summaryrefslogtreecommitdiff
path: root/tests/hashmap/Hashmap.Properties.fst
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--tests/hashmap/Hashmap.Properties.fst130
1 files changed, 57 insertions, 73 deletions
diff --git a/tests/hashmap/Hashmap.Properties.fst b/tests/hashmap/Hashmap.Properties.fst
index 5f403c61..c5f8c13c 100644
--- a/tests/hashmap/Hashmap.Properties.fst
+++ b/tests/hashmap/Hashmap.Properties.fst
@@ -7,7 +7,7 @@ open Hashmap.Types
open Hashmap.Clauses
open Hashmap.Funs
-// To help with the proofs
+// To help with the proofs - TODO: remove
module InteractiveHelpers = FStar.InteractiveHelpers
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
@@ -122,6 +122,10 @@ module InteractiveHelpers = FStar.InteractiveHelpers
/// annoying loop: try to prove something, get an unknown assertion failed error,
/// insert a lot of assertions or think *really* deeply to figure out what might
/// have happened, etc. All this seems a lot more natural when working with tactics.
+///
+/// Simple example: see [slots_t_inv_implies_slots_s_inv]. This lemma is super
+/// simple and was probably not required (it is proven with `()`). But I often feel
+/// forced to anticipate on problems, otherwise proofs become too painful.
///
/// - the proofs often fail or succeed for extremely unpredictable reasons, and are
/// extremely hard to debug.
@@ -1983,86 +1987,66 @@ let rec hash_map_move_elements_s_flat_lem #t hm al =
/// We need to prove that the invariants on the "low-level" representations of
/// the hash map imply the invariants on the "high-level" representations.
+
val slots_t_inv_implies_slots_s_inv
(#t : Type0) (slots : slots_t t{length slots <= usize_max}) :
Lemma (requires (slots_t_inv slots))
(ensures (slots_s_inv (slots_t_v slots)))
let slots_t_inv_implies_slots_s_inv #t slots =
-
-
-let slots_s_inv (#t : Type0) (slots : slots_s t{length slots <= usize_max}) : Type0 =
- forall(i:nat{i < length slots}).
- {:pattern index slots i}
- slot_s_inv (length slots) i (index slots i)
-
-let slots_t_inv (#t : Type0) (slots : slots_t t{length slots <= usize_max}) : Type0 =
- forall(i:nat{i < length slots}).
- {:pattern index slots i}
- slot_t_inv (length slots) i (index slots i)
-
-hash_map_t_inv
-hash_map_slot_s_inv
-
-val slots_t_inv_implies_assoc_list_lem (#t : Type0) (hm : hash_map_t)
-
-(*
-let rec hash_map_move_elements_s_flat
- (#t : Type0) (ntable : hash_map_slots_s_nes t)
- (slots : hash_map_s t) :
- Tot (result_hash_map_slots_s_nes t)
- (decreases slots) =
- match slots with
- | [] -> Return ntable
- | (k,v) :: slots' ->
- match hash_map_insert_no_resize_s ntable k v with
- | Fail -> Fail
- | Return ntable' ->
- hash_map_move_elements_s_flat ntable' slots'
-
-
-(*
+ // Ok, works fine: this lemma was useless.
+ // Problem is: I can never really predict for sure with F*...
+ ()
-/// [nhm]: the new hash map (in which we insert elements)
-/// [slot]: the current slot we are emptying
-/// [ohm]: the old hash map, which we are moving to [nhm]
-/// [i]: the index of [slot] in [ohm]
-val hash_map_move_elements_s_flat_lem
- (#t : Type0) (nhm : hash_map_slots_s t{is_pos_usize (length hm)})
- (slots : slots_s t)
- (i : nat{i <= length slots /\ length slots <= usize_max}) :
+val hash_map_t_inv_implies_hash_map_slots_s_inv
+ (#t : Type0) (hm : hash_map_t t) :
+ Lemma (requires (hash_map_t_inv hm))
+ (ensures (hash_map_slots_s_inv (hash_map_t_slots_v hm)))
+
+let hash_map_t_inv_implies_hash_map_slots_s_inv #t hm = () // same as previous
+
+/// Introducing a "partial" version of the hash map invariant, which operates on
+/// a suffix of the hash map.
