diff options
Diffstat (limited to '')
-rw-r--r-- | tests/lean/hashmap/Base/Primitives.lean | 622 | ||||
-rw-r--r-- | tests/lean/hashmap/Hashmap/Clauses/Clauses.lean | 18 | ||||
-rw-r--r-- | tests/lean/hashmap/Hashmap/Clauses/Template.lean | 16 | ||||
-rw-r--r-- | tests/lean/hashmap/Hashmap/Funs.lean | 183 | ||||
-rw-r--r-- | tests/lean/hashmap/Hashmap/Types.lean | 8 | ||||
-rw-r--r-- | tests/lean/hashmap_on_disk/Base/Primitives.lean | 622 | ||||
-rw-r--r-- | tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean | 44 | ||||
-rw-r--r-- | tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean | 16 | ||||
-rw-r--r-- | tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean | 5 | ||||
-rw-r--r-- | tests/lean/hashmap_on_disk/HashmapMain/Funs.lean | 205 | ||||
-rw-r--r-- | tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean | 4 | ||||
-rw-r--r-- | tests/lean/hashmap_on_disk/HashmapMain/Types.lean | 8 |
12 files changed, 1055 insertions, 696 deletions
diff --git a/tests/lean/hashmap/Base/Primitives.lean b/tests/lean/hashmap/Base/Primitives.lean index 5b64e908..034f41b2 100644 --- a/tests/lean/hashmap/Base/Primitives.lean +++ b/tests/lean/hashmap/Base/Primitives.lean @@ -3,6 +3,28 @@ import Lean.Meta.Tactic.Simp import Init.Data.List.Basic import Mathlib.Tactic.RunCmd +-------------------- +-- ASSERT COMMAND -- +-------------------- + +open Lean Elab Command Term Meta + +syntax (name := assert) "#assert" term: command + +@[command_elab assert] +unsafe +def assertImpl : CommandElab := fun (_stx: Syntax) => do + runTermElabM (fun _ => do + let r ← evalTerm Bool (mkConst ``Bool) _stx[1] + if not r then + logInfo "Assertion failed for: " + logInfo _stx[1] + logError "Expression reduced to false" + pure ()) + +#eval 2 == 2 +#assert (2 == 2) + ------------- -- PRELUDE -- ------------- @@ -12,6 +34,7 @@ import Mathlib.Tactic.RunCmd inductive Error where | assertionFailure: Error | integerOverflow: Error + | divisionByZero: Error | arrayOutOfBounds: Error | maximumSizeExceeded: Error | panic: Error @@ -89,17 +112,13 @@ macro "let" e:term " <-- " f:term : doElem => -- MACHINE INTEGERS -- ---------------------- --- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ..., --- USize. They are generally defined in an idiomatic style, except that there is --- not a single type class to rule them all (more on that below). The absence of --- type class is intentional, and allows the Lean compiler to efficiently map --- them to machine integers during compilation. +-- We redefine our machine integers types. --- USize is designed properly: you cannot reduce `getNumBits` using the --- simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really --- support, at least officially, 16-bit microcontrollers, so this seems like a --- fine design decision for now.) +-- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` +-- using the simplifier, meaning that proofs do not depend on the compile-time value of +-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at +-- least officially, 16-bit microcontrollers, so this seems like a fine design decision +-- for now.) -- Note from Chris Bailey: "If there's more than one salient property of your -- definition then the subtyping strategy might get messy, and the property part @@ -111,236 +130,435 @@ macro "let" e:term " <-- " f:term : doElem => -- Machine integer constants, done via `ofNatCore`, which requires a proof that -- the `Nat` fits within the desired integer type. We provide a custom tactic. -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| - match USize.size, usize_size_eq with - | _, Or.inl rfl => decide - | _, Or.inr rfl => decide) - --- This is how the macro is expected to be used -#eval USize.ofNatCore 0 (by intlit) - --- Also works for other integer types (at the expense of a needless disjunction) -#eval UInt32.ofNatCore 0 (by intlit) - --- The machine integer operations (e.g. sub) are always total, which is not what --- we want. We therefore define "checked" variants, below. Note that we add a --- tiny bit of complexity for the USize variant: we first check whether the --- result is < 2^32; if it is, we can compute the definition, rather than --- returning a term that is computationally stuck (the comparison to USize.size --- cannot reduce at compile-time, per the remark about regarding `getNumBits`). +open System.Platform.getNumBits + +-- TODO: is there a way of only importing System.Platform.getNumBits? +-- +@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val + +-- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. +-- We keep the F* convention for now. +@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) +@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 +@[simp] def I8.min : Int := - (HPow.hPow 2 7) +@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 +@[simp] def I16.min : Int := - (HPow.hPow 2 15) +@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 +@[simp] def I32.min : Int := -(HPow.hPow 2 31) +@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 +@[simp] def I64.min : Int := -(HPow.hPow 2 63) +@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 +@[simp] def I128.min : Int := -(HPow.hPow 2 127) +@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 +@[simp] def Usize.min : Int := 0 +@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 +@[simp] def U8.min : Int := 0 +@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 +@[simp] def U16.min : Int := 0 +@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 +@[simp] def U32.min : Int := 0 +@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 +@[simp] def U64.min : Int := 0 +@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 +@[simp] def U128.min : Int := 0 +@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 + +#assert (I8.min == -128) +#assert (I8.max == 127) +#assert (I16.min == -32768) +#assert (I16.max == 32767) +#assert (I32.min == -2147483648) +#assert (I32.max == 2147483647) +#assert (I64.min == -9223372036854775808) +#assert (I64.max == 9223372036854775807) +#assert (I128.min == -170141183460469231731687303715884105728) +#assert (I128.max == 170141183460469231731687303715884105727) +#assert (U8.min == 0) +#assert (U8.max == 255) +#assert (U16.min == 0) +#assert (U16.max == 65535) +#assert (U32.min == 0) +#assert (U32.max == 4294967295) +#assert (U64.min == 0) +#assert (U64.max == 18446744073709551615) +#assert (U128.min == 0) +#assert (U128.max == 340282366920938463463374607431768211455) + +inductive ScalarTy := +| Isize +| I8 +| I16 +| I32 +| I64 +| I128 +| Usize +| U8 +| U16 +| U32 +| U64 +| U128 + +def Scalar.min (ty : ScalarTy) : Int := + match ty with + | .Isize => Isize.min + | .I8 => I8.min + | .I16 => I16.min + | .I32 => I32.min + | .I64 => I64.min + | .I128 => I128.min + | .Usize => Usize.min + | .U8 => U8.min + | .U16 => U16.min + | .U32 => U32.min + | .U64 => U64.min + | .U128 => U128.min + +def Scalar.max (ty : ScalarTy) : Int := + match ty with + | .Isize => Isize.max + | .I8 => I8.max + | .I16 => I16.max + | .I32 => I32.max + | .I64 => I64.max + | .I128 => I128.max + | .Usize => Usize.max + | .U8 => U8.max + | .U16 => U16.max + | .U32 => U32.max + | .U64 => U64.max + | .U128 => U128.max + +-- "Conservative" bounds +-- We use those because we can't compare to the isize bounds (which can't +-- reduce at compile-time). Whenever we perform an arithmetic operation like +-- addition we need to check that the result is in bounds: we first compare +-- to the conservative bounds, which reduce, then compare to the real bounds. -- This is useful for the various #asserts that we want to reduce at -- type-checking time. +def Scalar.cMin (ty : ScalarTy) : Int := + match ty with + | .Isize => I32.min + | _ => Scalar.min ty + +def Scalar.cMax (ty : ScalarTy) : Int := + match ty with + | .Isize => I32.max + | .Usize => U32.max + | _ => Scalar.max ty + +theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry +theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry + +structure Scalar (ty : ScalarTy) where + val : Int + hmin : Scalar.min ty <= val + hmax : val <= Scalar.max ty + +theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : + Scalar.cMin ty <= x && x <= Scalar.cMax ty -> + (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true + := by sorry + +def Scalar.ofIntCore {ty : ScalarTy} (x : Int) + (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := + { val := x, hmin := hmin, hmax := hmax } + +def Scalar.ofInt {ty : ScalarTy} (x : Int) + (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := + let hmin: Scalar.min ty <= x := by sorry + let hmax: x <= Scalar.max ty := by sorry + Scalar.ofIntCore x hmin hmax -- Further thoughts: look at what has been done here: -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean -- and -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean -- which both contain a fair amount of reasoning already! -def USize.checked_sub (n: USize) (m: USize): Result USize := - -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed? - if n >= m then - let n' := USize.toNat n - let m' := USize.toNat n - let r := USize.ofNatCore (n' - m') (by - have h: n' - m' <= n' := by - apply Nat.sub_le_of_le_add - case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left - apply Nat.lt_of_le_of_lt h - apply n.val.isLt - ) - return r - else - fail integerOverflow - -@[simp] -theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size := - match USize.size, usize_size_eq with - | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide) - | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide) - -def USize.checked_add (n: USize) (m: USize): Result USize := - if h: n.val + m.val < USize.size then - .ret ⟨ n.val + m.val, h ⟩ - else - .fail integerOverflow - -def USize.checked_rem (n: USize) (m: USize): Result USize := - if h: m > 0 then - .ret ⟨ n.val % m.val, by - have h1: ↑m.val < USize.size := m.val.isLt - have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h - apply Nat.lt_trans h2 h1 - ⟩ - else - .fail integerOverflow +def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := + -- TODO: write this with only one if then else + if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then + if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then + let hmin: Scalar.min ty <= x := by sorry + let hmax: x <= Scalar.max ty := by sorry + return Scalar.ofIntCore x hmin hmax + else fail integerOverflow + else fail integerOverflow + +def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) + +def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero + +-- Checking that the % operation in Lean computes the same as the remainder operation in Rust +#assert 1 % 2 = (1:Int) +#assert (-1) % 2 = -1 +#assert 1 % (-2) = 1 +#assert (-1) % (-2) = -1 + +def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero + +def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + Scalar.tryMk ty (x.val + y.val) + +def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + Scalar.tryMk ty (x.val - y.val) + +def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + Scalar.tryMk ty (x.val * y.val) + +-- TODO: instances of +, -, * etc. for scalars + +-- Cast an integer from a [src_ty] to a [tgt_ty] +-- TODO: check the semantics of casts in Rust +def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := + Scalar.tryMk tgt_ty x.val + +-- The scalar types +-- We declare the definitions as reducible so that Lean can unfold them (useful +-- for type class resolution for instance). +@[reducible] def Isize := Scalar .Isize +@[reducible] def I8 := Scalar .I8 +@[reducible] def I16 := Scalar .I16 +@[reducible] def I32 := Scalar .I32 +@[reducible] def I64 := Scalar .I64 +@[reducible] def I128 := Scalar .I128 +@[reducible] def Usize := Scalar .Usize +@[reducible] def U8 := Scalar .U8 +@[reducible] def U16 := Scalar .U16 +@[reducible] def U32 := Scalar .U32 +@[reducible] def U64 := Scalar .U64 +@[reducible] def U128 := Scalar .U128 + +-- TODO: below: not sure this is the best way. +-- Should we rather overload operations like +, -, etc.? +-- Also, it is possible to automate the generation of those definitions +-- with macros (but would it be a good idea? It would be less easy to +-- read the file, which is not supposed to change a lot) + +-- Negation + +/-- +Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce +one here. + +The notation typeclass for heterogeneous addition. +This enables the notation `- a : β` where `a : α`. +-/ +class HNeg (α : Type u) (β : outParam (Type v)) where + /-- `- a` computes the negation of `a`. + The meaning of this notation is type-dependent. -/ + hNeg : α → β + +prefix:75 "-" => HNeg.hNeg + +instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x +instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x +instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x +instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x +instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x +instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x + +-- Addition +instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hAdd x y := Scalar.add x y + +-- Substraction +instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hSub x y := Scalar.sub x y + +-- Multiplication +instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hMul x y := Scalar.mul x y + +-- Division +instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hDiv x y := Scalar.div x y + +-- Remainder +instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hMod x y := Scalar.rem x y + +-- ofIntCore +-- TODO: typeclass? +def Isize.ofIntCore := @Scalar.ofIntCore .Isize +def I8.ofIntCore := @Scalar.ofIntCore .I8 +def I16.ofIntCore := @Scalar.ofIntCore .I16 +def I32.ofIntCore := @Scalar.ofIntCore .I32 +def I64.ofIntCore := @Scalar.ofIntCore .I64 +def I128.ofIntCore := @Scalar.ofIntCore .I128 +def Usize.ofIntCore := @Scalar.ofIntCore .Usize +def U8.ofIntCore := @Scalar.ofIntCore .U8 +def U16.ofIntCore := @Scalar.ofIntCore .U16 +def U32.ofIntCore := @Scalar.ofIntCore .U32 +def U64.ofIntCore := @Scalar.ofIntCore .U64 +def U128.ofIntCore := @Scalar.ofIntCore .U128 + +-- ofInt +-- TODO: typeclass? +def Isize.ofInt := @Scalar.ofInt .Isize +def I8.ofInt := @Scalar.ofInt .I8 +def I16.ofInt := @Scalar.ofInt .I16 +def I32.ofInt := @Scalar.ofInt .I32 +def I64.ofInt := @Scalar.ofInt .I64 +def I128.ofInt := @Scalar.ofInt .I128 +def Usize.ofInt := @Scalar.ofInt .Usize +def U8.ofInt := @Scalar.ofInt .U8 +def U16.ofInt := @Scalar.ofInt .U16 +def U32.ofInt := @Scalar.ofInt .U32 +def U64.ofInt := @Scalar.ofInt .U64 +def U128.ofInt := @Scalar.ofInt .U128 + +-- Comparisons +instance {ty} : LT (Scalar ty) where + lt a b := LT.lt a.val b.val + +instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val + +instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. +instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. + +theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j + | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl + +theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := + h ▸ rfl + +theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := + fun h' => absurd (val_eq_of_eq h') h + +instance (ty : ScalarTy) : DecidableEq (Scalar ty) := + fun i j => + match decEq i.val j.val with + | isTrue h => isTrue (Scalar.eq_of_val_eq h) + | isFalse h => isFalse (Scalar.ne_of_val_ne h) + +def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val + +-- Tactic to prove that integers are in bounds +syntax "intlit" : tactic -def USize.checked_mul (n: USize) (m: USize): Result USize := - if h: n.val * m.val < USize.size then - .ret ⟨ n.val * m.val, h ⟩ - else - .fail integerOverflow - -def USize.checked_div (n: USize) (m: USize): Result USize := - if m > 0 then - .ret ⟨ n.val / m.val, by - have h1: ↑n.val < USize.size := n.val.isLt - have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val - apply Nat.lt_of_le_of_lt h2 h1 - ⟩ - else - .fail integerOverflow - --- Test behavior... -#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 - -#eval USize.checked_sub 20 10 --- NOTE: compare with concrete behavior here, which I do not think we want -#eval USize.sub 0 1 -#eval UInt8.add 255 255 - --- We now define a type class that subsumes the various machine integer types, so --- as to write a concise definition for scalar_cast, rather than exhaustively --- enumerating all of the possible pairs. We remark that Rust has sane semantics --- and fails if a cast operation would involve a truncation or modulo. - -class MachineInteger (t: Type) where - size: Nat - val: t -> Fin size - ofNatCore: (n:Nat) -> LT.lt n size -> t - -set_option hygiene false in -run_cmd - for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do - Lean.Elab.Command.elabCommand (← `( - namespace $typeName - instance: MachineInteger $typeName where - size := size - val := val - ofNatCore := ofNatCore - end $typeName - )) - --- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- Lean to infer `src`. - -def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := - if h: MachineInteger.val x < MachineInteger.size dst then - .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) - else - .fail integerOverflow +macro_rules + | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) + +-- -- We now define a type class that subsumes the various machine integer types, so +-- -- as to write a concise definition for scalar_cast, rather than exhaustively +-- -- enumerating all of the possible pairs. We remark that Rust has sane semantics +-- -- and fails if a cast operation would involve a truncation or modulo. + +-- class MachineInteger (t: Type) where +-- size: Nat +-- val: t -> Fin size +-- ofNatCore: (n:Nat) -> LT.lt n size -> t + +-- set_option hygiene false in +-- run_cmd +-- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do +-- Lean.Elab.Command.elabCommand (← `( +-- namespace $typeName +-- instance: MachineInteger $typeName where +-- size := size +-- val := val +-- ofNatCore := ofNatCore +-- end $typeName +-- )) + +-- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on +-- -- Lean to infer `src`. + +-- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := +-- if h: MachineInteger.val x < MachineInteger.size dst then +-- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) +-- else +-- .fail integerOverflow ------------- -- VECTORS -- ------------- --- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size) --- rather than maximum values (usize_max). -def Vec (α : Type u) := { l : List α // List.length l < USize.size } - -def vec_new (α : Type u): Vec α := ⟨ [], by { - match USize.size, usize_size_eq with - | _, Or.inl rfl => simp - | _, Or.inr rfl => simp - } ⟩ +def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } -#check vec_new +def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ -def vec_len (α : Type u) (v : Vec α) : USize := +def vec_len (α : Type u) (v : Vec α) : Usize := let ⟨ v, l ⟩ := v - USize.ofNatCore (List.length v) l - -#eval vec_len Nat (vec_new Nat) + Usize.ofIntCore (List.length v) (by sorry) l def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () --- NOTE: old version trying to use a subtype notation, but probably better to --- leave Result elimination to auxiliary lemmas with suitable preconditions --- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one --- make the proof work in that case? Probably need to import tactics from --- mathlib to deal with inequalities... would love to see an example. -def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) // - match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} - := - if h : List.length v.val + 1 < USize.size then - ⟨ return ⟨List.concat v.val x, - by - rw [List.length_concat] - assumption - ⟩, by simp ⟩ - else - ⟨ fail maximumSizeExceeded, by simp ⟩ - -#eval do - -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with - -- fields val and property. However, Lean's elaborator can automatically - -- select the `val` field if the context provides a type annotation. We - -- annotate `x`, which relieves us of having to write `.val` on the right-hand - -- side of the monadic let. - let v := vec_new Nat - let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here? - -- TODO: strengthen post-condition above and do a demo to show that we can - -- safely eliminate the `fail` case - return (vec_len Nat x) - def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) := - if h : List.length v.val + 1 <= 4294967295 then - return ⟨ List.concat v.val x, - by - rw [List.length_concat] - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: List.length v.val + 1 < USize.size then - return ⟨List.concat v.val x, - by - rw [List.length_concat] - assumption - ⟩ + if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then + return ⟨ List.concat v.val x, by sorry ⟩ else fail maximumSizeExceeded -def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := +def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds -def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := +def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := if i.val < List.length v.val then + -- TODO: maybe we should redefine a list library which uses integers + -- (instead of natural numbers) + let i : Nat := + match i.val with + | .ofNat n => n + | .negSucc n => by sorry -- TODO: we can't get here + let isLt: i < USize.size := by sorry + let i : Fin USize.size := { val := i, isLt := isLt } .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val < USize.size := v.property + have h: List.length v.val <= Usize.max := v.property rewrite [ List.length_set v.val i.val x ] assumption ⟩ else .fail arrayOutOfBounds -def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α := - if h: i.val < List.length v.val then +def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := + if i.val < List.length v.val then + let i : Nat := + match i.val with + | .ofNat n => n + | .negSucc n => by sorry -- TODO: we can't get here + let isLt: i < USize.size := by sorry + let i : Fin USize.size := { val := i, isLt := isLt } + let h: i < List.length v.val := by sorry .ret (List.get v.val ⟨i.val, h⟩) else .fail arrayOutOfBounds -def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := +def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α := - if h: i.val < List.length v.val then +def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := + if i.val < List.length v.val then + let i : Nat := + match i.val with + | .ofNat n => n + | .negSucc n => by sorry -- TODO: we can't get here + let isLt: i < USize.size := by sorry + let i : Fin USize.size := { val := i, isLt := isLt } + let h: i < List.length v.val := by sorry .ret (List.get v.val ⟨i.val, h⟩) else .fail arrayOutOfBounds -def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := +def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := if i.val < List.length v.val then + let i : Nat := + match i.val with + | .ofNat n => n + | .negSucc n => by sorry -- TODO: we can't get here + let isLt: i < USize.size := by sorry + let i : Fin USize.size := { val := i, isLt := isLt } .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val < USize.size := v.property + have h: List.length v.val <= Usize.max := v.property rewrite [ List.length_set v.val i.val x ] assumption ⟩ @@ -360,33 +578,3 @@ def mem_replace_back (a : Type) (_ : a) (y : a) : a := /-- Aeneas-translated function -- useful to reduce non-recursive definitions. Use with `simp [ aeneas ]` -/ register_simp_attr aeneas - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------------- --- SANITY CHECKS -- -------------------- - --- TODO: add more once we have signed integers - -#assert (USize.checked_rem 1 2 == .ret 1) diff --git a/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean b/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean index fad5c11a..197b0a6a 100644 --- a/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean +++ b/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean @@ -1,11 +1,11 @@ --- [hashmap]: the decreases clauses +-- [hashmap]: templates for the decreases clauses import Base.Primitives import Hashmap.Types /- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/ @[simp] def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T)) - (n : USize) := + (n : Usize) := (slots, n) /- [hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ @@ -16,7 +16,7 @@ macro_rules /- [hashmap::HashMap::{0}::clear]: termination measure -/ @[simp] def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T)) - (i : USize) := + (i : Usize) := (slots, i) /- [hashmap::HashMap::{0}::clear]: decreases_by tactic -/ @@ -26,7 +26,7 @@ macro_rules /- [hashmap::HashMap::{0}::insert_in_list]: termination measure -/ @[simp] -def hash_map_insert_in_list_loop_terminates (T : Type) (key : USize) +def hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) (value : T) (ls : list_t T) := (key, value, ls) @@ -51,7 +51,7 @@ macro_rules /- [hashmap::HashMap::{0}::move_elements]: termination measure -/ @[simp] def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T) - (slots : Vec (list_t T)) (i : USize) := + (slots : Vec (list_t T)) (i : Usize) := (ntable, slots, i) /- [hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ @@ -62,7 +62,7 @@ macro_rules /- [hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ @[simp] -def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : USize) +def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : Usize) (ls : list_t T) := (key, ls) @@ -74,7 +74,7 @@ macro_rules /- [hashmap::HashMap::{0}::get_in_list]: termination measure -/ @[simp] -def hash_map_get_in_list_loop_terminates (T : Type) (key : USize) +def hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) (ls : list_t T) := (key, ls) @@ -86,7 +86,7 @@ macro_rules /- [hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ @[simp] def hash_map_get_mut_in_list_loop_terminates (T : Type) (ls : list_t T) - (key : USize) := + (key : Usize) := (ls, key) /- [hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ @@ -96,7 +96,7 @@ macro_rules /- [hashmap::HashMap::{0}::remove_from_list]: termination measure -/ @[simp] -def hash_map_remove_from_list_loop_terminates (T : Type) (key : USize) +def hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) (ls : list_t T) := (key, ls) diff --git a/tests/lean/hashmap/Hashmap/Clauses/Template.lean b/tests/lean/hashmap/Hashmap/Clauses/Template.lean index 7ba079f2..560592c8 100644 --- a/tests/lean/hashmap/Hashmap/Clauses/Template.lean +++ b/tests/lean/hashmap/Hashmap/Clauses/Template.lean @@ -6,7 +6,7 @@ import Hashmap.Types /- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/ @[simp] def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T)) - (n : USize) := + (n : Usize) := (slots, n) /- [hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ @@ -17,7 +17,7 @@ macro_rules /- [hashmap::HashMap::{0}::clear]: termination measure -/ @[simp] def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T)) - (i : USize) := + (i : Usize) := (slots, i) /- [hashmap::HashMap::{0}::clear]: decreases_by tactic -/ @@ -27,7 +27,7 @@ macro_rules /- [hashmap::HashMap::{0}::insert_in_list]: termination measure -/ @[simp] -def hash_map_insert_in_list_loop_terminates (T : Type) (key : USize) +def hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) (value : T) (ls : list_t T) := (key, value, ls) @@ -52,7 +52,7 @@ macro_rules /- [hashmap::HashMap::{0}::move_elements]: termination measure -/ @[simp] def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T) - (slots : Vec (list_t T)) (i : USize) := + (slots : Vec (list_t T)) (i : Usize) := (ntable, slots, i) /- [hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ @@ -63,7 +63,7 @@ macro_rules /- [hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ @[simp] -def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : USize) +def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : Usize) (ls : list_t T) := (key, ls) @@ -75,7 +75,7 @@ macro_rules /- [hashmap::HashMap::{0}::get_in_list]: termination measure -/ @[simp] -def hash_map_get_in_list_loop_terminates (T : Type) (key : USize) +def hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) (ls : list_t T) := (key, ls) @@ -87,7 +87,7 @@ macro_rules /- [hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ @[simp] def hash_map_get_mut_in_list_loop_terminates (T : Type) (ls : list_t T) - (key : USize) := + (key : Usize) := (ls, key) /- [hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ @@ -97,7 +97,7 @@ macro_rules /- [hashmap::HashMap::{0}::remove_from_list]: termination measure -/ @[simp] -def hash_map_remove_from_list_loop_terminates (T : Type) (key : USize) +def hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) (ls : list_t T) := (key, ls) diff --git a/tests/lean/hashmap/Hashmap/Funs.lean b/tests/lean/hashmap/Hashmap/Funs.lean index 535ac9b2..77b1a157 100644 --- a/tests/lean/hashmap/Hashmap/Funs.lean +++ b/tests/lean/hashmap/Hashmap/Funs.lean @@ -5,19 +5,19 @@ import Hashmap.Types import Hashmap.Clauses.Clauses /- [hashmap::hash_key] -/ -def hash_key_fwd (k : USize) : Result USize := +def hash_key_fwd (k : Usize) : Result Usize := Result.ret k /- [hashmap::HashMap::{0}::allocate_slots] -/ def hash_map_allocate_slots_loop_fwd - (T : Type) (slots : Vec (list_t T)) (n : USize) : + (T : Type) (slots : Vec (list_t T)) (n : Usize) : (Result (Vec (list_t T))) := - if h: n > (USize.ofNatCore 0 (by intlit)) + if h: n > (Usize.ofInt 0 (by intlit)) then do let slots0 ← vec_push_back (list_t T) slots list_t.Nil - let n0 ← USize.checked_sub n (USize.ofNatCore 1 (by intlit)) + let n0 ← n - (Usize.ofInt 1 (by intlit)) hash_map_allocate_slots_loop_fwd T slots0 n0 else Result.ret slots termination_by hash_map_allocate_slots_loop_fwd slots n => @@ -26,23 +26,23 @@ decreasing_by hash_map_allocate_slots_loop_decreases slots n /- [hashmap::HashMap::{0}::allocate_slots] -/ def hash_map_allocate_slots_fwd - (T : Type) (slots : Vec (list_t T)) (n : USize) : Result (Vec (list_t T)) := + (T : Type) (slots : Vec (list_t T)) (n : Usize) : Result (Vec (list_t T)) := hash_map_allocate_slots_loop_fwd T slots n /- [hashmap::HashMap::{0}::new_with_capacity] -/ def hash_map_new_with_capacity_fwd - (T : Type) (capacity : USize) (max_load_dividend : USize) - (max_load_divisor : USize) : + (T : Type) (capacity : Usize) (max_load_dividend : Usize) + (max_load_divisor : Usize) : Result (hash_map_t T) := do let v := vec_new (list_t T) let slots ← hash_map_allocate_slots_fwd T v capacity - let i ← USize.checked_mul capacity max_load_dividend - let i0 ← USize.checked_div i max_load_divisor + let i ← capacity * max_load_dividend + let i0 ← i / max_load_divisor Result.ret { - hash_map_num_entries := (USize.ofNatCore 0 (by intlit)), + hash_map_num_entries := (Usize.ofInt 0 (by intlit)), hash_map_max_load_factor := (max_load_dividend, max_load_divisor), hash_map_max_load := i0, hash_map_slots := slots @@ -50,19 +50,19 @@ def hash_map_new_with_capacity_fwd /- [hashmap::HashMap::{0}::new] -/ def hash_map_new_fwd (T : Type) : Result (hash_map_t T) := - hash_map_new_with_capacity_fwd T (USize.ofNatCore 32 (by intlit)) - (USize.ofNatCore 4 (by intlit)) (USize.ofNatCore 5 (by intlit)) + hash_map_new_with_capacity_fwd T (Usize.ofInt 32 (by intlit)) + (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit)) /- [hashmap::HashMap::{0}::clear] -/ def hash_map_clear_loop_fwd_back - (T : Type) (slots : Vec (list_t T)) (i : USize) : + (T : Type) (slots : Vec (list_t T)) (i : Usize) : (Result (Vec (list_t T))) := let i0 := vec_len (list_t T) slots if h: i < i0 then do - let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit)) + let i1 ← i + (Usize.ofInt 1 (by intlit)) let slots0 ← vec_index_mut_back (list_t T) slots i list_t.Nil hash_map_clear_loop_fwd_back T slots0 i1 else Result.ret slots @@ -76,22 +76,22 @@ def hash_map_clear_fwd_back do let v ← hash_map_clear_loop_fwd_back T self.hash_map_slots - (USize.ofNatCore 0 (by intlit)) + (Usize.ofInt 0 (by intlit)) Result.ret { self with - hash_map_num_entries := (USize.ofNatCore 0 (by intlit)), + hash_map_num_entries := (Usize.ofInt 0 (by intlit)), hash_map_slots := v } /- [hashmap::HashMap::{0}::len] -/ -def hash_map_len_fwd (T : Type) (self : hash_map_t T) : Result USize := +def hash_map_len_fwd (T : Type) (self : hash_map_t T) : Result Usize := Result.ret self.hash_map_num_entries /- [hashmap::HashMap::{0}::insert_in_list] -/ def hash_map_insert_in_list_loop_fwd - (T : Type) (key : USize) (value : T) (ls : list_t T) : (Result Bool) := + (T : Type) (key : Usize) (value : T) (ls : list_t T) : (Result Bool) := match h: ls with | list_t.Cons ckey cvalue tl => if h: ckey = key @@ -104,12 +104,12 @@ decreasing_by hash_map_insert_in_list_loop_decreases key value ls /- [hashmap::HashMap::{0}::insert_in_list] -/ def hash_map_insert_in_list_fwd - (T : Type) (key : USize) (value : T) (ls : list_t T) : Result Bool := + (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result Bool := hash_map_insert_in_list_loop_fwd T key value ls /- [hashmap::HashMap::{0}::insert_in_list] -/ def hash_map_insert_in_list_loop_back - (T : Type) (key : USize) (value : T) (ls : list_t T) : (Result (list_t T)) := + (T : Type) (key : Usize) (value : T) (ls : list_t T) : (Result (list_t T)) := match h: ls with | list_t.Cons ckey cvalue tl => if h: ckey = key @@ -126,25 +126,24 @@ decreasing_by hash_map_insert_in_list_loop_decreases key value ls /- [hashmap::HashMap::{0}::insert_in_list] -/ def hash_map_insert_in_list_back - (T : Type) (key : USize) (value : T) (ls : list_t T) : Result (list_t T) := + (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result (list_t T) := hash_map_insert_in_list_loop_back T key value ls /- [hashmap::HashMap::{0}::insert_no_resize] -/ def hash_map_insert_no_resize_fwd_back - (T : Type) (self : hash_map_t T) (key : USize) (value : T) : + (T : Type) (self : hash_map_t T) (key : Usize) (value : T) : Result (hash_map_t T) := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod let inserted ← hash_map_insert_in_list_fwd T key value l if h: inserted then do - let i0 ← USize.checked_add self.hash_map_num_entries - (USize.ofNatCore 1 (by intlit)) + let i0 ← self.hash_map_num_entries + (Usize.ofInt 1 (by intlit)) let l0 ← hash_map_insert_in_list_back T key value l let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 Result.ret @@ -156,9 +155,9 @@ def hash_map_insert_no_resize_fwd_back Result.ret { self with hash_map_slots := v } /- [core::num::u32::{9}::MAX] -/ -def core_num_u32_max_body : Result UInt32 := - Result.ret (UInt32.ofNatCore 4294967295 (by intlit)) -def core_num_u32_max_c : UInt32 := eval_global core_num_u32_max_body (by simp) +def core_num_u32_max_body : Result U32 := + Result.ret (U32.ofInt 4294967295 (by intlit)) +def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) /- [hashmap::HashMap::{0}::move_elements_from_list] -/ def hash_map_move_elements_from_list_loop_fwd_back @@ -182,7 +181,7 @@ def hash_map_move_elements_from_list_fwd_back /- [hashmap::HashMap::{0}::move_elements] -/ def hash_map_move_elements_loop_fwd_back - (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : USize) : + (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) : (Result ((hash_map_t T) × (Vec (list_t T)))) := let i0 := vec_len (list_t T) slots @@ -192,7 +191,7 @@ def hash_map_move_elements_loop_fwd_back let l ← vec_index_mut_fwd (list_t T) slots i let ls := mem_replace_fwd (list_t T) l list_t.Nil let ntable0 ← hash_map_move_elements_from_list_fwd_back T ntable ls - let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit)) + let i1 ← i + (Usize.ofInt 1 (by intlit)) let l0 := mem_replace_back (list_t T) l list_t.Nil let slots0 ← vec_index_mut_back (list_t T) slots i l0 hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1 @@ -203,7 +202,7 @@ decreasing_by hash_map_move_elements_loop_decreases ntable slots i /- [hashmap::HashMap::{0}::move_elements] -/ def hash_map_move_elements_fwd_back - (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : USize) : + (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) : Result ((hash_map_t T) × (Vec (list_t T))) := hash_map_move_elements_loop_fwd_back T ntable slots i @@ -212,19 +211,19 @@ def hash_map_move_elements_fwd_back def hash_map_try_resize_fwd_back (T : Type) (self : hash_map_t T) : Result (hash_map_t T) := do - let max_usize ← scalar_cast USize core_num_u32_max_c + let max_usize ← Scalar.cast .Usize core_num_u32_max_c let capacity := vec_len (list_t T) self.hash_map_slots - let n1 ← USize.checked_div max_usize (USize.ofNatCore 2 (by intlit)) + let n1 ← max_usize / (Usize.ofInt 2 (by intlit)) let (i, i0) := self.hash_map_max_load_factor - let i1 ← USize.checked_div n1 i + let i1 ← n1 / i if h: capacity <= i1 then do - let i2 ← USize.checked_mul capacity (USize.ofNatCore 2 (by intlit)) + let i2 ← capacity * (Usize.ofInt 2 (by intlit)) let ntable ← hash_map_new_with_capacity_fwd T i2 i i0 let (ntable0, _) ← hash_map_move_elements_fwd_back T ntable self.hash_map_slots - (USize.ofNatCore 0 (by intlit)) + (Usize.ofInt 0 (by intlit)) Result.ret { ntable0 @@ -236,7 +235,7 @@ def hash_map_try_resize_fwd_back /- [hashmap::HashMap::{0}::insert] -/ def hash_map_insert_fwd_back - (T : Type) (self : hash_map_t T) (key : USize) (value : T) : + (T : Type) (self : hash_map_t T) (key : Usize) (value : T) : Result (hash_map_t T) := do @@ -248,7 +247,7 @@ def hash_map_insert_fwd_back /- [hashmap::HashMap::{0}::contains_key_in_list] -/ def hash_map_contains_key_in_list_loop_fwd - (T : Type) (key : USize) (ls : list_t T) : (Result Bool) := + (T : Type) (key : Usize) (ls : list_t T) : (Result Bool) := match h: ls with | list_t.Cons ckey t tl => if h: ckey = key @@ -261,22 +260,22 @@ decreasing_by hash_map_contains_key_in_list_loop_decreases key ls /- [hashmap::HashMap::{0}::contains_key_in_list] -/ def hash_map_contains_key_in_list_fwd - (T : Type) (key : USize) (ls : list_t T) : Result Bool := + (T : Type) (key : Usize) (ls : list_t T) : Result Bool := hash_map_contains_key_in_list_loop_fwd T key ls /- [hashmap::HashMap::{0}::contains_key] -/ def hash_map_contains_key_fwd - (T : Type) (self : hash_map_t T) (key : USize) : Result Bool := + (T : Type) (self : hash_map_t T) (key : Usize) : Result Bool := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod hash_map_contains_key_in_list_fwd T key l /- [hashmap::HashMap::{0}::get_in_list] -/ def hash_map_get_in_list_loop_fwd - (T : Type) (key : USize) (ls : list_t T) : (Result T) := + (T : Type) (key : Usize) (ls : list_t T) : (Result T) := match h: ls with | list_t.Cons ckey cvalue tl => if h: ckey = key @@ -289,22 +288,22 @@ decreasing_by hash_map_get_in_list_loop_decreases key ls /- [hashmap::HashMap::{0}::get_in_list] -/ def hash_map_get_in_list_fwd - (T : Type) (key : USize) (ls : list_t T) : Result T := + (T : Type) (key : Usize) (ls : list_t T) : Result T := hash_map_get_in_list_loop_fwd T key ls /- [hashmap::HashMap::{0}::get] -/ def hash_map_get_fwd - (T : Type) (self : hash_map_t T) (key : USize) : Result T := + (T : Type) (self : hash_map_t T) (key : Usize) : Result T := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod hash_map_get_in_list_fwd T key l /- [hashmap::HashMap::{0}::get_mut_in_list] -/ def hash_map_get_mut_in_list_loop_fwd - (T : Type) (ls : list_t T) (key : USize) : (Result T) := + (T : Type) (ls : list_t T) (key : Usize) : (Result T) := match h: ls with | list_t.Cons ckey cvalue tl => if h: ckey = key @@ -317,12 +316,12 @@ decreasing_by hash_map_get_mut_in_list_loop_decreases ls key /- [hashmap::HashMap::{0}::get_mut_in_list] -/ def hash_map_get_mut_in_list_fwd - (T : Type) (ls : list_t T) (key : USize) : Result T := + (T : Type) (ls : list_t T) (key : Usize) : Result T := hash_map_get_mut_in_list_loop_fwd T ls key /- [hashmap::HashMap::{0}::get_mut_in_list] -/ def hash_map_get_mut_in_list_loop_back - (T : Type) (ls : list_t T) (key : USize) (ret0 : T) : (Result (list_t T)) := + (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : (Result (list_t T)) := match h: ls with | list_t.Cons ckey cvalue tl => if h: ckey = key @@ -338,28 +337,28 @@ decreasing_by hash_map_get_mut_in_list_loop_decreases ls key /- [hashmap::HashMap::{0}::get_mut_in_list] -/ def hash_map_get_mut_in_list_back - (T : Type) (ls : list_t T) (key : USize) (ret0 : T) : Result (list_t T) := + (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : Result (list_t T) := hash_map_get_mut_in_list_loop_back T ls key ret0 /- [hashmap::HashMap::{0}::get_mut] -/ def hash_map_get_mut_fwd - (T : Type) (self : hash_map_t T) (key : USize) : Result T := + (T : Type) (self : hash_map_t T) (key : Usize) : Result T := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod hash_map_get_mut_in_list_fwd T l key /- [hashmap::HashMap::{0}::get_mut] -/ def hash_map_get_mut_back - (T : Type) (self : hash_map_t T) (key : USize) (ret0 : T) : + (T : Type) (self : hash_map_t T) (key : Usize) (ret0 : T) : Result (hash_map_t T) := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod let l0 ← hash_map_get_mut_in_list_back T l key ret0 let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 @@ -367,7 +366,7 @@ def hash_map_get_mut_back /- [hashmap::HashMap::{0}::remove_from_list] -/ def hash_map_remove_from_list_loop_fwd - (T : Type) (key : USize) (ls : list_t T) : (Result (Option T)) := + (T : Type) (key : Usize) (ls : list_t T) : (Result (Option T)) := match h: ls with | list_t.Cons ckey t tl => if h: ckey = key @@ -385,12 +384,12 @@ decreasing_by hash_map_remove_from_list_loop_decreases key ls /- [hashmap::HashMap::{0}::remove_from_list] -/ def hash_map_remove_from_list_fwd - (T : Type) (key : USize) (ls : list_t T) : Result (Option T) := + (T : Type) (key : Usize) (ls : list_t T) : Result (Option T) := hash_map_remove_from_list_loop_fwd T key ls /- [hashmap::HashMap::{0}::remove_from_list] -/ def hash_map_remove_from_list_loop_back - (T : Type) (key : USize) (ls : list_t T) : (Result (list_t T)) := + (T : Type) (key : Usize) (ls : list_t T) : (Result (list_t T)) := match h: ls with | list_t.Cons ckey t tl => if h: ckey = key @@ -411,33 +410,32 @@ decreasing_by hash_map_remove_from_list_loop_decreases key ls /- [hashmap::HashMap::{0}::remove_from_list] -/ def hash_map_remove_from_list_back - (T : Type) (key : USize) (ls : list_t T) : Result (list_t T) := + (T : Type) (key : Usize) (ls : list_t T) : Result (list_t T) := hash_map_remove_from_list_loop_back T key ls /- [hashmap::HashMap::{0}::remove] -/ def hash_map_remove_fwd - (T : Type) (self : hash_map_t T) (key : USize) : Result (Option T) := + (T : Type) (self : hash_map_t T) (key : Usize) : Result (Option T) := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod let x ← hash_map_remove_from_list_fwd T key l match h: x with | Option.none => Result.ret Option.none | Option.some x0 => do - let _ ← USize.checked_sub self.hash_map_num_entries - (USize.ofNatCore 1 (by intlit)) + let _ ← self.hash_map_num_entries - (Usize.ofInt 1 (by intlit)) Result.ret (Option.some x0) /- [hashmap::HashMap::{0}::remove] -/ def hash_map_remove_back - (T : Type) (self : hash_map_t T) (key : USize) : Result (hash_map_t T) := + (T : Type) (self : hash_map_t T) (key : Usize) : Result (hash_map_t T) := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod let x ← hash_map_remove_from_list_fwd T key l match h: x with @@ -448,8 +446,7 @@ def hash_map_remove_back Result.ret { self with hash_map_slots := v } | Option.some x0 => do - let i0 ← USize.checked_sub self.hash_map_num_entries - (USize.ofNatCore 1 (by intlit)) + let i0 ← self.hash_map_num_entries - (Usize.ofInt 1 (by intlit)) let l0 ← hash_map_remove_from_list_back T key l let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 Result.ret @@ -458,65 +455,59 @@ def hash_map_remove_back /- [hashmap::test1] -/ def test1_fwd : Result Unit := do - let hm ← hash_map_new_fwd UInt64 + let hm ← hash_map_new_fwd U64 let hm0 ← - hash_map_insert_fwd_back UInt64 hm (USize.ofNatCore 0 (by intlit)) - (UInt64.ofNatCore 42 (by intlit)) + hash_map_insert_fwd_back U64 hm (Usize.ofInt 0 (by intlit)) + (U64.ofInt 42 (by intlit)) let hm1 ← - hash_map_insert_fwd_back UInt64 hm0 (USize.ofNatCore 128 (by intlit)) - (UInt64.ofNatCore 18 (by intlit)) + hash_map_insert_fwd_back U64 hm0 (Usize.ofInt 128 (by intlit)) + (U64.ofInt 18 (by intlit)) let hm2 ← - hash_map_insert_fwd_back UInt64 hm1 (USize.ofNatCore 1024 (by intlit)) - (UInt64.ofNatCore 138 (by intlit)) + hash_map_insert_fwd_back U64 hm1 (Usize.ofInt 1024 (by intlit)) + (U64.ofInt 138 (by intlit)) let hm3 ← - hash_map_insert_fwd_back UInt64 hm2 (USize.ofNatCore 1056 (by intlit)) - (UInt64.ofNatCore 256 (by intlit)) - let i ← hash_map_get_fwd UInt64 hm3 (USize.ofNatCore 128 (by intlit)) - if h: not (i = (UInt64.ofNatCore 18 (by intlit))) + hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit)) + (U64.ofInt 256 (by intlit)) + let i ← hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit)) + if h: not (i = (U64.ofInt 18 (by intlit))) then Result.fail Error.panic else do let hm4 ← - hash_map_get_mut_back UInt64 hm3 (USize.ofNatCore 1024 (by intlit)) - (UInt64.ofNatCore 56 (by intlit)) - let i0 ← - hash_map_get_fwd UInt64 hm4 (USize.ofNatCore 1024 (by intlit)) - if h: not (i0 = (UInt64.ofNatCore 56 (by intlit))) + hash_map_get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit)) + (U64.ofInt 56 (by intlit)) + let i0 ← hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) + if h: not (i0 = (U64.ofInt 56 (by intlit))) then Result.fail Error.panic else do let x ← - hash_map_remove_fwd UInt64 hm4 (USize.ofNatCore 1024 (by intlit)) + hash_map_remove_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) match h: x with | Option.none => Result.fail Error.panic | Option.some x0 => - if h: not (x0 = (UInt64.ofNatCore 56 (by intlit))) + if h: not (x0 = (U64.ofInt 56 (by intlit))) then Result.fail Error.panic else do let hm5 ← - hash_map_remove_back UInt64 hm4 - (USize.ofNatCore 1024 (by intlit)) + hash_map_remove_back U64 hm4 (Usize.ofInt 1024 (by intlit)) let i1 ← - hash_map_get_fwd UInt64 hm5 (USize.ofNatCore 0 (by intlit)) - if h: not (i1 = (UInt64.ofNatCore 42 (by intlit))) + hash_map_get_fwd U64 hm5 (Usize.ofInt 0 (by intlit)) + if h: not (i1 = (U64.ofInt 42 (by intlit))) then Result.fail Error.panic else do let i2 ← - hash_map_get_fwd UInt64 hm5 - (USize.ofNatCore 128 (by intlit)) - if h: not (i2 = (UInt64.ofNatCore 18 (by intlit))) + hash_map_get_fwd U64 hm5 (Usize.ofInt 128 (by intlit)) + if h: not (i2 = (U64.ofInt 18 (by intlit))) then Result.fail Error.panic else do let i3 ← - hash_map_get_fwd UInt64 hm5 - (USize.ofNatCore 1056 (by intlit)) - if h: not (i3 = (UInt64.ofNatCore 256 (by intlit))) + hash_map_get_fwd U64 hm5 + (Usize.ofInt 1056 (by intlit)) + if h: not (i3 = (U64.ofInt 256 (by intlit))) then Result.fail Error.panic else Result.ret () -/- Unit test for [hashmap::test1] -/ -#assert (test1_fwd == .ret ()) - diff --git a/tests/lean/hashmap/Hashmap/Types.lean b/tests/lean/hashmap/Hashmap/Types.lean index 9e9e5c03..6eabf7da 100644 --- a/tests/lean/hashmap/Hashmap/Types.lean +++ b/tests/lean/hashmap/Hashmap/Types.lean @@ -4,13 +4,13 @@ import Base.Primitives /- [hashmap::List] -/ inductive list_t (T : Type) := -| Cons : USize -> T -> list_t T -> list_t T +| Cons : Usize -> T -> list_t T -> list_t T | Nil : list_t T /- [hashmap::HashMap] -/ structure hash_map_t (T : Type) where - hash_map_num_entries : USize - hash_map_max_load_factor : (USize × USize) - hash_map_max_load : USize + hash_map_num_entries : Usize + hash_map_max_load_factor : (Usize × Usize) + hash_map_max_load : Usize hash_map_slots : Vec (list_t T) diff --git a/tests/lean/hashmap_on_disk/Base/Primitives.lean b/tests/lean/hashmap_on_disk/Base/Primitives.lean index 5b64e908..034f41b2 100644 --- a/tests/lean/hashmap_on_disk/Base/Primitives.lean +++ b/tests/lean/hashmap_on_disk/Base/Primitives.lean @@ -3,6 +3,28 @@ import Lean.Meta.Tactic.Simp import Init.Data.List.Basic import Mathlib.Tactic.RunCmd +-------------------- +-- ASSERT COMMAND -- +-------------------- + +open Lean Elab Command Term Meta + +syntax (name := assert) "#assert" term: command + +@[command_elab assert] +unsafe +def assertImpl : CommandElab := fun (_stx: Syntax) => do + runTermElabM (fun _ => do + let r ← evalTerm Bool (mkConst ``Bool) _stx[1] + if not r then + logInfo "Assertion failed for: " + logInfo _stx[1] + logError "Expression reduced to false" + pure ()) + +#eval 2 == 2 +#assert (2 == 2) + ------------- -- PRELUDE -- ------------- @@ -12,6 +34,7 @@ import Mathlib.Tactic.RunCmd inductive Error where | assertionFailure: Error | integerOverflow: Error + | divisionByZero: Error | arrayOutOfBounds: Error | maximumSizeExceeded: Error | panic: Error @@ -89,17 +112,13 @@ macro "let" e:term " <-- " f:term : doElem => -- MACHINE INTEGERS -- ---------------------- --- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ..., --- USize. They are generally defined in an idiomatic style, except that there is --- not a single type class to rule them all (more on that below). The absence of --- type class is intentional, and allows the Lean compiler to efficiently map --- them to machine integers during compilation. +-- We redefine our machine integers types. --- USize is designed properly: you cannot reduce `getNumBits` using the --- simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really --- support, at least officially, 16-bit microcontrollers, so this seems like a --- fine design decision for now.) +-- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` +-- using the simplifier, meaning that proofs do not depend on the compile-time value of +-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at +-- least officially, 16-bit microcontrollers, so this seems like a fine design decision +-- for now.) -- Note from Chris Bailey: "If there's more than one salient property of your -- definition then the subtyping strategy might get messy, and the property part @@ -111,236 +130,435 @@ macro "let" e:term " <-- " f:term : doElem => -- Machine integer constants, done via `ofNatCore`, which requires a proof that -- the `Nat` fits within the desired integer type. We provide a custom tactic. -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| - match USize.size, usize_size_eq with - | _, Or.inl rfl => decide - | _, Or.inr rfl => decide) - --- This is how the macro is expected to be used -#eval USize.ofNatCore 0 (by intlit) - --- Also works for other integer types (at the expense of a needless disjunction) -#eval UInt32.ofNatCore 0 (by intlit) - --- The machine integer operations (e.g. sub) are