diff options
Diffstat (limited to 'tests/hashmap')
-rw-r--r-- | tests/hashmap/Hashmap.Properties.fst | 77 |
1 files changed, 75 insertions, 2 deletions
diff --git a/tests/hashmap/Hashmap.Properties.fst b/tests/hashmap/Hashmap.Properties.fst index f8bad4de..7ef527b7 100644 --- a/tests/hashmap/Hashmap.Properties.fst +++ b/tests/hashmap/Hashmap.Properties.fst @@ -50,7 +50,13 @@ module InteractiveHelpers = FStar.InteractiveHelpers /// which is something very specific to working with F*. /// /// About the fact that we are blind: see [hash_map_try_resize_fwd_back_lem_refin] -/// +/// +/// - the fact that we don't reason with tactics but with the SMT solver with an +/// "intrinsic" style of proofs makes it a bit awkward to reason about pure +/// functions in a modular manner, because every proof requires to basically +/// copy-paste the function we are studying. As a consequence, this file is +/// very verbose (look at the number of lines of code...). +/// /// - F* is extremely bad at reasoning with quantifiers, which is made worse by /// the fact we are blind when making proofs. This forced me to be extremely /// careful about the way I wrote the specs/invariants (by writing "functional" @@ -799,7 +805,7 @@ val hash_map_new_with_capacity_fwd_lem 0 < max_load_dividend /\ max_load_dividend < max_load_divisor /\ 0 < capacity /\ - capacity * max_load_dividend < usize_max)) + capacity * max_load_dividend <= usize_max)) (ensures ( match hash_map_new_with_capacity_fwd t capacity max_load_dividend max_load_divisor with | Fail -> False @@ -2412,3 +2418,70 @@ let hash_map_try_resize_fwd_back_lem_refin t self = else let self0 = Mkhash_map_t i p i0 v in () end + +val hash_map_try_resize_s_lem (#t : Type0) (hm : hash_map_t t) : + Lemma + (requires (hash_map_t_base_inv hm)) + (ensures ( + match hash_map_try_resize_s hm with + | Fail -> False + | Return hm' -> + // The full invariant is now satisfied (the full invariant is "base + // invariant" + the map is not overloaded (or can't be resized because + // already too big) + hash_map_t_inv hm' /\ + // It contains the same bindings as the initial map + (forall (k:key). hash_map_t_find_s hm' k == hash_map_t_find_s hm k))) + +(* +let hash_map_try_resize_s_lem #t hm = + let capacity = length hm.hash_map_slots in + let (divid, divis) = hm.hash_map_max_load_factor in + if capacity <= usize_max / 2 && capacity <= usize_max / divid then + let ncapacity : usize = capacity * 2 in + assume(ncapacity * divid <= usize_max); + hash_map_new_with_capacity_fwd_lem t ncapacity divid divis; + begin match hash_map_new_with_capacity_fwd t ncapacity divid divis with + | Fail -> () + | Return ntable -> + hash_map_move_elements_fwd_back_lem t ntable hm.hash_map_slots; + match hash_map_move_elements_fwd_back t ntable hm.hash_map_slots 0 with + | Fail -> () + | Return (ntable', _) -> + assume(hash_map_is_assoc_list hm (hash_map_t_v hm)); + let hm = + { hm with hash_map_slots = ntable'.hash_map_slots; + hash_map_max_load = ntable'.hash_map_max_load } + in + () + end + else () + +let hash_map_is_assoc_list + (#t : Type0) (ntable : hash_map_t t{length ntable.hash_map_slots > 0}) + (al : assoc_list t) : Type0 = + (forall (k:key). hash_map_t_find_s ntable k == assoc_list_find k al) + + + Pure (result (hash_map_t t)) + (requires ( + let (divid, divis) = hm.hash_map_max_load_factor in + divid > 0 /\ divis > 0)) + (ensures (fun _ -> True)) = + let capacity = length hm.hash_map_slots in + let (divid, divis) = hm.hash_map_max_load_factor in + if capacity <= usize_max / 2 && capacity <= usize_max / divid then + let ncapacity : usize = capacity * 2 in + begin match hash_map_new_with_capacity_fwd t ncapacity divid divis with + | Fail -> Fail + | Return ntable -> + match hash_map_move_elements_fwd_back t ntable hm.hash_map_slots 0 with + | Fail -> Fail + | Return (ntable', _) -> + let hm = + { hm with hash_map_slots = ntable'.hash_map_slots; + hash_map_max_load = ntable'.hash_map_max_load } + in + Return hm + end + else Return hm |