diff options
Diffstat (limited to 'tests/lean/misc-external/Base')
-rw-r--r-- | tests/lean/misc-external/Base/Primitives.lean | 392 |
1 files changed, 392 insertions, 0 deletions
diff --git a/tests/lean/misc-external/Base/Primitives.lean b/tests/lean/misc-external/Base/Primitives.lean new file mode 100644 index 00000000..5b64e908 --- /dev/null +++ b/tests/lean/misc-external/Base/Primitives.lean @@ -0,0 +1,392 @@ +import Lean +import Lean.Meta.Tactic.Simp +import Init.Data.List.Basic +import Mathlib.Tactic.RunCmd + +------------- +-- PRELUDE -- +------------- + +-- Results & monadic combinators + +inductive Error where + | assertionFailure: Error + | integerOverflow: Error + | arrayOutOfBounds: Error + | maximumSizeExceeded: Error + | panic: Error +deriving Repr, BEq + +open Error + +inductive Result (α : Type u) where + | ret (v: α): Result α + | fail (e: Error): Result α +deriving Repr, BEq + +open Result + +/- HELPERS -/ + +def ret? {α: Type} (r: Result α): Bool := + match r with + | Result.ret _ => true + | Result.fail _ => false + +def massert (b:Bool) : Result Unit := + if b then .ret () else fail assertionFailure + +def eval_global {α: Type} (x: Result α) (_: ret? x): α := + match x with + | Result.fail _ => by contradiction + | Result.ret x => x + +/- DO-DSL SUPPORT -/ + +def bind (x: Result α) (f: α -> Result β) : Result β := + match x with + | ret v => f v + | fail v => fail v + +-- Allows using Result in do-blocks +instance : Bind Result where + bind := bind + +-- Allows using return x in do-blocks +instance : Pure Result where + pure := fun x => ret x + +/- CUSTOM-DSL SUPPORT -/ + +-- Let-binding the Result of a monadic operation is oftentimes not sufficient, +-- because we may need a hypothesis for equational reasoning in the scope. We +-- rely on subtype, and a custom let-binding operator, in effect recreating our +-- own variant of the do-dsl + +def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := + match o with + | .ret x => .ret ⟨x, rfl⟩ + | .fail e => .fail e + +macro "let" e:term " ⟵ " f:term : doElem => + `(doElem| let ⟨$e, h⟩ ← Result.attach $f) + +-- TODO: any way to factorize both definitions? +macro "let" e:term " <-- " f:term : doElem => + `(doElem| let ⟨$e, h⟩ ← Result.attach $f) + +-- We call the hypothesis `h`, in effect making it unavailable to the user +-- (because too much shadowing). But in practice, once can use the French single +-- quote notation (input with f< and f>), where `‹ h ›` finds a suitable +-- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` +#eval do + let y <-- .ret (0: Nat) + let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide + let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ + .ret r + +---------------------- +-- MACHINE INTEGERS -- +---------------------- + +-- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ..., +-- USize. They are generally defined in an idiomatic style, except that there is +-- not a single type class to rule them all (more on that below). The absence of +-- type class is intentional, and allows the Lean compiler to efficiently map +-- them to machine integers during compilation. + +-- USize is designed properly: you cannot reduce `getNumBits` using the +-- simplifier, meaning that proofs do not depend on the compile-time value of +-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really +-- support, at least officially, 16-bit microcontrollers, so this seems like a +-- fine design decision for now.) + +-- Note from Chris Bailey: "If there's more than one salient property of your +-- definition then the subtyping strategy might get messy, and the property part +-- of a subtype is less discoverable by the simplifier or tactics like +-- library_search." So, we will not add refinements on the return values of the +-- operations defined on Primitives, but will rather rely on custom lemmas to +-- invert on possible return values of the primitive operations. + +-- Machine integer constants, done via `ofNatCore`, which requires a proof that +-- the `Nat` fits within the desired integer type. We provide a custom tactic. + +syntax "intlit" : tactic + +macro_rules + | `(tactic| intlit) => `(tactic| + match