summaryrefslogtreecommitdiff
path: root/tests/hol4/misc-no_nested_borrows
diff options
context:
space:
mode:
Diffstat (limited to 'tests/hol4/misc-no_nested_borrows')
-rw-r--r--tests/hol4/misc-no_nested_borrows/noNestedBorrowsScript.sml8
-rw-r--r--tests/hol4/misc-no_nested_borrows/noNestedBorrowsTheory.sig158
2 files changed, 84 insertions, 82 deletions
diff --git a/tests/hol4/misc-no_nested_borrows/noNestedBorrowsScript.sml b/tests/hol4/misc-no_nested_borrows/noNestedBorrowsScript.sml
index 66614c3f..1b2d6121 100644
--- a/tests/hol4/misc-no_nested_borrows/noNestedBorrowsScript.sml
+++ b/tests/hol4/misc-no_nested_borrows/noNestedBorrowsScript.sml
@@ -279,11 +279,11 @@ val test_char_fwd_def = Define ‘
Datatype:
- (** [no_nested_borrows::NodeElem] *)
- node_elem_t = | NodeElemCons tree_t node_elem_t | NodeElemNil ;
-
(** [no_nested_borrows::Tree] *)
- tree_t = | TreeLeaf 't | TreeNode 't node_elem_t tree_t
+ tree_t = | TreeLeaf 't | TreeNode 't node_elem_t tree_t ;
+
+ (** [no_nested_borrows::NodeElem] *)
+ node_elem_t = | NodeElemCons tree_t node_elem_t | NodeElemNil
End
val [list_length_fwd_def] = DefineDiv ‘
diff --git a/tests/hol4/misc-no_nested_borrows/noNestedBorrowsTheory.sig b/tests/hol4/misc-no_nested_borrows/noNestedBorrowsTheory.sig
index c0ff4e09..67368e38 100644
--- a/tests/hol4/misc-no_nested_borrows/noNestedBorrowsTheory.sig
+++ b/tests/hol4/misc-no_nested_borrows/noNestedBorrowsTheory.sig
@@ -47,7 +47,6 @@ sig
val new_tuple3_fwd_def : thm
val node_elem_t_TY_DEF : thm
val node_elem_t_case_def : thm
- val node_elem_t_size_def : thm
val one_t_TY_DEF : thm
val one_t_case_def : thm
val one_t_size_def : thm
@@ -97,6 +96,7 @@ sig
val test_weird_borrows1_fwd_def : thm
val tree_t_TY_DEF : thm
val tree_t_case_def : thm
+ val tree_t_size_def : thm
(* Theorems *)
val EXISTS_pair_t : thm
@@ -108,12 +108,12 @@ sig
val datatype_empty_enum_t : thm
val datatype_enum_t : thm
val datatype_list_t : thm
- val datatype_node_elem_t : thm
val datatype_one_t : thm
val datatype_pair_t : thm
val datatype_struct_with_pair_t : thm
val datatype_struct_with_tuple_t : thm
val datatype_sum_t : thm
+ val datatype_tree_t : thm
val empty_enum_t2num_11 : thm
val empty_enum_t2num_ONTO : thm
val empty_enum_t2num_num2empty_enum_t : thm
@@ -491,52 +491,41 @@ sig
⊢ ∃rep.
TYPE_DEFINITION
- (λa0'.
- ∀ $var$('node_elem_t') $var$('tree_t').
+ (λa1'.
+ ∀ $var$('tree_t') $var$('node_elem_t').
(∀a0'.
- (∃a0 a1.
- a0' =
- (λa0 a1.
- ind_type$CONSTR 0 ARB
- (ind_type$FCONS a0
- (ind_type$FCONS a1 (λn. ind_type$BOTTOM))))
- a0 a1 ∧ $var$('tree_t') a0 ∧
- $var$('node_elem_t') a1) ∨
- a0' =
- ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒
- $var$('node_elem_t') a0') ∧
- (∀a1'.
- (∃a. a1' =
- (λa.
- ind_type$CONSTR (SUC (SUC 0)) a
- (λn. ind_type$BOTTOM)) a) ∨
+ (∃a. a0' =
+ (λa. ind_type$CONSTR 0 a (λn. ind_type$BOTTOM))
+ a) ∨
(∃a0 a1 a2.
- a1' =
+ a0' =
(λa0 a1 a2.
- ind_type$CONSTR (SUC (SUC (SUC 0))) a0
+ ind_type$CONSTR (SUC 0) a0
(ind_type$FCONS a1
(ind_type$FCONS a2 (λn. ind_type$BOTTOM))))
a0 a1 a2 ∧ $var$('node_elem_t') a1 ∧
$var$('tree_t') a2) ⇒
- $var$('tree_t') a1') ⇒
- $var$('node_elem_t') a0') rep
+ $var$('tree_t') a0') ∧
+ (∀a1'.
+ (∃a0 a1.
+ a1' =
+ (λa0 a1.
