_global s1_body (by simp)
/- [constants::S2] -/
- def s2_body : result UInt32 := incr_fwd s1_c
+ def s2_body : Result UInt32 := incr_fwd s1_c
def s2_c : UInt32 := eval_global s2_body (by simp)
/- [constants::S3] -/
- def s3_body : result (pair_t UInt32 UInt32) := result.ret p3_c
+ def s3_body : Result (pair_t UInt32 UInt32) := Result.ret p3_c
def s3_c : pair_t UInt32 UInt32 := eval_global s3_body (by simp)
/- [constants::S4] -/
- def s4_body : result (pair_t UInt32 UInt32) :=
+ def s4_body : Result (pair_t UInt32 UInt32) :=
mk_pair1_fwd (UInt32.ofNatCore 7 (by intlit))
(UInt32.ofNatCore 8 (by intlit))
def s4_c : pair_t UInt32 UInt32 := eval_global s4_body (by simp)