diff options
Diffstat (limited to '')
21 files changed, 119 insertions, 1847 deletions
diff --git a/tests/lean/hashmap/Hashmap.lean b/tests/lean/Hashmap.lean index 41630205..41630205 100644 --- a/tests/lean/hashmap/Hashmap.lean +++ b/tests/lean/Hashmap.lean diff --git a/tests/lean/hashmap/Hashmap/Funs.lean b/tests/lean/Hashmap/Funs.lean index 77b1a157..26742d5d 100644 --- a/tests/lean/hashmap/Hashmap/Funs.lean +++ b/tests/lean/Hashmap/Funs.lean @@ -1,28 +1,23 @@ -- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS -- [hashmap]: function definitions -import Base.Primitives +import Base import Hashmap.Types -import Hashmap.Clauses.Clauses +open Primitives /- [hashmap::hash_key] -/ def hash_key_fwd (k : Usize) : Result Usize := Result.ret k /- [hashmap::HashMap::{0}::allocate_slots] -/ -def hash_map_allocate_slots_loop_fwd - (T : Type) (slots : Vec (list_t T)) (n : Usize) : - (Result (Vec (list_t T))) - := - if h: n > (Usize.ofInt 0 (by intlit)) +divergent def hash_map_allocate_slots_loop_fwd + (T : Type) (slots : Vec (list_t T)) (n : Usize) : Result (Vec (list_t T)) := + if n > (Usize.ofInt 0 (by intlit)) then do let slots0 ← vec_push_back (list_t T) slots list_t.Nil let n0 ← n - (Usize.ofInt 1 (by intlit)) hash_map_allocate_slots_loop_fwd T slots0 n0 else Result.ret slots -termination_by hash_map_allocate_slots_loop_fwd slots n => - hash_map_allocate_slots_loop_terminates T slots n -decreasing_by hash_map_allocate_slots_loop_decreases slots n /- [hashmap::HashMap::{0}::allocate_slots] -/ def hash_map_allocate_slots_fwd @@ -54,21 +49,16 @@ def hash_map_new_fwd (T : Type) : Result (hash_map_t T) := (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit)) /- [hashmap::HashMap::{0}::clear] -/ -def hash_map_clear_loop_fwd_back - (T : Type) (slots : Vec (list_t T)) (i : Usize) : - (Result (Vec (list_t T))) - := +divergent def hash_map_clear_loop_fwd_back + (T : Type) (slots : Vec (list_t T)) (i : Usize) : Result (Vec (list_t T)) := let i0 := vec_len (list_t T) slots - if h: i < i0 + if i < i0 then do let i1 ← i + (Usize.ofInt 1 (by intlit)) let slots0 ← vec_index_mut_back (list_t T) slots i list_t.Nil hash_map_clear_loop_fwd_back T slots0 i1 else Result.ret slots -termination_by hash_map_clear_loop_fwd_back slots i => - hash_map_clear_loop_terminates T slots i -decreasing_by hash_map_clear_loop_decreases slots i /- [hashmap::HashMap::{0}::clear] -/ def hash_map_clear_fwd_back @@ -90,17 +80,14 @@ def hash_map_len_fwd (T : Type) (self : hash_map_t T) : Result Usize := Result.ret self.hash_map_num_entries /- [hashmap::HashMap::{0}::insert_in_list] -/ -def hash_map_insert_in_list_loop_fwd - (T : Type) (key : Usize) (value : T) (ls : list_t T) : (Result Bool) := +divergent def hash_map_insert_in_list_loop_fwd + (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result Bool := match h: ls with | list_t.Cons ckey cvalue tl => - if h: ckey = key + if ckey = key then Result.ret false else hash_map_insert_in_list_loop_fwd T key value tl | list_t.Nil => Result.ret true -termination_by hash_map_insert_in_list_loop_fwd key value ls => - hash_map_insert_in_list_loop_terminates T key value ls -decreasing_by hash_map_insert_in_list_loop_decreases key value ls /- [hashmap::HashMap::{0}::insert_in_list] -/ def hash_map_insert_in_list_fwd @@ -108,11 +95,11 @@ def hash_map_insert_in_list_fwd hash_map_insert_in_list_loop_fwd T key value ls /- [hashmap::HashMap::{0}::insert_in_list] -/ -def hash_map_insert_in_list_loop_back - (T : Type) (key : Usize) (value : T) (ls : list_t T) : (Result (list_t T)) := +divergent def hash_map_insert_in_list_loop_back + (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result (list_t T) := match h: ls with | list_t.Cons ckey cvalue tl => - if h: ckey = key + if ckey = key then Result.ret (list_t.Cons ckey value tl) else do @@ -120,9 +107,6 @@ def hash_map_insert_in_list_loop_back Result.ret (list_t.Cons ckey cvalue tl0) | list_t.Nil => let l := list_t.Nil Result.ret (list_t.Cons key value l) -termination_by hash_map_insert_in_list_loop_back key value ls => - hash_map_insert_in_list_loop_terminates T key value ls -decreasing_by hash_map_insert_in_list_loop_decreases key value ls /- [hashmap::HashMap::{0}::insert_in_list] -/ def hash_map_insert_in_list_back @@ -140,7 +124,7 @@ def hash_map_insert_no_resize_fwd_back let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod let inserted ← hash_map_insert_in_list_fwd T key value l - if h: inserted + if inserted then do let i0 ← self.hash_map_num_entries + (Usize.ofInt 1 (by intlit)) @@ -160,19 +144,14 @@ def core_num_u32_max_body : Result U32 := def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) /- [hashmap::HashMap::{0}::move_elements_from_list] -/ -def hash_map_move_elements_from_list_loop_fwd_back - (T : Type) (ntable : hash_map_t T) (ls : list_t T) : - (Result (hash_map_t T)) - := +divergent def hash_map_move_elements_from_list_loop_fwd_back + (T : Type) (ntable : hash_map_t T) (ls : list_t T) : Result (hash_map_t T) := match h: ls with | list_t.Cons k v tl => do let ntable0 ← hash_map_insert_no_resize_fwd_back T ntable k v hash_map_move_elements_from_list_loop_fwd_back T ntable0 tl | list_t.Nil => Result.ret ntable -termination_by hash_map_move_elements_from_list_loop_fwd_back ntable ls => - hash_map_move_elements_from_list_loop_terminates T ntable ls -decreasing_by hash_map_move_elements_from_list_loop_decreases ntable ls /- [hashmap::HashMap::{0}::move_elements_from_list] -/ def hash_map_move_elements_from_list_fwd_back @@ -180,12 +159,12 @@ def hash_map_move_elements_from_list_fwd_back hash_map_move_elements_from_list_loop_fwd_back T ntable ls /- [hashmap::HashMap::{0}::move_elements] -/ -def hash_map_move_elements_loop_fwd_back +divergent def hash_map_move_elements_loop_fwd_back (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) : - (Result ((hash_map_t T) × (Vec (list_t T)))) + Result ((hash_map_t T) × (Vec (list_t T))) := let i0 := vec_len (list_t T) slots - if h: i < i0 + if i < i0 then do let l ← vec_index_mut_fwd (list_t T) slots i @@ -196,9 +175,6 @@ def hash_map_move_elements_loop_fwd_back let slots0 ← vec_index_mut_back (list_t T) slots i l0 hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1 else Result.ret (ntable, slots) -termination_by hash_map_move_elements_loop_fwd_back ntable slots i => - hash_map_move_elements_loop_terminates T ntable slots i -decreasing_by hash_map_move_elements_loop_decreases ntable slots i /- [hashmap::HashMap::{0}::move_elements] -/ def hash_map_move_elements_fwd_back @@ -216,7 +192,7 @@ def hash_map_try_resize_fwd_back let n1 ← max_usize / (Usize.ofInt 2 (by intlit)) let (i, i0) := self.hash_map_max_load_factor let i1 ← n1 / i - if h: capacity <= i1 + if capacity <= i1 then do let i2 ← capacity * (Usize.ofInt 2 (by intlit)) @@ -241,22 +217,19 @@ def hash_map_insert_fwd_back do let self0 ← hash_map_insert_no_resize_fwd_back T self key value let i ← hash_map_len_fwd T self0 - if h: i > self0.hash_map_max_load + if i > self0.hash_map_max_load then hash_map_try_resize_fwd_back T self0 else Result.ret self0 /- [hashmap::HashMap::{0}::contains_key_in_list] -/ -def hash_map_contains_key_in_list_loop_fwd - (T : Type) (key : Usize) (ls : list_t T) : (Result Bool) := +divergent def hash_map_contains_key_in_list_loop_fwd + (T : Type) (key : Usize) (ls : list_t T) : Result Bool := match h: ls with | list_t.Cons ckey t tl => - if h: ckey = key + if ckey = key then Result.ret true else hash_map_contains_key_in_list_loop_fwd T key tl | list_t.Nil => Result.ret false -termination_by hash_map_contains_key_in_list_loop_fwd key ls => - hash_map_contains_key_in_list_loop_terminates T key ls -decreasing_by hash_map_contains_key_in_list_loop_decreases key ls /- [hashmap::HashMap::{0}::contains_key_in_list] -/ def hash_map_contains_key_in_list_fwd @@ -274,17 +247,14 @@ def hash_map_contains_key_fwd hash_map_contains_key_in_list_fwd T key l /- [hashmap::HashMap::{0}::get_in_list] -/ -def hash_map_get_in_list_loop_fwd - (T : Type) (key : Usize) (ls : list_t T) : (Result T) := +divergent def hash_map_get_in_list_loop_fwd + (T : Type) (key : Usize) (ls : list_t T) : Result T := match h: ls with | list_t.Cons ckey cvalue tl => - if h: ckey = key + if ckey = key then Result.ret cvalue else hash_map_get_in_list_loop_fwd T key tl | list_t.Nil => Result.fail Error.panic -termination_by hash_map_get_in_list_loop_fwd key ls => - hash_map_get_in_list_loop_terminates T key ls -decreasing_by hash_map_get_in_list_loop_decreases key ls /- [hashmap::HashMap::{0}::get_in_list] -/ def hash_map_get_in_list_fwd @@ -302,17 +272,14 @@ def hash_map_get_fwd hash_map_get_in_list_fwd T key l /- [hashmap::HashMap::{0}::get_mut_in_list] -/ -def hash_map_get_mut_in_list_loop_fwd - (T : Type) (ls : list_t T) (key : Usize) : (Result T) := +divergent def hash_map_get_mut_in_list_loop_fwd + (T : Type) (ls : list_t T) (key : Usize) : Result T := match h: ls with | list_t.Cons ckey cvalue tl => - if h: ckey = key + if ckey = key then Result.ret cvalue else hash_map_get_mut_in_list_loop_fwd T tl key | list_t.Nil => Result.fail Error.panic -termination_by hash_map_get_mut_in_list_loop_fwd ls key => - hash_map_get_mut_in_list_loop_terminates T ls key -decreasing_by hash_map_get_mut_in_list_loop_decreases ls key /- [hashmap::HashMap::{0}::get_mut_in_list] -/ def hash_map_get_mut_in_list_fwd @@ -320,20 +287,17 @@ def hash_map_get_mut_in_list_fwd hash_map_get_mut_in_list_loop_fwd T ls key /- [hashmap::HashMap::{0}::get_mut_in_list] -/ -def hash_map_get_mut_in_list_loop_back - (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : (Result (list_t T)) := +divergent def hash_map_get_mut_in_list_loop_back + (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : Result (list_t T) := match h: ls with | list_t.Cons ckey cvalue tl => - if h: ckey = key + if ckey = key then Result.ret (list_t.Cons ckey ret0 tl) else do let tl0 ← hash_map_get_mut_in_list_loop_back T tl key ret0 Result.ret (list_t.Cons ckey cvalue tl0) | list_t.Nil => Result.fail Error.panic -termination_by hash_map_get_mut_in_list_loop_back ls key ret0 => - hash_map_get_mut_in_list_loop_terminates T ls key -decreasing_by hash_map_get_mut_in_list_loop_decreases ls key /- [hashmap::HashMap::{0}::get_mut_in_list] -/ def hash_map_get_mut_in_list_back @@ -365,11 +329,11 @@ def hash_map_get_mut_back Result.ret { self with hash_map_slots := v } /- [hashmap::HashMap::{0}::remove_from_list] -/ -def hash_map_remove_from_list_loop_fwd - (T : Type) (key : Usize) (ls : list_t T) : (Result (Option T)) := +divergent def hash_map_remove_from_list_loop_fwd + (T : Type) (key : Usize) (ls : list_t T) : Result (Option T) := match h: ls with | list_t.Cons ckey t tl => - if h: ckey = key + if ckey = key then let mv_ls := mem_replace_fwd (list_t T) (list_t.Cons ckey t tl) list_t.Nil @@ -378,9 +342,6 @@ def hash_map_remove_from_list_loop_fwd | list_t.Nil => Result.fail Error.panic else hash_map_remove_from_list_loop_fwd T key tl | list_t.Nil => Result.ret Option.none -termination_by hash_map_remove_from_list_loop_fwd key ls => - hash_map_remove_from_list_loop_terminates T key ls -decreasing_by hash_map_remove_from_list_loop_decreases key ls /- [hashmap::HashMap::{0}::remove_from_list] -/ def hash_map_remove_from_list_fwd @@ -388,11 +349,11 @@ def hash_map_remove_from_list_fwd hash_map_remove_from_list_loop_fwd T key ls /- [hashmap::HashMap::{0}::remove_from_list] -/ -def hash_map_remove_from_list_loop_back - (T : Type) (key : Usize) (ls : list_t T) : (Result (list_t T)) := +divergent def hash_map_remove_from_list_loop_back + (T : Type) (key : Usize) (ls : list_t T) : Result (list_t T) := match h: ls with | list_t.Cons ckey t tl => - if h: ckey = key + if ckey = key then let mv_ls := mem_replace_fwd (list_t T) (list_t.Cons ckey t tl) list_t.Nil @@ -404,9 +365,6 @@ def hash_map_remove_from_list_loop_back