+ ind_type$CONSTR (SUC (SUC 0)) ARB
+ (ind_type$FCONS a0
+ (ind_type$FCONS a1 (λn. ind_type$BOTTOM))))
+ a0 a1 ∧ $var$('tree_t') a0 ∧
+ $var$('node_elem_t') a1) ∨
+ a1' =
+ ind_type$CONSTR (SUC (SUC (SUC 0))) ARB
+ (λn. ind_type$BOTTOM) ⇒
+ $var$('node_elem_t') a1') ⇒
+ $var$('node_elem_t') a1') rep
[node_elem_t_case_def] Definition
⊢ (∀a0 a1 f v. node_elem_t_CASE (NodeElemCons a0 a1) f v = f a0 a1) ∧
∀f v. node_elem_t_CASE NodeElemNil f v = v
- [node_elem_t_size_def] Definition
-
- ⊢ (∀f a0 a1.
- node_elem_t_size f (NodeElemCons a0 a1) =
- 1 + (tree_t_size f a0 + node_elem_t_size f a1)) ∧
- (∀f. node_elem_t_size f NodeElemNil = 0) ∧
- (∀f a. tree_t_size f (TreeLeaf a) = 1 + f a) ∧
- ∀f a0 a1 a2.
- tree_t_size f (TreeNode a0 a1 a2) =
- 1 + (f a0 + (node_elem_t_size f a1 + tree_t_size f a2))
-
[one_t_TY_DEF] Definition
⊢ ∃rep.
@@ -923,41 +912,52 @@ sig
⊢ ∃rep.
TYPE_DEFINITION
- (λa1'.
- ∀ $var$('node_elem_t') $var$('tree_t').
+ (λa0'.
+ ∀ $var$('tree_t') $var$('node_elem_t').
(∀a0'.
- (∃a0 a1.
- a0' =
- (λa0 a1.
- ind_type$CONSTR 0 ARB
- (ind_type$FCONS a0
- (ind_type$FCONS a1 (λn. ind_type$BOTTOM))))
- a0 a1 ∧ $var$('tree_t') a0 ∧
- $var$('node_elem_t') a1) ∨
- a0' =
- ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒
- $var$('node_elem_t') a0') ∧
- (∀a1'.
- (∃a. a1' =
- (λa.
- ind_type$CONSTR (SUC (SUC 0)) a
- (λn. ind_type$BOTTOM)) a) ∨
+ (∃a. a0' =
+ (λa. ind_type$CONSTR 0 a (λn. ind_type$BOTTOM))
+ a) ∨
(∃a0 a1 a2.
- a1' =
+ a0' =
(λa0 a1 a2.
- ind_type$CONSTR (SUC (SUC (SUC 0))) a0
+ ind_type$CONSTR (SUC 0) a0
(ind_type$FCONS a1
(ind_type$FCONS a2 (λn. ind_type$BOTTOM))))
a0 a1 a2 ∧ $var$('node_elem_t') a1 ∧
$var$('tree_t') a2) ⇒
- $var$('tree_t') a1') ⇒
- $var$('tree_t') a1') rep
+ $var$('tree_t') a0') ∧
+ (∀a1'.
+ (∃a0 a1.
+ a1' =
+ (λa0 a1.
+ ind_type$CONSTR (SUC (SUC 0)) ARB
+ (ind_type$FCONS a0
+ (ind_type$FCONS a1 (λn. ind_type$BOTTOM))))
+ a0 a1 ∧ $var$('tree_t') a0 ∧
+ $var$('node_elem_t') a1) ∨
+ a1' =
+ ind_type$CONSTR (SUC (SUC (SUC 0))) ARB
+ (λn. ind_type$BOTTOM) ⇒
+ $var$('node_elem_t') a1') ⇒
+ $var$('tree_t') a0') rep
[tree_t_case_def] Definition
⊢ (∀a f f1. tree_t_CASE (TreeLeaf a) f f1 = f a) ∧
∀a0 a1 a2 f f1. tree_t_CASE (TreeNode a0 a1 a2) f f1 = f1 a0 a1 a2
+ [tree_t_size_def] Definition
+
+ ⊢ (∀f a. tree_t_size f (TreeLeaf a) = 1 + f a) ∧
+ (∀f a0 a1 a2.
+ tree_t_size f (TreeNode a0 a1 a2) =
+ 1 + (f a0 + (node_elem_t_size f a1 + tree_t_size f a2))) ∧
+ (∀f a0 a1.