USize.size, usize_size_eq with + | _, Or.inl rfl => decide + | _, Or.inr rfl => decide) + +-- This is how the macro is expected to be used +#eval USize.ofNatCore 0 (by intlit) + +-- Also works for other integer types (at the expense of a needless disjunction) +#eval UInt32.ofNatCore 0 (by intlit) + +-- The machine integer operations (e.g. sub) are always total, which is not what +-- we want. We therefore define "checked" variants, below. Note that we add a +-- tiny bit of complexity for the USize variant: we first check whether the +-- result is < 2^32; if it is, we can compute the definition, rather than +-- returning a term that is computationally stuck (the comparison to USize.size +-- cannot reduce at compile-time, per the remark about regarding `getNumBits`). +-- This is useful for the various #asserts that we want to reduce at +-- type-checking time. + +-- Further thoughts: look at what has been done here: +-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean +-- and +-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean +-- which both contain a fair amount of reasoning already! +def USize.checked_sub (n: USize) (m: USize): Result USize := + -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed? + if n >= m then + let n' := USize.toNat n + let m' := USize.toNat n + let r := USize.ofNatCore (n' - m') (by + have h: n' - m' <= n' := by + apply Nat.sub_le_of_le_add + case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left + apply Nat.lt_of_le_of_lt h + apply n.val.isLt + ) + return r + else + fail integerOverflow + +@[simp] +theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size := + match USize.size, usize_size_eq with + | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide) + | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide) + +def USize.checked_add (n: USize) (m: USize): Result USize := + if h: n.val + m.val < USize.size then + .ret ⟨ n.val + m.val, h ⟩ + else + .fail integerOverflow + +def USize.checked_rem (n: USize) (m: USize): Result USize := + if h: m > 0 then + .ret ⟨ n.val % m.val, by + have h1: ↑m.val < USize.size := m.val.isLt + have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h + apply Nat.lt_trans h2 h1 + ⟩ + else + .fail integerOverflow + +def USize.checked_mul (n: USize) (m: USize): Result USize := + if h: n.val * m.val < USize.size then + .ret ⟨ n.val * m.val, h ⟩ + else + .fail integerOverflow + +def USize.checked_div (n: USize) (m: USize): Result USize := + if m > 0 then + .ret ⟨ n.val / m.val, by + have h1: ↑n.val < USize.size := n.val.isLt + have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val + apply Nat.lt_of_le_of_lt h2 h1 + ⟩ + else + .fail integerOverflow + +-- Test behavior... +#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 + +#eval USize.checked_sub 20 10 +-- NOTE: compare with concrete behavior here, which I do not think we want +#eval USize.sub 0 1 +#eval UInt8.add 255 255 + +-- We now define a type class that subsumes the various machine integer types, so +-- as to write a concise definition for scalar_cast, rather than exhaustively +-- enumerating all of the possible pairs. We remark that Rust has sane semantics +-- and fails if a cast operation would involve a truncation or modulo. + +class MachineInteger (t: Type) where + size: Nat + val: t -> Fin size + ofNatCore: (n:Nat) -> LT.lt n size -> t + +set_option hygiene false in +run_cmd + for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do + Lean.Elab.Command.elabCommand (← `( + namespace $typeName + instance: MachineInteger $typeName where + size := size + val := val + ofNatCore := ofNatCore + end $typeName + )) + +-- Aeneas only instantiates the destination type (`src` is implicit). We rely on +-- Lean to infer `src`. + +def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := + if h: MachineInteger.val x < MachineInteger.size dst then + .