let tl0 ← hash_map_remove_from_list_loop_back T key tl Result.ret (list_t.Cons ckey t tl0) | list_t.Nil => Result.ret list_t.Nil -termination_by hash_map_remove_from_list_loop_back key ls => - hash_map_remove_from_list_loop_terminates T key ls -decreasing_by hash_map_remove_from_list_loop_decreases key ls /- [hashmap::HashMap::{0}::remove_from_list] -/ def hash_map_remove_from_list_back @@ -469,7 +427,7 @@ def test1_fwd : Result Unit := hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit)) (U64.ofInt 256 (by intlit)) let i ← hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit)) - if h: not (i = (U64.ofInt 18 (by intlit))) + if not (i = (U64.ofInt 18 (by intlit))) then Result.fail Error.panic else do @@ -477,7 +435,7 @@ def test1_fwd : Result Unit := hash_map_get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit)) (U64.ofInt 56 (by intlit)) let i0 ← hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) - if h: not (i0 = (U64.ofInt 56 (by intlit))) + if not (i0 = (U64.ofInt 56 (by intlit))) then Result.fail Error.panic else do @@ -486,7 +444,7 @@ def test1_fwd : Result Unit := match h: x with | Option.none => Result.fail Error.panic | Option.some x0 => - if h: not (x0 = (U64.ofInt 56 (by intlit))) + if not (x0 = (U64.ofInt 56 (by intlit))) then Result.fail Error.panic else do @@ -494,20 +452,23 @@ def test1_fwd : Result Unit := hash_map_remove_back U64 hm4 (Usize.ofInt 1024 (by intlit)) let i1 ← hash_map_get_fwd U64 hm5 (Usize.ofInt 0 (by intlit)) - if h: not (i1 = (U64.ofInt 42 (by intlit))) + if not (i1 = (U64.ofInt 42 (by intlit))) then Result.fail Error.panic else do let i2 ← hash_map_get_fwd U64 hm5 (Usize.ofInt 128 (by intlit)) - if h: not (i2 = (U64.ofInt 18 (by intlit))) + if not (i2 = (U64.ofInt 18 (by intlit))) then Result.fail Error.panic else do let i3 ← hash_map_get_fwd U64 hm5 (Usize.ofInt 1056 (by intlit)) - if h: not (i3 = (U64.ofInt 256 (by intlit))) + if not (i3 = (U64.ofInt 256 (by intlit))) then Result.fail Error.panic else Result.ret () +/- Unit test for [hashmap::test1] -/ +#assert (test1_fwd == .ret ()) + diff --git a/tests/lean/hashmap/Hashmap/Types.lean b/tests/lean/Hashmap/Types.lean index 6eabf7da..af26f363 100644 --- a/tests/lean/hashmap/Hashmap/Types.lean +++ b/tests/lean/Hashmap/Types.lean @@ -1,6 +1,7 @@ -- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS -- [hashmap]: type definitions -import Base.Primitives +import Base +open Primitives /- [hashmap::List] -/ inductive list_t (T : Type) := diff --git a/tests/lean/hashmap_on_disk/HashmapMain.lean b/tests/lean/HashmapMain.lean index 1a4e7f82..1a4e7f82 100644 --- a/tests/lean/hashmap_on_disk/HashmapMain.lean +++ b/tests/lean/HashmapMain.lean diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean b/tests/lean/HashmapMain/Funs.lean index 342c3833..a59a9f26 100644 --- a/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean +++ b/tests/lean/HashmapMain/Funs.lean @@ -1,29 +1,26 @@ -- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS -- [hashmap_main]: function definitions -import Base.Primitives +import Base import HashmapMain.Types import HashmapMain.ExternalFuns -import HashmapMain.Clauses.Clauses +open Primitives /- [hashmap_main::hashmap::hash_key] -/ def hashmap_hash_key_fwd (k : Usize) : Result Usize := Result.ret k /- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/ -def hashmap_hash_map_allocate_slots_loop_fwd +divergent def hashmap_hash_map_allocate_slots_loop_fwd (T : Type) (slots : Vec (hashmap_list_t T)) (n : Usize) : - (Result (Vec (hashmap_list_t T))) + Result (Vec (hashmap_list_t T)) := - if h: n > (Usize.ofInt 0 (by intlit)) + if n > (Usize.ofInt 0 (by intlit)) then do let slots0 ← vec_push_back (hashmap_list_t T) slots hashmap_list_t.Nil let n0 ← n - (Usize.ofInt 1 (by intlit)) hashmap_hash_map_allocate_slots_loop_fwd T slots0 n0 else Result.ret slots -termination_by hashmap_hash_map_allocate_slots_loop_fwd slots n => - hashmap_hash_map_allocate_slots_loop_terminates T slots n -decreasing_by hashmap_hash_map_allocate_slots_loop_decreases slots n /- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/ def hashmap_hash_map_allocate_slots_fwd @@ -58,12 +55,12 @@ def hashmap_hash_map_new_fwd (T : Type) : Result (hashmap_hash_map_t T) := (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit)) /- [hashmap_main::hashmap::HashMap::{0}::clear] -/ -def hashmap_hash_map_clear_loop_fwd_back +divergent def hashmap_hash_map_clear_loop_fwd_back (T : Type) (slots : Vec (hashmap_list_t T)) (i : Usize) : - (Result (Vec (hashmap_list_t T))) + Result (Vec (hashmap_list_t T)) := let i0 := vec_len (hashmap_list_t T) slots - if h: i < i0 + if i < i0 then do let i1 ← i + (Usize.ofInt 1 (by intlit)) @@ -71,9 +68,6 @@ def hashmap_hash_map_clear_loop_fwd_back vec_index_mut_back (hashmap_list_t T) slots i hashmap_list_t.Nil hashmap_hash_map_clear_loop_fwd_back T slots0 i1 else Result.ret slots -termination_by hashmap_hash_map_clear_loop_fwd_back slots i => - hashmap_hash_map_clear_loop_terminates T slots i -decreasing_by hashmap_hash_map_clear_loop_decreases slots i /- [hashmap_main::hashmap::HashMap::{0}::clear] -/ def hashmap_hash_map_clear_fwd_back @@ -96,19 +90,14 @@ def hashmap_hash_map_len_fwd Result.ret self.hashmap_hash_map_num_entries /- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ -def hashmap_hash_map_insert_in_list_loop_fwd - (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : - (Result Bool) - := +divergent def hashmap_hash_map_insert_in_list_loop_fwd + (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : Result Bool := match h: ls with | hashmap_list_t.Cons ckey cvalue tl => - if h: ckey = key + if ckey = key then Result.ret false else hashmap_hash_map_insert_in_list_loop_fwd T key value tl | hashmap_list_t.Nil => Result.ret true -termination_by hashmap_hash_map_insert_in_list_loop_fwd key value ls => - hashmap_hash_map_insert_in_list_loop_terminates