+ node_elem_t_size f (NodeElemCons a0 a1) =
+ 1 + (tree_t_size f a0 + node_elem_t_size f a1)) ∧
+ ∀f. node_elem_t_size f NodeElemNil = 0
+
[EXISTS_pair_t] Theorem
⊢ ∀P. (∃p. P p) ⇔ ∃t0 t. P <|pair_x := t0; pair_y := t|>
@@ -994,11 +994,6 @@ sig
⊢ DATATYPE (list_t ListCons ListNil)
- [datatype_node_elem_t] Theorem
-
- ⊢ DATATYPE
- (node_elem_t NodeElemCons NodeElemNil ∧ tree_t TreeLeaf TreeNode)
-
[datatype_one_t] Theorem
⊢ DATATYPE (one_t OneOne)
@@ -1019,6 +1014,11 @@ sig
⊢ DATATYPE (sum_t SumLeft SumRight)
+ [datatype_tree_t] Theorem
+
+ ⊢ DATATYPE
+ (tree_t TreeLeaf TreeNode ∧ node_elem_t NodeElemCons NodeElemNil)
+
[empty_enum_t2num_11] Theorem
⊢ ∀a a'. empty_enum_t2num a = empty_enum_t2num a' ⇔ a = a'
@@ -1167,10 +1167,11 @@ sig
[node_elem_t_Axiom] Theorem
⊢ ∀f0 f1 f2 f3. ∃fn0 fn1.
- (∀a0 a1. fn0 (NodeElemCons a0 a1) = f0 a0 a1 (fn1 a0) (fn0 a1)) ∧
- fn0 NodeElemNil = f1 ∧ (∀a. fn1 (TreeLeaf a) = f2 a) ∧
- ∀a0 a1 a2.
- fn1 (TreeNode a0 a1 a2) = f3 a0 a1 a2 (fn0 a1) (fn1 a2)
+ (∀a. fn0 (TreeLeaf a) = f0 a) ∧
+ (∀a0 a1 a2.
+ fn0 (TreeNode a0 a1 a2) = f1 a0 a1 a2 (fn1 a1) (fn0 a2)) ∧
+ (∀a0 a1. fn1 (NodeElemCons a0 a1) = f2 a0 a1 (fn0 a0) (fn1 a1)) ∧
+ fn1 NodeElemNil = f3
[node_elem_t_case_cong] Theorem
@@ -1192,10 +1193,10 @@ sig
[node_elem_t_induction] Theorem
⊢ ∀P0 P1.
- (∀t n. P1 t ∧ P0 n ⇒ P0 (NodeElemCons t n)) ∧ P0 NodeElemNil ∧
- (∀t. P1 (TreeLeaf t)) ∧
- (∀n t. P0 n ∧ P1 t ⇒ ∀t0. P1 (TreeNode t0 n t)) ⇒
- (∀n. P0 n) ∧ ∀t. P1 t
+ (∀t. P0 (TreeLeaf t)) ∧
+ (∀n t. P1 n ∧ P0 t ⇒ ∀t0. P0 (TreeNode t0 n t)) ∧
+ (∀t n. P0 t ∧ P1 n ⇒ P1 (NodeElemCons t n)) ∧ P1 NodeElemNil ⇒
+ (∀t. P0 t) ∧ ∀n. P1 n
[node_elem_t_nchotomy] Theorem
@@ -1557,10 +1558,11 @@ sig
[tree_t_Axiom] Theorem
⊢ ∀f0 f1 f2 f3. ∃fn0 fn1.
- (∀a0 a1. fn0 (NodeElemCons a0 a1) = f0 a0 a1 (fn1 a0) (fn0 a1)) ∧
- fn0 NodeElemNil = f1 ∧ (∀a. fn1 (TreeLeaf a) = f2 a) ∧
- ∀a0 a1 a2.
- fn1 (TreeNode a0 a1 a2) = f3 a0 a1 a2 (fn0 a1) (fn1 a2)
+ (∀a. fn0 (TreeLeaf a) = f0 a) ∧
+ (∀a0 a1 a2.
+ fn0 (TreeNode a0 a1 a2) = f1 a0 a1 a2 (fn1 a1) (fn0 a2)) ∧
+ (∀a0 a1. fn1 (NodeElemCons a0 a1) = f2 a0 a1 (fn0 a0) (fn1 a1)) ∧
+ fn1 NodeElemNil = f3
[tree_t_case_cong] Theorem
@@ -1582,10 +1584,10 @@ sig
[tree_t_induction] Theorem
⊢ ∀P0 P1.
- (∀t n. P1 t ∧ P0 n ⇒ P0 (NodeElemCons t n)) ∧ P0 NodeElemNil ∧
- (∀t. P1 (TreeLeaf t)) ∧
- (∀n t. P0 n ∧ P1 t ⇒ ∀t0. P1 (TreeNode t0 n t)) ⇒
- (∀n. P0 n) ∧ ∀t. P1 t
+ (∀t. P0 (TreeLeaf t)) ∧
+ (∀n t. P1 n ∧ P0 t ⇒ ∀t0. P0 (TreeNode t0 n t)) ∧
+ (∀t n. P0 t ∧ P1 n ⇒ P1 (NodeElemCons t n)) ∧ P1 NodeElemNil ⇒
+ (∀t. P0 t) ∧ ∀n. P1 n
[tree_t_nchotomy] Theorem