always total, which is not what --- we want. We therefore define "checked" variants, below. Note that we add a --- tiny bit of complexity for the USize variant: we first check whether the --- result is < 2^32; if it is, we can compute the definition, rather than --- returning a term that is computationally stuck (the comparison to USize.size --- cannot reduce at compile-time, per the remark about regarding `getNumBits`). +open System.Platform.getNumBits + +-- TODO: is there a way of only importing System.Platform.getNumBits? +-- +@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val + +-- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. +-- We keep the F* convention for now. +@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) +@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 +@[simp] def I8.min : Int := - (HPow.hPow 2 7) +@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 +@[simp] def I16.min : Int := - (HPow.hPow 2 15) +@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 +@[simp] def I32.min : Int := -(HPow.hPow 2 31) +@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 +@[simp] def I64.min : Int := -(HPow.hPow 2 63) +@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 +@[simp] def I128.min : Int := -(HPow.hPow 2 127) +@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 +@[simp] def Usize.min : Int := 0 +@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 +@[simp] def U8.min : Int := 0 +@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 +@[simp] def U16.min : Int := 0 +@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 +@[simp] def U32.min : Int := 0 +@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 +@[simp] def U64.min : Int := 0 +@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 +@[simp] def U128.min : Int := 0 +@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 + +#assert (I8.min == -128) +#assert (I8.max == 127) +#assert (I16.min == -32768) +#assert (I16.max == 32767) +#assert (I32.min == -2147483648) +#assert (I32.max == 2147483647) +#assert (I64.min == -9223372036854775808) +#assert (I64.max == 9223372036854775807) +#assert (I128.min == -170141183460469231731687303715884105728) +#assert (I128.max == 170141183460469231731687303715884105727) +#assert (U8.min == 0) +#assert (U8.max == 255) +#assert (U16.min == 0) +#assert (U16.max == 65535) +#assert (U32.min == 0) +#assert (U32.max == 4294967295) +#assert (U64.min == 0) +#assert (U64.max == 18446744073709551615) +#assert (U128.min == 0) +#assert (U128.max == 340282366920938463463374607431768211455) + +inductive ScalarTy := +| Isize +| I8 +| I16 +| I32 +| I64 +| I128 +| Usize +| U8 +| U16 +| U32 +| U64 +| U128 + +def Scalar.min (ty : ScalarTy) : Int := + match ty with + | .Isize => Isize.min + | .I8 => I8.min + | .I16 => I16.min + | .I32 => I32.min + | .I64 => I64.min + | .I128 => I128.min + | .Usize => Usize.min + | .U8 => U8.min + | .U16 => U16.min + | .U32 => U32.min + | .U64 => U64.min + | .U128 => U128.min + +def Scalar.max (ty : ScalarTy) : Int := + match ty with + | .Isize => Isize.max + | .I8 => I8.max + | .I16 => I16.max + | .I32 => I32.max + | .I64 => I64.max + | .I128 => I128.max + | .Usize => Usize.max + | .U8 => U8.max + | .U16 => U16.max + | .U32 => U32.max + | .U64 => U64.max + | .U128 => U128.max + +-- "Conservative" bounds +-- We use those because we can't compare to the isize bounds (which can't +-- reduce at compile-time). Whenever we perform an arithmetic operation like +-- addition we need to check that the result is in bounds: we first compare +-- to the conservative bounds, which reduce, then compare to the real bounds. -- This is useful for the various #asserts that we want to reduce at -- type-checking time. +def Scalar.cMin (ty : ScalarTy) : Int := + match ty with + | .Isize => I32.min + | _ => Scalar.min ty + +def Scalar.cMax (ty : ScalarTy) : Int := + match ty with + | .Isize => I32.max + | .Usize => U32.max + | _ => Scalar.max ty + +theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry +theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry + +structure Scalar (ty : ScalarTy) where + val : Int + hmin : Scalar.min ty <= val + hmax : val <= Scalar.max ty + +theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : + Scalar.cMin ty <= x && x <= Scalar.cMax ty -> + (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true + := by sorry + +def Scalar.ofIntCore {ty : ScalarTy} (x : Int) + (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := + { val := x, hmin := hmin, hmax := hmax } + +def Scalar.ofInt {ty : ScalarTy} (x : Int) + (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := + let hmin: Scalar.min ty <= x := by sorry + let hmax: x <= Scalar.max ty := by sorry + Scalar.ofIntCore x hmin hmax -- Further thoughts: look at what has been done here: -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean -- and -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean -- which both contain a fair amount of reasoning already! -def USize.checked_sub (n: USize) (m: USize): Result USize := - -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed? - if n >= m then - let n' := USize.toNat n - let m' := USize.toNat n - let r := USize.ofNatCore (n' - m') (by - have h: n' - m' <= n' := by - apply Nat.sub_le_of_le_add - case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left - apply Nat.lt_of_le_of_lt h - apply n.val.isLt - ) - return r - else - fail integerOverflow - -@[simp] -theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size := - match USize.size, usize_size_eq with - | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide) - | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide) - -def USize.checked_add (n: USize) (m: USize): Result USize := - if h: n.val + m.val < USize.size then - .ret ⟨ n.val + m.val, h ⟩ - else - .fail integerOverflow - -def USize.checked_rem (n: USize) (m: USize): Result USize := - if h: m > 0 then - .ret ⟨ n.val % m.val, by - have h1: ↑m.val < USize.size := m.val.isLt - have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h - apply Nat.lt_trans h2 h1 - ⟩ - else - .fail integerOverflow +def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := + -- TODO: write this with only one if then else + if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then + if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then + let hmin: Scalar.min ty <= x := by sorry + let hmax: x <= Scalar.max ty := by sorry + return Scalar.ofIntCore x hmin hmax + else fail integerOverflow + else fail integerOverflow + +def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) + +def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero + +-- Checking that the % operation in Lean computes the same as the remainder operation in Rust +#assert 1 % 2 = (1:Int) +#assert (-1) % 2 = -1 +#assert 1 % (-2) = 1 +#assert (-1) % (-2) = -1 + +def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero + +def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + Scalar.tryMk ty (x.val + y.val) + +def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + Scalar.tryMk ty (x.val - y.val) + +def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := + Scalar.tryMk ty (x.val * y.val) + +-- TODO: instances of +, -, * etc. for scalars + +-- Cast an integer from a [src_ty] to a [tgt_ty] +-- TODO: check the semantics of casts in Rust +def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := + Scalar.tryMk tgt_ty x.val + +-- The scalar types +-- We declare the definitions as reducible so that Lean can unfold them (useful +-- for type class resolution for instance). +@[reducible] def Isize := Scalar .Isize +@[reducible] def I8 := Scalar .I8 +@[reducible] def I16 := Scalar .I16 +@[reducible] def I32 := Scalar .I32 +@[reducible] def I64 := Scalar .I64 +@[reducible] def I128 := Scalar .I128 +@[reducible] def Usize := Scalar .Usize +@[reducible] def U8 := Scalar .U8 +@[reducible] def U16 := Scalar .U16 +@[reducible] def U32 := Scalar .U32 +@[reducible] def U64 := Scalar .U64 +@[reducible] def U128 := Scalar .U128 + +-- TODO: below: not sure this is the best way. +-- Should we rather overload operations like +, -, etc.? +-- Also, it is possible to automate the generation of those definitions +-- with macros (but would it be a good idea? It would be less easy to +-- read the file, which is not supposed to change a lot) + +-- Negation + +/-- +Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce +one here. + +The notation typeclass for heterogeneous addition. +This enables the notation `- a : β` where `a : α`. +-/ +class HNeg (α : Type u) (β : outParam (Type v)) where + /-- `- a` computes the negation of `a`. + The meaning of this notation is type-dependent. -/ + hNeg : α → β + +prefix:75 "-" => HNeg.hNeg + +instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x +instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x +instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x +instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x +instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x +instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x + +-- Addition +instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hAdd x y := Scalar.add x y + +-- Substraction +instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hSub x y := Scalar.sub x y + +-- Multiplication +instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hMul x y := Scalar.mul x y + +-- Division +instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hDiv x y := Scalar.div x y + +-- Remainder +instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where + hMod x y := Scalar.rem x y + +-- ofIntCore +-- TODO: typeclass? +def Isize.ofIntCore := @Scalar.ofIntCore .Isize +def I8.ofIntCore := @Scalar.ofIntCore .I8 +def I16.ofIntCore := @Scalar.ofIntCore .I16 +def I32.ofIntCore := @Scalar.ofIntCore .I32 +def I64.ofIntCore := @Scalar.ofIntCore .I64 +def I128.ofIntCore := @Scalar.ofIntCore .I128 +def Usize.ofIntCore := @Scalar.ofIntCore .Usize +def U8.ofIntCore := @Scalar.ofIntCore .U8 +def U16.ofIntCore := @Scalar.ofIntCore .U16 +def U32.ofIntCore := @Scalar.ofIntCore .U32 +def U64.ofIntCore := @Scalar.ofIntCore .U64 +def U128.ofIntCore := @Scalar.ofIntCore .U128 + +-- ofInt +-- TODO: typeclass? +def Isize.ofInt := @Scalar.ofInt .Isize +def I8.ofInt := @Scalar.ofInt .I8 +def I16.ofInt := @Scalar.ofInt .I16 +def I32.ofInt := @Scalar.ofInt .I32 +def I64.ofInt := @Scalar.ofInt .I64 +def I128.ofInt := @Scalar.ofInt .I128 +def Usize.ofInt := @Scalar.ofInt .Usize +def U8.ofInt := @Scalar.ofInt .U8 +def U16.ofInt := @Scalar.ofInt .U16 +def U32.ofInt := @Scalar.ofInt .U32 +def U64.ofInt := @Scalar.ofInt .U64 +def U128.ofInt := @Scalar.ofInt .U128 + +-- Comparisons +instance {ty} : LT (Scalar ty) where + lt a b := LT.lt a.val b.val + +instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val + +instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. +instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. + +theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j + | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl + +theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := + h ▸ rfl + +theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := + fun h' => absurd (val_eq_of_eq h') h + +instance (ty : ScalarTy) : DecidableEq (Scalar ty) := + fun i j => + match decEq i.val j.val with + | isTrue h => isTrue (Scalar.eq_of_val_eq h) + | isFalse h => isFalse (Scalar.ne_of_val_ne h) + +def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val + +-- Tactic to prove that integers are in bounds +syntax "intlit" : tactic -def USize.checked_mul (n: USize) (m: USize): Result USize := - if h: n.val * m.val < USize.size then - .ret ⟨ n.val * m.val, h ⟩ - else - .fail integerOverflow - -def USize.checked_div (n: USize) (m: USize): Result USize := - if m > 0 then - .ret ⟨ n.val / m.val, by - have h1: ↑n.val < USize.size := n.val.isLt - have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val - apply Nat.lt_of_le_of_lt h2 h1 - ⟩ - else - .fail integerOverflow - --- Test behavior... -#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 - -#eval USize.checked_sub 20 10 --- NOTE: compare with concrete behavior here, which I do not think we want -#eval USize.sub 0 1 -#eval UInt8.add 255 255 - --- We now define a type class that subsumes the various machine integer types, so --- as to write a concise definition for scalar_cast, rather than exhaustively --- enumerating all of the possible pairs. We remark that Rust has sane semantics --- and fails if a cast operation would involve a truncation or modulo. - -class MachineInteger (t: Type) where - size: Nat - val: t -> Fin size - ofNatCore: (n:Nat) -> LT.lt n size -> t - -set_option hygiene false in -run_cmd - for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do - Lean.Elab.Command.elabCommand (← `( - namespace $typeName - instance: MachineInteger $typeName where - size := size - val := val - ofNatCore := ofNatCore - end $typeName - )) - --- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- Lean to infer `src`. - -def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := - if h: MachineInteger.val x < MachineInteger.size dst then - .