T key value ls -decreasing_by hashmap_hash_map_insert_in_list_loop_decreases key value ls /- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ def hashmap_hash_map_insert_in_list_fwd @@ -116,13 +105,13 @@ def hashmap_hash_map_insert_in_list_fwd hashmap_hash_map_insert_in_list_loop_fwd T key value ls /- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ -def hashmap_hash_map_insert_in_list_loop_back +divergent def hashmap_hash_map_insert_in_list_loop_back (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : - (Result (hashmap_list_t T)) + Result (hashmap_list_t T) := match h: ls with | hashmap_list_t.Cons ckey cvalue tl => - if h: ckey = key + if ckey = key then Result.ret (hashmap_list_t.Cons ckey value tl) else do @@ -131,9 +120,6 @@ def hashmap_hash_map_insert_in_list_loop_back | hashmap_list_t.Nil => let l := hashmap_list_t.Nil Result.ret (hashmap_list_t.Cons key value l) -termination_by hashmap_hash_map_insert_in_list_loop_back key value ls => - hashmap_hash_map_insert_in_list_loop_terminates T key value ls -decreasing_by hashmap_hash_map_insert_in_list_loop_decreases key value ls /- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ def hashmap_hash_map_insert_in_list_back @@ -154,7 +140,7 @@ def hashmap_hash_map_insert_no_resize_fwd_back let l ← vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod let inserted ← hashmap_hash_map_insert_in_list_fwd T key value l - if h: inserted + if inserted then do let i0 ← self.hashmap_hash_map_num_entries + @@ -183,9 +169,9 @@ def core_num_u32_max_body : Result U32 := def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) /- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list] -/ -def hashmap_hash_map_move_elements_from_list_loop_fwd_back +divergent def hashmap_hash_map_move_elements_from_list_loop_fwd_back (T : Type) (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) : - (Result (hashmap_hash_map_t T)) + Result (hashmap_hash_map_t T) := match h: ls with | hashmap_list_t.Cons k v tl => @@ -193,10 +179,6 @@ def hashmap_hash_map_move_elements_from_list_loop_fwd_back let ntable0 ← hashmap_hash_map_insert_no_resize_fwd_back T ntable k v hashmap_hash_map_move_elements_from_list_loop_fwd_back T ntable0 tl | hashmap_list_t.Nil => Result.ret ntable -termination_by hashmap_hash_map_move_elements_from_list_loop_fwd_back ntable ls - => - hashmap_hash_map_move_elements_from_list_loop_terminates T ntable ls -decreasing_by hashmap_hash_map_move_elements_from_list_loop_decreases ntable ls /- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list] -/ def hashmap_hash_map_move_elements_from_list_fwd_back @@ -206,13 +188,13 @@ def hashmap_hash_map_move_elements_from_list_fwd_back hashmap_hash_map_move_elements_from_list_loop_fwd_back T ntable ls /- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/ -def hashmap_hash_map_move_elements_loop_fwd_back +divergent def hashmap_hash_map_move_elements_loop_fwd_back (T : Type) (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize) : - (Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T)))) + Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T))) := let i0 := vec_len (hashmap_list_t T) slots - if h: i < i0 + if i < i0 then do let l ← vec_index_mut_fwd (hashmap_list_t T) slots i @@ -224,9 +206,6 @@ def hashmap_hash_map_move_elements_loop_fwd_back let slots0 ← vec_index_mut_back (hashmap_list_t T) slots i l0 hashmap_hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1 else Result.ret (ntable, slots) -termination_by hashmap_hash_map_move_elements_loop_fwd_back ntable slots i => - hashmap_hash_map_move_elements_loop_terminates T ntable slots i -decreasing_by hashmap_hash_map_move_elements_loop_decreases ntable slots i /- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/ def hashmap_hash_map_move_elements_fwd_back @@ -245,7 +224,7 @@ def hashmap_hash_map_try_resize_fwd_back let n1 ← max_usize / (Usize.ofInt 2 (by intlit)) let (i, i0) := self.hashmap_hash_map_max_load_factor let i1 ← n1 / i - if h: capacity <= i1 + if capacity <= i1 then do let i2 ← capacity * (Usize.ofInt 2 (by intlit)) @@ -270,22 +249,19 @@ def hashmap_hash_map_insert_fwd_back do let self0 ← hashmap_hash_map_insert_no_resize_fwd_back T self key value let i ← hashmap_hash_map_len_fwd T self0 - if h: i > self0.hashmap_hash_map_max_load + if i > self0.hashmap_hash_map_max_load then hashmap_hash_map_try_resize_fwd_back T self0 else Result.ret self0 /- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/ -def hashmap_hash_map_contains_key_in_list_loop_fwd - (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result Bool) := +divergent def hashmap_hash_map_contains_key_in_list_loop_fwd + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result Bool := match h: ls with | hashmap_list_t.Cons ckey t tl => - if h: ckey = key + if ckey = key then Result.ret true else hashmap_hash_map_contains_key_in_list_loop_fwd T key tl | hashmap_list_t.Nil => Result.ret false -termination_by hashmap_hash_map_contains_key_in_list_loop_fwd key ls => - hashmap_hash_map_contains_key_in_list_loop_terminates T key ls -decreasing_by hashmap_hash_map_contains_key_in_list_loop_decreases key ls /- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/ def hashmap_hash_map_contains_key_in_list_fwd @@ -304,17 +280,14 @@ def hashmap_hash_map_contains_key_fwd hashmap_hash_map_contains_key_in_list_fwd T key l /- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/ -def hashmap_hash_map_get_in_list_loop_fwd - (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result T) := +divergent def hashmap_hash_map_get_in_list_loop_fwd + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result T := match h: ls with | hashmap_list_t.Cons ckey cvalue tl => - if h: ckey = key + if ckey = key then Result.ret cvalue else hashmap_hash_map_get_in_list_loop_fwd T key tl | hashmap_list_t.Nil => Result.fail Error.panic -termination_by hashmap_hash_map_get_in_list_loop_fwd