+let partial_hash_map_slots_s_inv
+ (#t : Type0) (len : usize{len > 0}) (offset : usize)
+ (hm : hash_map_slots_s t{offset + length hm <= usize_max}) : Type0 =
+ forall(i:nat{i < length hm}).
+ {:pattern index hm i}
+ slot_s_inv len (offset + i) (index hm i)
+
+val partial_hash_map_slots_s_inv_implies_assoc_list_lem
+ (#t : Type0) (len : usize{len > 0}) (offset : usize)
+ (hm : hash_map_slots_s t{offset + length hm <= usize_max}) :
Lemma
(requires (
- index ohm i == slot /\
- (forall (j:nat{j < i}). index j ohm == [])))
- (ensures (
- match hash_map_move_elements_from_list_s
+ partial_hash_map_slots_s_inv len offset hm))
+ (ensures (assoc_list_inv (flatten hm)))
+ (decreases (length hm + length (flatten hm)))
-let rec hash_map_move_elements_from_list_s
- (#t : Type0) (hm : hash_map_slots_s t{is_pos_usize (length hm)})
- (ls : slot_s t) :
- Tot (hash_map_slots_s_nes t) (decreases ls) =
- match ls with
- | [] -> Return hm
- | (key, value) :: ls' ->
- match hash_map_insert_no_resize_s hm key value with
- | Fail -> Fail
- | Return hm' ->
- hash_map_move_elements_from_list_s hm' ls'
+// Ah! this lemma requires some work (it was obvious, though...)
+#push-options "--fuel 1"
+let rec partial_hash_map_slots_s_inv_implies_assoc_list_lem #t len offset hm =
+ match hm with
+ | [] -> ()
+ | slot :: hm' ->
+ assert(flatten hm == slot @ flatten hm');
+ assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1));
+ match slot with
+ | [] ->
+ assert(flatten hm == flatten hm');
+ assert(partial_hash_map_slots_s_inv len (offset+1) hm');
+ partial_hash_map_slots_s_inv_implies_assoc_list_lem len (offset+1) hm'
+ | x :: slot' ->
+ assert(flatten (slot' :: hm') == slot' @ flatten hm');
+ assume(partial_hash_map_slots_s_inv len offset (slot' :: hm'));
+ partial_hash_map_slots_s_inv_implies_assoc_list_lem len offset (slot' :: hm');
+ assume(for_all (binding_neq x) (flatten (slot' :: hm')))
+#pop-options
-let rec hash_map_move_elements_s
- (#t : Type0) (hm : hash_map_slots_s_nes t)
- (slots : slots_s t) (i : usize{i <= length slots /\ length slots <= usize_max}) :
- Tot (result (hash_map_slots_s_nes t))
- (decreases (length slots - i)) =
- let len = length slots in
- if i < len then
- begin
- let slot = index slots i in
- match hash_map_move_elements_from_list_s hm slot with
- | Fail -> Fail
- | Return hm' ->
- let slots' = list_update slots i [] in
- hash_map_move_elements_s hm' slots' (i+1)
- end
- else Return hm
+val hash_map_slots_s_inv_implies_assoc_list_lem
+ (#t : Type0) (hm : hash_map_slots_s t) :
+ Lemma (requires (hash_map_slots_s_inv hm))
+ (ensures (assoc_list_inv (flatten hm)))
+
+let hash_map_slots_s_inv_implies_assoc_list_lem #t hm =
+ partial_hash_map_slots_s_inv_implies_assoc_list_lem (length hm) 0 hm