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) - else - .fail integerOverflow +macro_rules + | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) + +-- -- We now define a type class that subsumes the various machine integer types, so +-- -- as to write a concise definition for scalar_cast, rather than exhaustively +-- -- enumerating all of the possible pairs. We remark that Rust has sane semantics +-- -- and fails if a cast operation would involve a truncation or modulo. + +-- class MachineInteger (t: Type) where +-- size: Nat +-- val: t -> Fin size +-- ofNatCore: (n:Nat) -> LT.lt n size -> t + +-- set_option hygiene false in +-- run_cmd +-- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do +-- Lean.Elab.Command.elabCommand (← `( +-- namespace $typeName +-- instance: MachineInteger $typeName where +-- size := size +-- val := val +-- ofNatCore := ofNatCore +-- end $typeName +-- )) + +-- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on +-- -- Lean to infer `src`. + +-- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := +-- if h: MachineInteger.val x < MachineInteger.size dst then +-- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) +-- else +-- .fail integerOverflow ------------- -- VECTORS -- ------------- --- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size) --- rather than maximum values (usize_max). -def Vec (α : Type u) := { l : List α // List.length l < USize.size } - -def vec_new (α : Type u): Vec α := ⟨ [], by { - match USize.size, usize_size_eq with - | _, Or.inl rfl => simp - | _, Or.inr rfl => simp - } ⟩ +def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } -#check vec_new +def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ -def vec_len (α : Type u) (v : Vec α) : USize := +def vec_len (α : Type u) (v : Vec α) : Usize := let ⟨ v, l ⟩ := v - USize.ofNatCore (List.length v) l - -#eval vec_len Nat (vec_new Nat) + Usize.ofIntCore (List.length v) (by sorry) l def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () --- NOTE: old version trying to use a subtype notation, but probably better to --- leave Result elimination to auxiliary lemmas with suitable preconditions --- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one --- make the proof work in that case? Probably need to import tactics from --- mathlib to deal with inequalities... would love to see an example. -def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) // - match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} - := - if h : List.length v.val + 1 < USize.size then - ⟨ return ⟨List.concat v.val x, - by - rw [List.length_concat] - assumption - ⟩, by simp ⟩ - else - ⟨ fail maximumSizeExceeded, by simp ⟩ - -#eval do - -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with - -- fields val and property. However, Lean's elaborator can automatically - -- select the `val` field if the context provides a type annotation. We - -- annotate `x`, which relieves us of having to write `.val` on the right-hand - -- side of the monadic let. - let v := vec_new Nat - let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here? - -- TODO: strengthen post-condition above and do a demo to show that we can - -- safely eliminate the `fail` case - return (vec_len Nat x) - def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) := - if h : List.length v.val + 1 <= 4294967295 then - return ⟨ List.concat v.val x, - by - rw [List.length_concat] - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: List.length v.val + 1 < USize.size then - return ⟨List.concat v.val x, - by - rw [List.length_concat] - assumption - ⟩ + if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then + return ⟨ List.concat v.val x, by sorry ⟩ else fail maximumSizeExceeded -def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := +def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds -def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := +def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := if i.val < List.length v.val then + -- TODO: maybe we should redefine a list library which uses integers + -- (instead of natural numbers) + let i : Nat := + match i.val with + | .ofNat n => n + | .negSucc n => by sorry -- TODO: we can't get here + let isLt: i < USize.size := by sorry + let i : Fin USize.size := { val := i, isLt := isLt } .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val < USize.size := v.property + have h: List.length v.val <= Usize.max := v.property rewrite [ List.length_set v.val i.val x ] assumption ⟩ else .fail arrayOutOfBounds -def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α := - if h: i.val < List.length v.val then +def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := + if i.val < List.length v.val then + let i : Nat := + match i.val with + | .ofNat n => n + | .negSucc n => by sorry -- TODO: we can't get here + let isLt: i < USize.size := by sorry + let i : Fin USize.size := { val := i, isLt := isLt } + let h: i < List.length v.val := by sorry .ret (List.get v.val ⟨i.val, h⟩) else .fail arrayOutOfBounds -def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := +def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α := - if h: i.val < List.length v.val then +def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := + if i.val < List.length v.val then + let i : Nat := + match i.val with + | .ofNat n => n + | .negSucc n => by sorry -- TODO: we can't get here + let isLt: i < USize.size := by sorry + let i : Fin USize.size := { val := i, isLt := isLt } + let h: i < List.length v.val := by sorry .ret (List.get v.val ⟨i.val, h⟩) else .fail arrayOutOfBounds -def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := +def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := if i.val < List.length v.val then + let i : Nat := + match i.val with + | .ofNat n => n + | .negSucc n => by sorry -- TODO: we can't get here + let isLt: i < USize.size := by sorry + let i : Fin USize.size := { val := i, isLt := isLt } .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val < USize.size := v.property + have h: List.length v.val <= Usize.max := v.property rewrite [ List.length_set v.val i.val x ] assumption ⟩ @@ -360,33 +578,3 @@ def mem_replace_back (a : Type) (_ : a) (y : a) : a := /-- Aeneas-translated function -- useful to reduce non-recursive definitions. Use with `simp [ aeneas ]` -/ register_simp_attr aeneas - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------------- --- SANITY CHECKS -- -------------------- - --- TODO: add more once we have signed integers - -#assert (USize.checked_rem 1 2 == .ret 1) diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean index 1b69eb2f..a4dc996a 100644 --- a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean +++ b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean @@ -1,39 +1,37 @@ --- [hashmap_main]: the decreases clauses import Base.Primitives import HashmapMain.Types /- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: termination measure -/ @[simp] def hashmap_hash_map_allocate_slots_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (n : USize) := + (slots : Vec (hashmap_list_t T)) (n : Usize) := (slots, n) +/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ syntax "hashmap_hash_map_allocate_slots_loop_decreases" term+ : tactic - macro_rules | `(tactic| hashmap_hash_map_allocate_slots_loop_decreases $slots $n) => `(tactic| sorry) -/- [hashmap_main::hashmap::HashMap::{0}::clear_slots]: termination measure -/ +/- [hashmap_main::hashmap::HashMap::{0}::clear]: termination measure -/ @[simp] -def hashmap_hash_map_clear_slots_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (i : USize) := +def hashmap_hash_map_clear_loop_terminates (T : Type) + (slots : Vec (hashmap_list_t T)) (i : Usize) := (slots, i) -syntax "hashmap_hash_map_clear_slots_loop_decreases" term+ : tactic - +/- [hashmap_main::hashmap::HashMap::{0}::clear]: decreases_by tactic -/ +syntax "hashmap_hash_map_clear_loop_decreases" term+ : tactic macro_rules -| `(tactic| hashmap_hash_map_clear_slots_loop_decreases $slots $i) => - `(tactic| sorry) +| `(tactic| hashmap_hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry) /- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: termination measure -/ @[simp] -def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : USize) +def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) := (key, value, ls) +/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/ syntax "hashmap_hash_map_insert_in_list_loop_decreases" term+ : tactic - macro_rules | `(tactic| hashmap_hash_map_insert_in_list_loop_decreases $key $value $ls) => `(tactic| sorry) @@ -44,8 +42,8 @@ def hashmap_hash_map_move_elements_from_list_loop_terminates (T : Type) (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) := (ntable, ls) +/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/ syntax "hashmap_hash_map_move_elements_from_list_loop_decreases" term+ : tactic - macro_rules | `(tactic| hashmap_hash_map_move_elements_from_list_loop_decreases $ntable $ls) =>`(tactic| sorry) @@ -53,12 +51,12 @@ $ls) =>`(tactic| sorry) /- [hashmap_main::hashmap::HashMap::{0}::move_elements]: termination measure -/ @[simp] def hashmap_hash_map_move_elements_loop_terminates (T : Type) - (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : USize) + (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize) := (ntable, slots, i) +/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ syntax "hashmap_hash_map_move_elements_loop_decreases" term+ : tactic - macro_rules | `(tactic| hashmap_hash_map_move_elements_loop_decreases $ntable $slots $i) => `(tactic| sorry) @@ -66,46 +64,46 @@ macro_rules /- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ @[simp] def hashmap_hash_map_contains_key_in_list_loop_terminates (T : Type) - (key : USize) (ls : hashmap_list_t T) := + (key : Usize) (ls : hashmap_list_t T) := (key, ls) +/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/ syntax "hashmap_hash_map_contains_key_in_list_loop_decreases" term+ : tactic - macro_rules | `(tactic| hashmap_hash_map_contains_key_in_list_loop_decreases $key $ls) => `(tactic| sorry) /- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: termination measure -/ @[simp] -def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : USize) +def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) (ls : hashmap_list_t T) := (key, ls) +/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/ syntax "hashmap_hash_map_get_in_list_loop_decreases" term+ : tactic - macro_rules | `(tactic| hashmap_hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry) /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ @[simp] def hashmap_hash_map_get_mut_in_list_loop_terminates (T : Type) - (ls : hashmap_list_t T) (key : USize) := + (ls : hashmap_list_t T) (key : Usize) := (ls, key) +/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ syntax "hashmap_hash_map_get_mut_in_list_loop_decreases" term+ : tactic - macro_rules | `(tactic| hashmap_hash_map_get_mut_in_list_loop_decreases $ls $key) => `(tactic| sorry) /- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: termination measure -/ @[simp] -def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : USize) +def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) (ls : hashmap_list_t T) := (key, ls) +/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/ syntax "hashmap_hash_map_remove_from_list_loop_decreases" term+ : tactic - macro_rules | `(tactic| hashmap_hash_map_remove_from_list_loop_decreases $key $ls) => `(tactic| sorry) diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean index 753c92ac..33802597 100644 --- a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean +++ b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean @@ -6,7 +6,7 @@ import HashmapMain.Types /- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: termination measure -/ @[simp] def hashmap_hash_map_allocate_slots_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (n : USize) := + (slots : Vec (hashmap_list_t T)) (n : Usize) := (slots, n) /- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ @@ -18,7 +18,7 @@ macro_rules /- [hashmap_main::hashmap::HashMap::{0}::clear]: termination measure -/ @[simp] def hashmap_hash_map_clear_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (i : USize) := + (slots : Vec (hashmap_list_t T)) (i : Usize) := (slots, i) /- [hashmap_main::hashmap::HashMap::{0}::clear]: decreases_by tactic -/ @@ -28,7 +28,7 @@ macro_rules /- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: termination measure -/ @[simp] -def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : USize) +def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) := (key, value, ls) @@ -53,7 +53,7 @@ $ls) =>`(tactic| sorry) /- [hashmap_main::hashmap::HashMap::{0}::move_elements]: termination measure -/ @[simp] def hashmap_hash_map_move_elements_loop_terminates (T : Type) - (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : USize) + (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize) := (ntable, slots, i) @@ -66,7 +66,7 @@ macro_rules /- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ @[simp] def hashmap_hash_map_contains_key_in_list_loop_terminates (T : Type) - (key : USize) (ls : hashmap_list_t T) := + (key : Usize) (ls : hashmap_list_t T) := (key, ls) /- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/ @@ -77,7 +77,7 @@ macro_rules /- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: termination measure -/ @[simp] -def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : USize) +def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) (ls : hashmap_list_t T) := (key, ls) @@ -89,7 +89,7 @@ macro_rules /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ @[simp] def hashmap_hash_map_get_mut_in_list_loop_terminates (T : Type) - (ls : hashmap_list_t T) (key : USize) := + (ls : hashmap_list_t T) (key : Usize) := (ls, key) /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ @@ -100,7 +100,7 @@ macro_rules /- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: termination measure -/ @[simp] -def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : USize) +def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) (ls : hashmap_list_t T) := (key, ls) diff --git a/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean b/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean new file mode 100644 index 00000000..a5103acc --- /dev/null +++ b/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean @@ -0,0 +1,5 @@ +import Base.Primitives +import HashmapMain.Types +import HashmapMain.Opaque + +def opaque_defs : OpaqueDefs := by sorry diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean b/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean index 2be03d98..342c3833 100644 --- a/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean +++ b/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean @@ -2,25 +2,23 @@ -- [hashmap_main]: function definitions import Base.Primitives import HashmapMain.Types -import HashmapMain.Opaque +import HashmapMain.ExternalFuns import HashmapMain.Clauses.Clauses -section variable (opaque_defs: OpaqueDefs) - /- [hashmap_main::hashmap::hash_key] -/ -def hashmap_hash_key_fwd (k : USize) : Result USize := +def hashmap_hash_key_fwd (k : Usize) : Result Usize := Result.ret k /- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/ def hashmap_hash_map_allocate_slots_loop_fwd - (T : Type) (slots : Vec (hashmap_list_t T)) (n : USize) : + (T : Type) (slots : Vec (hashmap_list_t T)) (n : Usize) : (Result (Vec (hashmap_list_t T))) := - if h: n > (USize.ofNatCore 0 (by intlit)) + if h: n > (Usize.ofInt 0 (by intlit)) then do let slots0 ← vec_push_back (hashmap_list_t T) slots hashmap_list_t.Nil - let n0 ← USize.checked_sub n (USize.ofNatCore 1 (by intlit)) + let n0 ← n - (Usize.ofInt 1 (by intlit)) hashmap_hash_map_allocate_slots_loop_fwd T slots0 n0 else Result.ret slots termination_by hashmap_hash_map_allocate_slots_loop_fwd slots n => @@ -29,25 +27,25 @@ decreasing_by hashmap_hash_map_allocate_slots_loop_decreases slots n /- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/ def hashmap_hash_map_allocate_slots_fwd - (T : Type) (slots : Vec (hashmap_list_t T)) (n : USize) : + (T : Type) (slots : Vec (hashmap_list_t T)) (n : Usize) : Result (Vec (hashmap_list_t T)) := hashmap_hash_map_allocate_slots_loop_fwd T slots n /- [hashmap_main::hashmap::HashMap::{0}::new_with_capacity] -/ def hashmap_hash_map_new_with_capacity_fwd - (T : Type) (capacity : USize) (max_load_dividend : USize) - (max_load_divisor : USize) : + (T : Type) (capacity : Usize) (max_load_dividend : Usize) + (max_load_divisor : Usize) : Result (hashmap_hash_map_t T) := do let v := vec_new (hashmap_list_t T) let slots ← hashmap_hash_map_allocate_slots_fwd T v capacity - let i ← USize.checked_mul capacity max_load_dividend - let i0 ← USize.checked_div i max_load_divisor + let i ← capacity * max_load_dividend + let i0 ← i / max_load_divisor Result.ret { - hashmap_hash_map_num_entries := (USize.ofNatCore 0 (by intlit)), + hashmap_hash_map_num_entries := (Usize.ofInt 0 (by intlit)), hashmap_hash_map_max_load_factor := (max_load_dividend, max_load_divisor), hashmap_hash_map_max_load := i0, @@ -56,19 +54,19 @@ def hashmap_hash_map_new_with_capacity_fwd /- [hashmap_main::hashmap::HashMap::{0}::new] -/ def hashmap_hash_map_new_fwd (T : Type) : Result (hashmap_hash_map_t T) := - hashmap_hash_map_new_with_capacity_fwd T (USize.ofNatCore 32 (by intlit)) - (USize.ofNatCore 4 (by intlit)) (USize.ofNatCore 5 (by intlit)) + hashmap_hash_map_new_with_capacity_fwd T (Usize.ofInt 32 (by intlit)) + (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit)) /- [hashmap_main::hashmap::HashMap::{0}::clear] -/ def hashmap_hash_map_clear_loop_fwd_back - (T : Type) (slots : Vec (hashmap_list_t T)) (i : USize) : + (T : Type) (slots : Vec (hashmap_list_t T)) (i : Usize) : (Result (Vec (hashmap_list_t T))) := let i0 := vec_len (hashmap_list_t T) slots if h: i < i0 then do - let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit)) + let i1 ← i + (Usize.ofInt 1 (by intlit)) let slots0 ← vec_index_mut_back (hashmap_list_t T) slots i hashmap_list_t.Nil hashmap_hash_map_clear_loop_fwd_back T slots0 i1 @@ -83,23 +81,23 @@ def hashmap_hash_map_clear_fwd_back do let v ← hashmap_hash_map_clear_loop_fwd_back T self.hashmap_hash_map_slots - (USize.ofNatCore 0 (by intlit)) + (Usize.ofInt 0 (by intlit)) Result.ret { self with - hashmap_hash_map_num_entries := (USize.ofNatCore 0 (by intlit)), + hashmap_hash_map_num_entries := (Usize.ofInt 0 (by intlit)), hashmap_hash_map_slots := v } /- [hashmap_main::hashmap::HashMap::{0}::len] -/ def hashmap_hash_map_len_fwd - (T : Type) (self : hashmap_hash_map_t T) : Result USize := + (T : Type) (self : hashmap_hash_map_t T) : Result Usize := Result.ret self.hashmap_hash_map_num_entries /- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ def hashmap_hash_map_insert_in_list_loop_fwd - (T : Type) (key : USize) (value : T) (ls : hashmap_list_t T) : + (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : (Result Bool) := match h: ls with @@ -114,12 +112,12 @@ decreasing_by hashmap_hash_map_insert_in_list_loop_decreases key value ls /- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ def hashmap_hash_map_insert_in_list_fwd - (T : Type) (key : USize) (value : T) (ls : hashmap_list_t T) : Result Bool := + (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : Result Bool := hashmap_hash_map_insert_in_list_loop_fwd T key value ls /- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ def hashmap_hash_map_insert_in_list_loop_back - (T : Type) (key : USize) (value : T) (ls : hashmap_list_t T) : + (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : (Result (hashmap_list_t T)) := match h: ls with @@ -139,28 +137,28 @@ decreasing_by hashmap_hash_map_insert_in_list_loop_decreases key value ls /- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ def hashmap_hash_map_insert_in_list_back - (T : Type) (key : USize) (value : T) (ls : hashmap_list_t T) : + (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : Result (hashmap_list_t T) := hashmap_hash_map_insert_in_list_loop_back T key value ls /- [hashmap_main::hashmap::HashMap::{0}::insert_no_resize] -/ def hashmap_hash_map_insert_no_resize_fwd_back - (T : Type) (self : hashmap_hash_map_t T) (key : USize) (value : T) : + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (value : T) : Result (hashmap_hash_map_t T) := do let hash ← hashmap_hash_key_fwd key let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod let inserted ← hashmap_hash_map_insert_in_list_fwd T key value l if h: inserted then do - let i0 ← USize.checked_add self.hashmap_hash_map_num_entries - (USize.ofNatCore 1 (by intlit)) + let i0 ← self.hashmap_hash_map_num_entries + + (Usize.ofInt 1 (by intlit)) let l0 ← hashmap_hash_map_insert_in_list_back T key value l let v ← vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots @@ -180,9 +178,9 @@ def hashmap_hash_map_insert_no_resize_fwd_back Result.ret { self with hashmap_hash_map_slots := v } /- [core::num::u32::{9}::MAX] -/ -def core_num_u32_max_body : Result UInt32 := - Result.ret (UInt32.ofNatCore 4294967295 (by intlit)) -def core_num_u32_max_c : UInt32 := eval_global core_num_u32_max_body (by simp) +def core_num_u32_max_body : Result U32 := + Result.ret (U32.ofInt 4294967295 (by intlit)) +def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) /- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list] -/ def hashmap_hash_map_move_elements_from_list_loop_fwd_back @@ -210,7 +208,7 @@ def hashmap_hash_map_move_elements_from_list_fwd_back /- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/ def hashmap_hash_map_move_elements_loop_fwd_back (T : Type) (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) - (i : USize) : + (i : Usize) : (Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T)))) := let i0 := vec_len (hashmap_list_t T) slots @@ -221,7 +219,7 @@ def hashmap_hash_map_move_elements_loop_fwd_back let ls := mem_replace_fwd (hashmap_list_t T) l hashmap_list_t.Nil let ntable0 ← hashmap_hash_map_move_elements_from_list_fwd_back T ntable ls - let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit)) + let i1 ← i + (Usize.ofInt 1 (by intlit)) let l0 := mem_replace_back (hashmap_list_t T) l hashmap_list_t.Nil let slots0 ← vec_index_mut_back (hashmap_list_t T) slots i l0 hashmap_hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1 @@ -233,7 +231,7 @@ decreasing_by hashmap_hash_map_move_elements_loop_decreases ntable slots i /- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/ def hashmap_hash_map_move_elements_fwd_back (T : Type) (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) - (i : USize) : + (i : Usize) : Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T))) := hashmap_hash_map_move_elements_loop_fwd_back T ntable slots i @@ -242,19 +240,19 @@ def hashmap_hash_map_move_elements_fwd_back def hashmap_hash_map_try_resize_fwd_back (T : Type) (self : hashmap_hash_map_t T) : Result (hashmap_hash_map_t T) := do - let max_usize ← scalar_cast USize core_num_u32_max_c + let max_usize ← Scalar.cast .Usize core_num_u32_max_c let capacity := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let n1 ← USize.checked_div max_usize (USize.ofNatCore 2 (by intlit)) + let n1 ← max_usize / (Usize.ofInt 2 (by intlit)) let (i, i0) := self.hashmap_hash_map_max_load_factor - let i1 ← USize.checked_div n1 i + let i1 ← n1 / i if h: capacity <= i1 then do - let i2 ← USize.checked_mul capacity (USize.ofNatCore 2 (by intlit)) + let i2 ← capacity * (Usize.ofInt 2 (by intlit)) let ntable ← hashmap_hash_map_new_with_capacity_fwd T i2 i i0 let (ntable0, _) ← hashmap_hash_map_move_elements_fwd_back T ntable - self.hashmap_hash_map_slots (USize.ofNatCore 0 (by intlit)) + self.hashmap_hash_map_slots (Usize.ofInt 0 (by intlit)) Result.ret { ntable0 @@ -266,7 +264,7 @@ def hashmap_hash_map_try_resize_fwd_back /- [hashmap_main::hashmap::HashMap::{0}::insert] -/ def hashmap_hash_map_insert_fwd_back - (T : Type) (self : hashmap_hash_map_t T) (key : USize) (value : T) : + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (value : T) : Result (hashmap_hash_map_t T) := do @@ -278,7 +276,7 @@ def hashmap_hash_map_insert_fwd_back /- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/ def hashmap_hash_map_contains_key_in_list_loop_fwd - (T : Type) (key : USize) (ls : hashmap_list_t T) : (Result Bool) := + (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result Bool) := match h: ls with | hashmap_list_t.Cons ckey t tl => if h: ckey = key @@ -291,23 +289,23 @@ decreasing_by hashmap_hash_map_contains_key_in_list_loop_decreases key ls /- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/ def hashmap_hash_map_contains_key_in_list_fwd - (T : Type) (key : USize) (ls : hashmap_list_t T) : Result Bool := + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result Bool := hashmap_hash_map_contains_key_in_list_loop_fwd T key ls /- [hashmap_main::hashmap::HashMap::{0}::contains_key] -/ def hashmap_hash_map_contains_key_fwd - (T : Type) (self : hashmap_hash_map_t T) (key : USize) : Result Bool := + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result Bool := do let hash ← hashmap_hash_key_fwd key let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod hashmap_hash_map_contains_key_in_list_fwd T key l /- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/ def hashmap_hash_map_get_in_list_loop_fwd - (T : Type) (key : USize) (ls : hashmap_list_t T) : (Result T) := + (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result T) := match h: ls with | hashmap_list_t.Cons ckey cvalue tl => if h: ckey = key @@ -320,23 +318,23 @@ decreasing_by hashmap_hash_map_get_in_list_loop_decreases key ls /- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/ def hashmap_hash_map_get_in_list_fwd - (T : Type) (key : USize) (ls : hashmap_list_t T) : Result T := + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result T := hashmap_hash_map_get_in_list_loop_fwd T key ls /- [hashmap_main::hashmap::HashMap::{0}::get] -/ def hashmap_hash_map_get_fwd - (T : Type) (self : hashmap_hash_map_t T) (key : USize) : Result T := + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result T := do let hash ← hashmap_hash_key_fwd key let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod hashmap_hash_map_get_in_list_fwd T key l /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ def hashmap_hash_map_get_mut_in_list_loop_fwd - (T : Type) (ls : hashmap_list_t T) (key : USize) : (Result T) := + (T : Type) (ls : hashmap_list_t T) (key : Usize) : (Result T) := match h: ls with | hashmap_list_t.Cons ckey cvalue tl => if h: ckey = key @@ -349,12 +347,12 @@ decreasing_by hashmap_hash_map_get_mut_in_list_loop_decreases ls key /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ def hashmap_hash_map_get_mut_in_list_fwd - (T : Type) (ls : hashmap_list_t T) (key : USize) : Result T := + (T : Type) (ls : hashmap_list_t T) (key : Usize) : Result T := hashmap_hash_map_get_mut_in_list_loop_fwd T ls key /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ def hashmap_hash_map_get_mut_in_list_loop_back - (T : Type) (ls : hashmap_list_t T) (key : USize) (ret0 : T) : + (T : Type) (ls : hashmap_list_t T) (key : Usize) (ret0 : T) : (Result (hashmap_list_t T)) := match h: ls with @@ -372,31 +370,31 @@ decreasing_by hashmap_hash_map_get_mut_in_list_loop_decreases ls key /- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ def hashmap_hash_map_get_mut_in_list_back - (T : Type) (ls : hashmap_list_t T) (key : USize) (ret0 : T) : + (T : Type) (ls : hashmap_list_t T) (key : Usize) (ret0 : T) : Result (hashmap_list_t T) := hashmap_hash_map_get_mut_in_list_loop_back T ls key ret0 /- [hashmap_main::hashmap::HashMap::{0}::get_mut] -/ def hashmap_hash_map_get_mut_fwd - (T : Type) (self : hashmap_hash_map_t T) (key : USize) : Result T := + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result T := do let hash ← hashmap_hash_key_fwd key let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod hashmap_hash_map_get_mut_in_list_fwd T l key /- [hashmap_main::hashmap::HashMap::{0}::get_mut] -/ def hashmap_hash_map_get_mut_back - (T : Type) (self : hashmap_hash_map_t T) (key : USize) (ret0 : T) : + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (ret0 : T) : Result (hashmap_hash_map_t T) := do let hash ← hashmap_hash_key_fwd key let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod let l0 ← hashmap_hash_map_get_mut_in_list_back T l key ret0 @@ -407,7 +405,7 @@ def hashmap_hash_map_get_mut_back /- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ def hashmap_hash_map_remove_from_list_loop_fwd - (T : Type) (key : USize) (ls : hashmap_list_t T) : (Result (Option T)) := + (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result (Option T)) := match h: ls with | hashmap_list_t.Cons ckey t tl => if h: ckey = key @@ -426,12 +424,12 @@ decreasing_by hashmap_hash_map_remove_from_list_loop_decreases key ls /- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ def hashmap_hash_map_remove_from_list_fwd - (T : Type) (key : USize) (ls : hashmap_list_t T) : Result (Option T) := + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result (Option T) := hashmap_hash_map_remove_from_list_loop_fwd T key ls /- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ def hashmap_hash_map_remove_from_list_loop_back - (T : Type) (key : USize) (ls : hashmap_list_t T) : + (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result (hashmap_list_t T)) := match h: ls with @@ -455,18 +453,18 @@ decreasing_by hashmap_hash_map_remove_from_list_loop_decreases key ls /- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ def hashmap_hash_map_remove_from_list_back - (T : Type) (key : USize) (ls : hashmap_list_t T) : + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result (hashmap_list_t T) := hashmap_hash_map_remove_from_list_loop_back T key ls /- [hashmap_main::hashmap::HashMap::{0}::remove] -/ def hashmap_hash_map_remove_fwd - (T : Type) (self : hashmap_hash_map_t T) (key : USize) : Result (Option T) := + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result (Option T) := do let hash ← hashmap_hash_key_fwd key let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod let x ← hashmap_hash_map_remove_from_list_fwd T key l @@ -474,19 +472,19 @@ def hashmap_hash_map_remove_fwd | Option.none => Result.ret Option.none | Option.some x0 => do - let _ ← USize.checked_sub self.hashmap_hash_map_num_entries - (USize.ofNatCore 1 (by intlit)) + let _ ← self.hashmap_hash_map_num_entries - + (Usize.ofInt 1 (by intlit)) Result.ret (Option.some x0) /- [hashmap_main::hashmap::HashMap::{0}::remove] -/ def hashmap_hash_map_remove_back - (T : Type) (self : hashmap_hash_map_t T) (key : USize) : + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result (hashmap_hash_map_t T) := do let hash ← hashmap_hash_key_fwd key let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← USize.checked_rem hash i + let hash_mod ← hash % i let l ← vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod let x ← hashmap_hash_map_remove_from_list_fwd T key l @@ -500,8 +498,8 @@ def hashmap_hash_map_remove_back Result.ret { self with hashmap_hash_map_slots := v } | Option.some x0 => do - let i0 ← USize.checked_sub self.hashmap_hash_map_num_entries - (USize.ofNatCore 1 (by intlit)) + let i0 ← self.hashmap_hash_map_num_entries - + (Usize.ofInt 1 (by intlit)) let l0 ← hashmap_hash_map_remove_from_list_back T key l let v ← vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots @@ -516,79 +514,73 @@ def hashmap_hash_map_remove_back /- [hashmap_main::hashmap::test1] -/ def hashmap_test1_fwd : Result Unit := do - let hm ← hashmap_hash_map_new_fwd UInt64 + let hm ← hashmap_hash_map_new_fwd U64 let hm0 ← - hashmap_hash_map_insert_fwd_back UInt64 hm - (USize.ofNatCore 0 (by intlit)) (UInt64.ofNatCore 42 (by intlit)) + hashmap_hash_map_insert_fwd_back U64 hm (Usize.ofInt 0 (by intlit)) + (U64.ofInt 42 (by intlit)) let hm1 ← - hashmap_hash_map_insert_fwd_back UInt64 hm0 - (USize.ofNatCore 128 (by intlit)) (UInt64.ofNatCore 18 (by intlit)) + hashmap_hash_map_insert_fwd_back U64 hm0 (Usize.ofInt 128 (by intlit)) + (U64.ofInt 18 (by intlit)) let hm2 ← - hashmap_hash_map_insert_fwd_back UInt64 hm1 - (USize.ofNatCore 1024 (by intlit)) (UInt64.ofNatCore 138 (by intlit)) + hashmap_hash_map_insert_fwd_back U64 hm1 (Usize.ofInt 1024 (by intlit)) + (U64.ofInt 138 (by intlit)) let hm3 ← - hashmap_hash_map_insert_fwd_back UInt64 hm2 - (USize.ofNatCore 1056 (by intlit)) (UInt64.ofNatCore 256 (by intlit)) - let i ← - hashmap_hash_map_get_fwd UInt64 hm3 (USize.ofNatCore 128 (by intlit)) - if h: not (i = (UInt64.ofNatCore 18 (by intlit))) + hashmap_hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit)) + (U64.ofInt 256 (by intlit)) + let i ← hashmap_hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit)) + if h: not (i = (U64.ofInt 18 (by intlit))) then Result.fail Error.panic else do let hm4 ← - hashmap_hash_map_get_mut_back UInt64 hm3 - (USize.ofNatCore 1024 (by intlit)) - (UInt64.ofNatCore 56 (by intlit)) + hashmap_hash_map_get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit)) + (U64.ofInt 56 (by intlit)) let i0 ← - hashmap_hash_map_get_fwd UInt64 hm4 - (USize.ofNatCore 1024 (by intlit)) - if h: not (i0 = (UInt64.ofNatCore 56 (by intlit))) + hashmap_hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) + if h: not (i0 = (U64.ofInt 56 (by intlit))) then Result.fail Error.panic else do let x ← - hashmap_hash_map_remove_fwd UInt64 hm4 - (USize.ofNatCore 1024 (by intlit)) + hashmap_hash_map_remove_fwd U64 hm4 + (Usize.ofInt 1024 (by intlit)) match h: x with | Option.none => Result.fail Error.panic | Option.some x0 => - if h: not (x0 = (UInt64.ofNatCore 56 (by intlit))) + if h: not (x0 = (U64.ofInt 56 (by intlit))) then Result.fail Error.panic else do let hm5 ← - hashmap_hash_map_remove_back UInt64 hm4 - (USize.ofNatCore 1024 (by intlit)) + hashmap_hash_map_remove_back U64 hm4 + (Usize.ofInt 1024 (by intlit)) let i1 ← - hashmap_hash_map_get_fwd UInt64 hm5 - (USize.ofNatCore 0 (by intlit)) - if h: not (i1 = (UInt64.ofNatCore 42 (by intlit))) + hashmap_hash_map_get_fwd U64 hm5 + (Usize.ofInt 0 (by intlit)) + if h: not (i1 = (U64.ofInt 42 (by intlit))) then Result.fail Error.panic else do let i2 ← - hashmap_hash_map_get_fwd UInt64 hm5 - (USize.ofNatCore 128 (by intlit)) - if h: not (i2 = (UInt64.ofNatCore 18 (by intlit))) + hashmap_hash_map_get_fwd U64 hm5 + (Usize.ofInt 128 (by intlit)) + if h: not (i2 = (U64.ofInt 18 (by intlit))) then Result.fail Error.panic else do let i3 ← - hashmap_hash_map_get_fwd UInt64 hm5 - (USize.ofNatCore 1056 (by intlit)) - if h: not (i3 = (UInt64.ofNatCore 256 (by intlit))) + hashmap_hash_map_get_fwd U64 hm5 + (Usize.ofInt 1056 (by intlit)) + if h: not (i3 = (U64.ofInt 256 (by intlit))) then Result.fail Error.panic else Result.ret () -/- Unit test for [hashmap_main::hashmap::test1] -/ -#assert (hashmap_test1_fwd == .ret ()) - /- [hashmap_main::insert_on_disk] -/ def insert_on_disk_fwd - (key : USize) (value : UInt64) (st : State) : Result (State × Unit) := + (key : Usize) (value : U64) (st : State) : Result (State × Unit) := do let (st0, hm) ← opaque_defs.hashmap_utils_deserialize_fwd st - let hm0 ← hashmap_hash_map_insert_fwd_back UInt64 hm key value + let hm0 ← hashmap_hash_map_insert_fwd_back U64 hm key value let (st1, _) ← opaque_defs.hashmap_utils_serialize_fwd hm0 st0 Result.ret (st1, ()) @@ -596,6 +588,3 @@ def insert_on_disk_fwd def main_fwd : Result Unit := Result.ret () -/- Unit test for [hashmap_main::main] -/ -#assert (main_fwd == .ret ()) - diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean b/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean index 3531e6e0..d98f431a 100644 --- a/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean +++ b/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean @@ -7,9 +7,9 @@ structure OpaqueDefs where /- [hashmap_main::hashmap_utils::deserialize] -/ hashmap_utils_deserialize_fwd - : State -> Result (State × (hashmap_hash_map_t UInt64)) + : State -> Result (State × (hashmap_hash_map_t U64)) /- [hashmap_main::hashmap_utils::serialize] -/ hashmap_utils_serialize_fwd - : hashmap_hash_map_t UInt64 -> State -> Result (State × Unit) + : hashmap_hash_map_t U64 -> State -> Result (State × Unit) diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Types.lean b/tests/lean/hashmap_on_disk/HashmapMain/Types.lean index 989dd2a9..0509fbbd 100644 --- a/tests/lean/hashmap_on_disk/HashmapMain/Types.lean +++ b/tests/lean/hashmap_on_disk/HashmapMain/Types.lean @@ -4,14 +4,14 @@ import Base.Primitives /- [hashmap_main::hashmap::List] -/ inductive hashmap_list_t (T : Type) := -| Cons : USize -> T -> hashmap_list_t T -> hashmap_list_t T +| Cons : Usize -> T -> hashmap_list_t T -> hashmap_list_t T | Nil : hashmap_list_t T /- [hashmap_main::hashmap::HashMap] -/ structure hashmap_hash_map_t (T : Type) where - hashmap_hash_map_num_entries : USize - hashmap_hash_map_max_load_factor : (USize × USize) - hashmap_hash_map_max_load : USize + hashmap_hash_map_num_entries : Usize + hashmap_hash_map_max_load_factor : (Usize × Usize) + hashmap_hash_map_max_load : Usize hashmap_hash_map_slots : Vec (hashmap_list_t T) /- The state type used in the state-error monad -/ |