key ls => - hashmap_hash_map_get_in_list_loop_terminates T key ls -decreasing_by hashmap_hash_map_get_in_list_loop_decreases key ls /- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/ def hashmap_hash_map_get_in_list_fwd @@ -333,17 +306,14 @@ def hashmap_hash_map_get_fwd hashmap_hash_map_get_in_list_fwd T key l /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ -def hashmap_hash_map_get_mut_in_list_loop_fwd - (T : Type) (ls : hashmap_list_t T) (key : Usize) : (Result T) := +divergent def hashmap_hash_map_get_mut_in_list_loop_fwd + (T : Type) (ls : hashmap_list_t T) (key : Usize) : Result T := match h: ls with | hashmap_list_t.Cons ckey cvalue tl => - if h: ckey = key + if ckey = key then Result.ret cvalue else hashmap_hash_map_get_mut_in_list_loop_fwd T tl key | hashmap_list_t.Nil => Result.fail Error.panic -termination_by hashmap_hash_map_get_mut_in_list_loop_fwd ls key => - hashmap_hash_map_get_mut_in_list_loop_terminates T ls key -decreasing_by hashmap_hash_map_get_mut_in_list_loop_decreases ls key /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ def hashmap_hash_map_get_mut_in_list_fwd @@ -351,22 +321,19 @@ def hashmap_hash_map_get_mut_in_list_fwd hashmap_hash_map_get_mut_in_list_loop_fwd T ls key /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ -def hashmap_hash_map_get_mut_in_list_loop_back +divergent def hashmap_hash_map_get_mut_in_list_loop_back (T : Type) (ls : hashmap_list_t T) (key : Usize) (ret0 : T) : - (Result (hashmap_list_t T)) + Result (hashmap_list_t T) := match h: ls with | hashmap_list_t.Cons ckey cvalue tl => - if h: ckey = key + if ckey = key then Result.ret (hashmap_list_t.Cons ckey ret0 tl) else do let tl0 ← hashmap_hash_map_get_mut_in_list_loop_back T tl key ret0 Result.ret (hashmap_list_t.Cons ckey cvalue tl0) | hashmap_list_t.Nil => Result.fail Error.panic -termination_by hashmap_hash_map_get_mut_in_list_loop_back ls key ret0 => - hashmap_hash_map_get_mut_in_list_loop_terminates T ls key -decreasing_by hashmap_hash_map_get_mut_in_list_loop_decreases ls key /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ def hashmap_hash_map_get_mut_in_list_back @@ -404,11 +371,11 @@ def hashmap_hash_map_get_mut_back Result.ret { self with hashmap_hash_map_slots := v } /- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ -def hashmap_hash_map_remove_from_list_loop_fwd - (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result (Option T)) := +divergent def hashmap_hash_map_remove_from_list_loop_fwd + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result (Option T) := match h: ls with | hashmap_list_t.Cons ckey t tl => - if h: ckey = key + if ckey = key then let mv_ls := mem_replace_fwd (hashmap_list_t T) (hashmap_list_t.Cons ckey t tl) @@ -418,9 +385,6 @@ def hashmap_hash_map_remove_from_list_loop_fwd | hashmap_list_t.Nil => Result.fail Error.panic else hashmap_hash_map_remove_from_list_loop_fwd T key tl | hashmap_list_t.Nil => Result.ret Option.none -termination_by hashmap_hash_map_remove_from_list_loop_fwd key ls => - hashmap_hash_map_remove_from_list_loop_terminates T key ls -decreasing_by hashmap_hash_map_remove_from_list_loop_decreases key ls /- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ def hashmap_hash_map_remove_from_list_fwd @@ -428,13 +392,13 @@ def hashmap_hash_map_remove_from_list_fwd hashmap_hash_map_remove_from_list_loop_fwd T key ls /- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ -def hashmap_hash_map_remove_from_list_loop_back +divergent def hashmap_hash_map_remove_from_list_loop_back (T : Type) (key : Usize) (ls : hashmap_list_t T) : - (Result (hashmap_list_t T)) + Result (hashmap_list_t T) := match h: ls with | hashmap_list_t.Cons ckey t tl => - if h: ckey = key + if ckey = key then let mv_ls := mem_replace_fwd (hashmap_list_t T) (hashmap_list_t.Cons ckey t tl) @@ -447,9 +411,6 @@ def hashmap_hash_map_remove_from_list_loop_back let tl0 ← hashmap_hash_map_remove_from_list_loop_back T key tl Result.ret (hashmap_list_t.Cons ckey t tl0) | hashmap_list_t.Nil => Result.ret hashmap_list_t.Nil -termination_by hashmap_hash_map_remove_from_list_loop_back key ls => - hashmap_hash_map_remove_from_list_loop_terminates T key ls -decreasing_by hashmap_hash_map_remove_from_list_loop_decreases key ls /- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ def hashmap_hash_map_remove_from_list_back @@ -528,7 +489,7 @@ def hashmap_test1_fwd : Result Unit := hashmap_hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit)) (U64.ofInt 256 (by intlit)) let i ← hashmap_hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit)) - if h: not (i = (U64.ofInt 18 (by intlit))) + if not (i = (U64.ofInt 18 (by intlit))) then Result.fail Error.panic else do @@ -537,7 +498,7 @@ def hashmap_test1_fwd : Result Unit := (U64.ofInt 56 (by intlit)) let i0 ← hashmap_hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) - if h: not (i0 = (U64.ofInt 56 (by intlit))) + if not (i0 = (U64.ofInt 56 (by intlit))) then Result.fail Error.panic else do @@ -547,7 +508,7 @@ def hashmap_test1_fwd : Result Unit := match h: x with | Option.none => Result.fail Error.panic | Option.some x0 => - if h: not (x0 = (U64.ofInt 56 (by intlit))) + if not (x0 = (U64.ofInt 56 (by intlit))) then Result.fail Error.panic else do @@ -557,24 +518,27 @@ def hashmap_test1_fwd : Result Unit := let i1 ← hashmap_hash_map_get_fwd U64 hm5 (Usize.ofInt 0 (by intlit)) - if h: not (i1 = (U64.ofInt 42 (by intlit))) + if not (i1 = (U64.ofInt 42 (by intlit))) then Result.fail Error.panic else do let i2 ← hashmap_hash_map_get_fwd U64 hm5 (Usize.ofInt 128 (by intlit)) - if h: not (i2 = (U64.ofInt 18 (by intlit))) + if not (i2 = (U64.ofInt 18 (by intlit))) then Result.fail Error.panic else do let i3 ← hashmap_hash_map_get_fwd U64 hm5 (Usize.ofInt 1056 (by intlit)) - if h: not (i3 = (U64.ofInt 256 (by intlit))) + if not (i3 = (U64.ofInt 256 (by intlit))) then Result.fail Error.panic else