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) + else + .fail integerOverflow + +------------- +-- VECTORS -- +------------- + +-- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size) +-- rather than maximum values (usize_max). +def Vec (α : Type u) := { l : List α // List.length l < USize.size } + +def vec_new (α : Type u): Vec α := ⟨ [], by { + match USize.size, usize_size_eq with + | _, Or.inl rfl => simp + | _, Or.inr rfl => simp + } ⟩ + +#check vec_new + +def vec_len (α : Type u) (v : Vec α) : USize := + let ⟨ v, l ⟩ := v + USize.ofNatCore (List.length v) l + +#eval vec_len Nat (vec_new Nat) + +def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () + +-- NOTE: old version trying to use a subtype notation, but probably better to +-- leave Result elimination to auxiliary lemmas with suitable preconditions +-- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one +-- make the proof work in that case? Probably need to import tactics from +-- mathlib to deal with inequalities... would love to see an example. +def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) // + match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} + := + if h : List.length v.val + 1 < USize.size then + ⟨ return ⟨List.concat v.val x, + by + rw [List.length_concat] + assumption + ⟩, by simp ⟩ + else + ⟨ fail maximumSizeExceeded, by simp ⟩ + +#eval do + -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with + -- fields val and property. However, Lean's elaborator can automatically + -- select the `val` field if the context provides a type annotation. We + -- annotate `x`, which relieves us of having to write `.val` on the right-hand + -- side of the monadic let. + let v := vec_new Nat + let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here? + -- TODO: strengthen post-condition above and do a demo to show that we can + -- safely eliminate the `fail` case + return (vec_len Nat x) + +def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) + := + if h : List.length v.val + 1 <= 4294967295 then + return ⟨ List.concat v.val x, + by + rw [List.length_concat] + have h': 4294967295 < USize.size := by intlit + apply Nat.lt_of_le_of_lt h h' + ⟩ + else if h: List.length v.val + 1 < USize.size then + return ⟨List.concat v.val x, + by + rw [List.length_concat] + assumption + ⟩ + else + fail maximumSizeExceeded + +def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := + if i.val < List.length v.val then + .ret () + else + .fail arrayOutOfBounds + +def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := + if i.val < List.length v.val then + .ret ⟨ List.set v.val i.val x, by + have h: List.length v.val < USize.size := v.property + rewrite [ List.length_set v.val i.val x ] + assumption + ⟩ + else + .fail arrayOutOfBounds + +def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α := + if h: i.val < List.length v.val then + .ret (List.get v.val ⟨i.val, h⟩) + else + .fail arrayOutOfBounds + +def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := + if i.val < List.length v.val then + .ret () + else + .fail arrayOutOfBounds + +def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α := + if h: i.val < List.length v.val then + .ret (List.get v.val ⟨i.val, h⟩) + else + .fail arrayOutOfBounds + +def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := + if i.val < List.length v.val then + .ret ⟨ List.set v.val i.val x, by + have h: List.length v.val < USize.size := v.property + rewrite [ List.length_set v.val i.val x ] + assumption + ⟩ + else + .fail arrayOutOfBounds + +---------- +-- MISC -- +---------- + +def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := + x + +def mem_replace_back (a : Type) (_ : a) (y : a) : a := + y + +/-- Aeneas-translated function -- useful to reduce non-recursive definitions. + Use with `simp [ aeneas ]` -/ +register_simp_attr aeneas + +-------------------- +-- ASSERT COMMAND -- +-------------------- + +open Lean Elab Command Term Meta + +syntax (name := assert) "#assert" term: command + +@[command_elab assert] +unsafe +def assertImpl : CommandElab := fun (_stx: Syntax) => do + runTermElabM (fun _ => do + let r ← evalTerm Bool (mkConst ``Bool) _stx[1] + if not r then + logInfo "Assertion failed for: " + logInfo _stx[1] + logError "Expression reduced to false" + pure ()) + +#eval 2 == 2 +#assert (2 == 2) + +------------------- +-- SANITY CHECKS -- +------------------- + +-- TODO: add more once we have signed integers + +#assert (USize.checked_rem 1 2 == .ret 1) |