Result.ret () +/- Unit test for [hashmap_main::hashmap::test1] -/ +#assert (hashmap_test1_fwd == .ret ()) + /- [hashmap_main::insert_on_disk] -/ def insert_on_disk_fwd (key : Usize) (value : U64) (st : State) : Result (State × Unit) := @@ -588,3 +552,6 @@ def insert_on_disk_fwd def main_fwd : Result Unit := Result.ret () +/- Unit test for [hashmap_main::main] -/ +#assert (main_fwd == .ret ()) + diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean b/tests/lean/HashmapMain/Opaque.lean index d98f431a..bef4f3fb 100644 --- a/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean +++ b/tests/lean/HashmapMain/Opaque.lean @@ -1,7 +1,8 @@ -- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS -- [hashmap_main]: opaque function definitions -import Base.Primitives +import Base import HashmapMain.Types +open Primitives structure OpaqueDefs where diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Types.lean b/tests/lean/HashmapMain/Types.lean index 0509fbbd..858e1c51 100644 --- a/tests/lean/hashmap_on_disk/HashmapMain/Types.lean +++ b/tests/lean/HashmapMain/Types.lean @@ -1,6 +1,7 @@ -- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS -- [hashmap_main]: type definitions -import Base.Primitives +import Base +open Primitives /- [hashmap_main::hashmap::List] -/ inductive hashmap_list_t (T : Type) := diff --git a/tests/lean/hashmap/Base/Primitives.lean b/tests/lean/hashmap/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/hashmap/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean b/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean deleted file mode 100644 index 197b0a6a..00000000 --- a/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean +++ /dev/null @@ -1,107 +0,0 @@ --- [hashmap]: templates for the decreases clauses -import Base.Primitives -import Hashmap.Types - -/- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/ -@[simp] -def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T)) - (n : Usize) := - (slots, n) - -/- [hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ -syntax "hash_map_allocate_slots_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_allocate_slots_loop_decreases $slots $n) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::clear]: termination measure -/ -@[simp] -def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T)) - (i : Usize) := - (slots, i) - -/- [hashmap::HashMap::{0}::clear]: decreases_by tactic -/ -syntax "hash_map_clear_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::insert_in_list]: termination measure -/ -@[simp] -def hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) - (value : T) (ls : list_t T) := - (key, value, ls) - -/- [hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/ -syntax "hash_map_insert_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_insert_in_list_loop_decreases $key $value $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/ -@[simp] -def hash_map_move_elements_from_list_loop_terminates (T : Type) - (ntable : hash_map_t T) (ls : list_t T) := - (ntable, ls) - -/- [hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/ -syntax "hash_map_move_elements_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_move_elements_from_list_loop_decreases $ntable $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::move_elements]: termination measure -/ -@[simp] -def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T) - (slots : Vec (list_t T)) (i : Usize) := - (ntable, slots, i) - -/- [hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ -syntax "hash_map_move_elements_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_move_elements_loop_decreases $ntable $slots $i) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ -@[simp] -def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/ -syntax "hash_map_contains_key_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_contains_key_in_list_loop_decreases $key $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::get_in_list]: termination measure -/ -@[simp] -def hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/ -syntax "hash_map_get_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ -@[simp] -def hash_map_get_mut_in_list_loop_terminates (T : Type) (ls : list_t T) - (key : Usize) := - (ls, key) - -/- [hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ -syntax "hash_map_get_mut_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_get_mut_in_list_loop_decreases $ls $key) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::remove_from_list]: termination measure -/ -@[simp] -def hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/ -syntax "hash_map_remove_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_remove_from_list_loop_decreases $key $ls) =>`(tactic| sorry) - diff --git a/tests/lean/hashmap/Hashmap/Clauses/Template.lean b/tests/lean/hashmap/Hashmap/Clauses/Template.lean deleted file mode 100644 index 560592c8..00000000 --- a/tests/lean/hashmap/Hashmap/Clauses/Template.lean +++ /dev/null @@ -1,108 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [hashmap]: templates for the decreases clauses -import Base.Primitives -import Hashmap.Types - -/- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/ -@[simp] -def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T)) - (n : Usize) := - (slots, n) - -/- [hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ -syntax "hash_map_allocate_slots_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_allocate_slots_loop_decreases $slots $n) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::clear]: termination measure -/ -@[simp] -def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T)) - (i : Usize) := - (slots, i) - -/- [hashmap::HashMap::{0}::clear]: decreases_by tactic -/ -syntax "hash_map_clear_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::insert_in_list]: termination measure -/ -@[simp] -def hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) - (value : T) (ls : list_t T) := - (key, value, ls) - -/- [hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/ -syntax "hash_map_insert_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_insert_in_list_loop_decreases $key $value $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/ -@[simp] -def hash_map_move_elements_from_list_loop_terminates (T : Type) - (ntable : hash_map_t T) (ls : list_t T) := - (ntable, ls) - -/- [hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/ -syntax "hash_map_move_elements_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_move_elements_from_list_loop_decreases $ntable $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::move_elements]: termination measure -/ -@[simp] -def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T) - (slots : Vec (list_t T)) (i : Usize) := - (ntable, slots, i) - -/- [hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ -syntax "hash_map_move_elements_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_move_elements_loop_decreases $ntable $slots $i) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ -@[simp] -def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/ -syntax "hash_map_contains_key_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_contains_key_in_list_loop_decreases $key $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::get_in_list]: termination measure -/ -@[simp] -def hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/ -syntax "hash_map_get_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ -@[simp] -def hash_map_get_mut_in_list_loop_terminates (T : Type) (ls : list_t T) - (key : Usize) := - (ls, key) - -/- [hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ -syntax "hash_map_get_mut_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_get_mut_in_list_loop_decreases $ls $key) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::remove_from_list]: termination measure -/ -@[simp] -def hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/ -syntax "hash_map_remove_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_remove_from_list_loop_decreases $key $ls) =>`(tactic| sorry) - diff --git a/tests/lean/hashmap/lakefile.lean b/tests/lean/hashmap/lakefile.lean deleted file mode 100644 index 713785f6..00000000 --- a/tests/lean/hashmap/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «hashmap» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «Hashmap» {} diff --git a/tests/lean/hashmap/lean-toolchain b/tests/lean/hashmap/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/hashmap/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/hashmap_on_disk/.gitignore b/tests/lean/hashmap_on_disk/.gitignore deleted file mode 100644 index a1735e7c..00000000 --- a/tests/lean/hashmap_on_disk/.gitignore +++ /dev/null @@ -1,5 +0,0 @@ -/build -/lean_packages/* -!/lean_packages/manifest.json -/build -/lake-packages/* diff --git a/tests/lean/hashmap_on_disk/Base/Primitives.lean b/tests/lean/hashmap_on_disk/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/hashmap_on_disk/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean deleted file mode 100644 index a4dc996a..00000000 --- a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean +++ /dev/null @@ -1,110 +0,0 @@ -import Base.Primitives -import HashmapMain.Types - -/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: termination measure -/ -@[simp] -def hashmap_hash_map_allocate_slots_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (n : Usize) := - (slots, n) - -/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ -syntax "hashmap_hash_map_allocate_slots_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_allocate_slots_loop_decreases $slots $n) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::clear]: termination measure -/ -@[simp] -def hashmap_hash_map_clear_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (i : Usize) := - (slots, i) - -/- [hashmap_main::hashmap::HashMap::{0}::clear]: decreases_by tactic -/ -syntax "hashmap_hash_map_clear_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) - (value : T) (ls : hashmap_list_t T) := - (key, value, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_insert_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_insert_in_list_loop_decreases $key $value $ls) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/ -@[simp] -def hashmap_hash_map_move_elements_from_list_loop_terminates (T : Type) - (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) := - (ntable, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_move_elements_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_move_elements_from_list_loop_decreases $ntable -$ls) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: termination measure -/ -@[simp] -def hashmap_hash_map_move_elements_loop_terminates (T : Type) - (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize) - := - (ntable, slots, i) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ -syntax "hashmap_hash_map_move_elements_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_move_elements_loop_decreases $ntable $slots $i) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_contains_key_in_list_loop_terminates (T : Type) - (key : Usize) (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_contains_key_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_contains_key_in_list_loop_decreases $key $ls) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) - (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_get_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_get_mut_in_list_loop_terminates (T : Type) - (ls : hashmap_list_t T) (key : Usize) := - (ls, key) - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_get_mut_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_get_mut_in_list_loop_decreases $ls $key) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: termination measure -/ -@[simp] -def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) - (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_remove_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_remove_from_list_loop_decreases $key $ls) => - `(tactic| sorry) - diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean deleted file mode 100644 index 33802597..00000000 --- a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean +++ /dev/null @@ -1,112 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [hashmap_main]: templates for the decreases clauses -import Base.Primitives -import HashmapMain.Types - -/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: termination measure -/ -@[simp] -def hashmap_hash_map_allocate_slots_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (n : Usize) := - (slots, n) - -/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ -syntax "hashmap_hash_map_allocate_slots_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_allocate_slots_loop_decreases $slots $n) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::clear]: termination measure -/ -@[simp] -def hashmap_hash_map_clear_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (i : Usize) := - (slots, i) - -/- [hashmap_main::hashmap::HashMap::{0}::clear]: decreases_by tactic -/ -syntax "hashmap_hash_map_clear_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) - (value : T) (ls : hashmap_list_t T) := - (key, value, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_insert_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_insert_in_list_loop_decreases $key $value $ls) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/ -@[simp] -def hashmap_hash_map_move_elements_from_list_loop_terminates (T : Type) - (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) := - (ntable, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_move_elements_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_move_elements_from_list_loop_decreases $ntable -$ls) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: termination measure -/ -@[simp] -def hashmap_hash_map_move_elements_loop_terminates (T : Type) - (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize) - := - (ntable, slots, i) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ -syntax "hashmap_hash_map_move_elements_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_move_elements_loop_decreases $ntable $slots $i) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_contains_key_in_list_loop_terminates (T : Type) - (key : Usize) (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_contains_key_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_contains_key_in_list_loop_decreases $key $ls) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) - (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_get_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_get_mut_in_list_loop_terminates (T : Type) - (ls : hashmap_list_t T) (key : Usize) := - (ls, key) - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_get_mut_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_get_mut_in_list_loop_decreases $ls $key) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: termination measure -/ -@[simp] -def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) - (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_remove_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_remove_from_list_loop_decreases $key $ls) => - `(tactic| sorry) - diff --git a/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean b/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean deleted file mode 100644 index a5103acc..00000000 --- a/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean +++ /dev/null @@ -1,5 +0,0 @@ -import Base.Primitives -import HashmapMain.Types -import HashmapMain.Opaque - -def opaque_defs : OpaqueDefs := by sorry diff --git a/tests/lean/hashmap_on_disk/lake-manifest.json b/tests/lean/hashmap_on_disk/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/hashmap_on_disk/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/hashmap_on_disk/lakefile.lean b/tests/lean/hashmap_on_disk/lakefile.lean deleted file mode 100644 index 70daf427..00000000 --- a/tests/lean/hashmap_on_disk/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «hashmap_main» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «HashmapMain» {} diff --git a/tests/lean/hashmap_on_disk/lean-toolchain b/tests/lean/hashmap_on_disk/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/hashmap_on_disk/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/hashmap/lake-manifest.json b/tests/lean/lake-manifest.json index 88e446e5..1397c6f0 100644 --- a/tests/lean/hashmap/lake-manifest.json +++ b/tests/lean/lake-manifest.json @@ -1,27 +1,34 @@ {"version": 4, - "packagesDir": "./lake-packages", + "packagesDir": "lake-packages", "packages": [{"git": + {"url": "https://github.com/EdAyers/ProofWidgets4", + "subDir?": null, + "rev": "c43db94a8f495dad37829e9d7ad65483d68c86b8", + "name": "proofwidgets", + "inputRev?": "v0.0.11"}}, + {"path": {"name": "Base", "dir": "./../../backends/lean"}}, + {"git": {"url": "https://github.com/leanprover-community/mathlib4.git", "subDir?": null, - "rev": "1c5ed7840906e29e1f8ca7dbf088cf155e5397e9", + "rev": "cb02d09e1d5611d22efc2b406e7893f246b2f51e", "name": "mathlib", "inputRev?": null}}, {"git": {"url": "https://github.com/gebner/quote4", "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", + "rev": "c71f94e34c1cda52eef5c93dc9da409ab2727420", "name": "Qq", "inputRev?": "master"}}, {"git": {"url": "https://github.com/JLimperg/aesop", "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", + "rev": "ca73109cc40837bc61df8024c9016da4b4f99d4c", "name": "aesop", "inputRev?": "master"}}, {"git": {"url": "https://github.com/leanprover/std4", "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", + "rev": "e68aa8f5fe47aad78987df45f99094afbcb5e936", "name": "std", "inputRev?": "main"}}]} |